首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
The seasonal development of the swede midge Contarinia nasturtii Kieffer was studied in Quebec in 2004 and 2005 using pheromone traps, emergence cages, and visual inspection in relation to degree-day accumulations (DD(7.2 degrees C)). Peak emergence of overwintering adults occurred between 344 and 731 DD(7.2 degrees C) (second half of June) during both seasons. The swede midge had three to four overlapping generations in Quebec based on adult captures in pheromone traps and abundance of larvae in the field. The level of infestation was higher in late transplants than in early transplants, with cauliflower and broccoli being more susceptible to damage than white or red cabbage under high pest population.  相似文献   

2.
Most gall insects use young developing plant organs for gall formation; however, little information is available on the histological identification of such tissues or the changes in their availability with plant growth. We investigated the oviposition site of and the tissue used for gall formation by the midge Asphondylia aucubae Yukawa and Ohsaki, which is responsible for galls on the fruit of Aucuba japonica Thunb., by comparing the internal structures of young developing fruit, mature intact (uninfested) fruit, and galled fruit. The midge deposited eggs between the integument and the carpel of young fruit. Larval chambers were made of callus‐like tissue and were formed between the embryo sac and the carpel, where the integument was initially situated. The integument and part of the carpel were thus identified as critical plant tissues used by A. aucubae in forming galls. The integument degenerates in mature intact fruit; therefore, the season of emergence and oviposition by the midge may be determined by the timing of integument degeneration.  相似文献   

3.
A new genus Oxycephalomyia is described to contain the gall midge that was previously known as Asteralobia styraci (Shinji). Oxycephalomyia styraci, comb. nov., produces leaf vein galls on Styrax japonicus (Styracaceae). The adult of O. styraci is redescribed, and its full‐grown larva and pupa are described for the first time. The annual life cycle of the gall midge in northern Kyushu was clarified; the first instars overwinter in the galls on the host plant. However, the galls of O. styraci mature much later in the season than those of other gall midges with a similar life history pattern, and the durations of second and third larval instars are remarkably short. Such a life history pattern is considered to have an adaptive significance in avoiding larval parasitism, particularly by early attackers. The number of host axillary buds as oviposition sites decreased in bearing years and increased in off years, but there was no sign of oviposition site shortage even in bearing years, probably due to the low population density of the gall midge. An unidentified lepidopteran that feeds on galled and ungalled host buds and a Torymus sp. that attacks pupae of O. styraci were recognized as mortality factors of the gall midge.  相似文献   

4.
【背景】芒果壮铗普瘿蚊是厦门市2000年发现为害芒果树的一种入侵害虫,并呈现逐年扩散趋势。【方法】本文于2009~2010年针对厦门市7个代表性地点(集美大学周边、同安小西门、思明湖滨南路、东渡周边、鼓浪屿、海沧沧虹路、杏林镇)的芒果壮铗普瘿蚊的为害率、为害程度及羽化率情况进行调查。将叶片上的虫瘿密度划分为3个等级,分别为1~50、51~100、〉100个·片-1。【结果】2009年春梢叶片受害率最高的为海沧区(95.46%),但与思明区(94.00%)、同安区(80.09%)没有显著差异,集美(22.50%)被害率显著低于其他区域;2009年秋梢海沧区叶片受害率达到97.05%,显著高于其他区域,集美受害率最低(18.00%);2010年春梢叶片受害率较低,均在3%以下,各区域差异不显著。2009~2010年的为害程度主要集中在1~50个·片-1,2009年春各区域的为害率普遍高于2009年秋和2010年春。羽化率比较结果表明,各区域瘿蚊的羽化率相当,2009年春均在80%左右波动,2009年秋为60%~94%,2010年春各区域瘿蚊的羽化率明显低于2009年。【结论与意义】由于厦门市2010年春气温明显低于2009年,造成调查时为害情况较轻。但从总体上看,芒果壮铗普瘿蚊在厦门市的发生情况较为严重。本研究可以为明确该虫的扩散趋势及制定防治措施提供依据。  相似文献   

5.
The blueberry gall midge, Dasineura oxycoccana Johnson, is a serious pest of rabbiteye blueberries in Florida, Georgia, and Mississippi, and a potential pest of southern and northern highbush blueberries. Its damage has been observed with increasing frequency in highbush blueberry plantings in the Great Lakes region, including in Wisconsin and in Michigan. Unlike in rabbiteye blueberry plantings, where blueberry gall midge primarily damages flowering buds, it is found to damage only the vegetative shoots of northern highbush blueberry. In this study, farms throughout Michigan were surveyed for the presence of blueberry gall midge and it was found in 43 of 46 sampled farms in 11 counties. From 2009-2011, several monitoring techniques, including yellow sticky traps, emergence traps, observational sampling, and vegetative shoot dissections were used to determine the ecology of this species in blueberry fields in southwest Michigan. Emergence traps were most useful in early detection of blueberry gall midge in April, and observational sampling for damage symptoms and vegetative shoot dissections revealed multiple population peaks throughout July and August. Infestation was detected in vegetative shoot tips in all parts of the bushes, with initial infestation greatest at the base of bushes. Degree day accumulations until first midge detection and peak infestation suggest some potential for predicting key events in the pest's phenology. This information about the distribution and timing of infestation will be useful in developing management strategies for blueberry gall midge infestation.  相似文献   

6.
The baldcypress midge (Taxodiomyia cupressi and Taxodiomyia cupressiananassa) forms a gall that originates from leaf tissue. Female insects may inoculate galls with fungi during oviposition, or endophytes from the leaf tissue may grow into the gall interior. We investigated fungal diversity inside of baldcypress galls, comparing the gall communities to leaves and comparing fungal communities in galls that had successful emergence versus no emergence of midges or parasitoids. Galls of midges that successfully emerged were associated with diverse gall fungal communities, some of which were the same as the fungi found in surrounding leaves. Galls with no insect emergence were characterized by relatively low fungal diversity.  相似文献   

7.
The soybean pod gall midge is an important pest of soybean in Japan and is known to occur also in Indonesia and China. This gall midge is described from Japan as Asphondylia yushimai sp. n. and is clearly distinguished from its congeners by the arrangement of the lower frontal horns of the pupa and the sequence of the mtDNA COI region. It is concluded that Prunus zippeliana Miquel is a winter host of the soybean pod gall midge since haplotypes of the soybean pod gall midge coincide with those of the Prunus fruit gall midge that produces fruit galls on P. zippeliana. In addition, phenological and distributional information on the two gall midges and on their host plants supports the identification of the winter host. In Japan, the soybean pod gall midge overwinters as a first instar in the fruit galls on P. zippeliana and emerges as an adult from the galls in May. In summer and autumn, the soybean pod gall midge has two or more generations in the pods of soybean, Glycine max (L.) Merrill or wild fabaceous and caesalpiniaceous plants. Thus host alternation by A. yushimai is confirmed. This is the second finding of host alternation by a species of Asphondylia, the first instance being that of Asphondylia gennadii (Marchal) in Cyprus.  相似文献   

8.
A new species of gall midge, Schizomyia cryptostegiae Gagné, that forms leaf and bud galls on Cryptostegia grandiflora in Madagascar is described and its biology summarised. the gall midge is a candidate for the biological control of C. grandiflora in northern Queensland, Australia.  相似文献   

9.
Variation in damage levels on certain black currant, Ribes nigrum L., genotypes, caused by the black currant leaf midge, Dasineura tetensi (Rübs.) (Diptera: Cecidomyiidae), has been observed in northern Sweden. I investigated whether this variation is due to variation in virulence among midges. From a field population of midges, I successfully selected for virulence and avirulence, respectively, on the resistant black currant genotype cultivar `Storklas' (called resistant genotype). The performance of avirulent and virulent midge larvae on two black currant genotypes were studied in experiments where first or second instar larvae were artificially transferred. There were no differences in larval survival and developmental rate between the two midge types when transferred to the susceptible currant genotype `7801–31' (called susceptible genotype). Larvae of the virulent strain established galls and developed on `Storklas' but development was initially slower there than on the susceptible currant genotype. Larvae of the avirulent strain suffered high mortality or remained in first instar on that same currant genotype when transferred alone, but developed readily if transferred together with virulent larvae. Larvae transferred in second instar to host plants susceptible to the larvae resumed feeding and developed further to maturity. Second instar larvae were also able to establish new galls even though these galls were not as well developed as those caused by first instar larvae. Black currant plantations in northern Sweden were surveyed and local midge populations were found to be composed of either avirulent, virulent or a mixture of both midge types. Virulent midges were not restricted to plantations where resistant currant genotypes were grown. I conclude that, at least, two biotypes of the midge exist, and that those two are distinguished by the ability to gall and survive on `Storklas'.  相似文献   

10.
1 Infestation by the blackcurrant leaf midge Dasineura tetensi and galling incidence on a susceptible (cv. ‘Öjebyn’) and a moderately resistant (cv. ‘Storklas’) blackcurrant genotype was studied in the field for two midge generations in the same growing season. On the resistant genotype gall initiation is delayed. 2 The relation between infestation and galling incidence showed considerable variation between the two generations. Galling symptoms produced by the second midge generation were weak on the resistant as compared with the susceptible blackcurrant. 3 Because larval development of that generation coincided with a period of dry and warm weather, it is possible that larvae on the resistant genotype suffered desiccation to a greater extent than larvae on the susceptible genotype where gall development was stronger. 4 The possible interaction of relative humidity and expression of resistance was investigated in controlled environment experiments. The resistant ‘Storklas’ and a susceptible (‘7801–31’) currant genotype were studied at two constant relative humidities, 30 and 70%. 5 Larvae of D. tetensi suffered from higher mortality and reduced growth rate on both genotypes in the low humidity environment. 6 There was also a significant plant genotype by humidity interaction on larval performance; no galls were produced and no larvae completed development on the resistant currant at low humidity. 7 There was a trend for a positive correlation between larval length and larval density on a plant at low humidity but not at high humidity.  相似文献   

11.
The adult behavior of an ambrosia gall midge Illiciomyia yukawai (Diptera: Cecidomyiidae) that induces leaf galls on Illicium anisatum (Illiciaceae) was studied at the population level from 1977 to 1995 in Kagoshima, Japan. Most males emerged between 0:00 and 08:00 h and females between 05:00 and 11:00 h. Males swarmed around the host trees between 05:00 and 11:00 h. Mating occurred on the host leaves mainly between 06:00 and 08:00 h. Females then left the host trees for somewhere else, possibly to collect symbiont fungal conidia. From 08:00 to 16:00 h, females were observed ovipositing into the host shoots. The low development threshold temperature for overwintered larvae was 14°C, while the thermal constant for emergence differed with individuals. Thermal totals above 14°C up to the 50% emergence date varied yearly from 33.1 to 68.7 degree‐days. The 50% emergence date varied from 9 to 18 May. The thermal totals significantly correlated with the 50% emergence date but did not correlate with the date when 50% of shoots became suitable for oviposition. Thus, the host‐plant responded to thermal effects differently from the gall midge. Illiciomyia yukawai has been synchronizing well with the host‐plant phenology but will suffer from asynchrony when global warming becomes more conspicuous.  相似文献   

12.
13.
Abstract  To quantify the role of Johnson grass, Sorghum halepense , in the population dynamics of the sorghum midge, Stenodiplosis sorghicola , patterns of flowering of Johnson grass and infestation by sorghum midge were studied in two different climatic environments in the Lockyer Valley and on the Darling Downs in south-eastern Queensland for 3 years. Parasitism levels of S. sorghicola were also recorded. In the Lockyer Valley, Johnson grass panicles were produced throughout the year but on the Darling Downs none were produced between June and September. In both areas, most panicle production occurred between November and March and infestation by S. sorghicola was the greatest during this period. The parasitism levels were between 20% and 50%. After emergence from winter diapause, one to two generations of S. sorghicola developed on S. halepense before commercial grain sorghum crops were available for infestation. Parasitoids recorded were: Aprostocetus diplosidis , Eupelmus australiensis and two species of Tetrastichus. Relationships between sorghum midge population growth rate and various environmental and population variables were investigated. Population size had a significant negative effect ( P  < 0.0001) on population growth rate. Mortality due to parasitism showed a significant positive density response ( P  < 0.0001). Temperature, rainfall, open pan evaporation, degree-days and host availability showed no significant effect on population growth rate. Given the phenology of sorghum production in south-eastern Queensland, Johnson grass provides an important bridging host, sustaining one to two generations of sorghum midge. Critical studies relating population change and build-up in sorghum to sorghum midge populations in Johnson grass are yet to be performed.  相似文献   

14.
Abstract 1 We conducted two experiments to investigate why a basket willow Salix viminalis L. genotype, known to be highly resistant to the leaf-roller gall midge Dasineura marginemtorquens (Bremi), should support very high gall densities in a field plantation at Tälle, south Sweden.
2 The first experiment was a field test of the hypothesis of fine-scale host adaptation in the gall midge/willow system. Support for the hypothesis would be established if midges originating from resistant willows and those originating from nearby susceptible willows differed in their abilities to initiate galls and complete development on resistant plants.
3 The objective of the second experiment was to explore whether there was a genetic basis to the trait for virulence in the midge population and to investigate any potential trade-offs this trait may entail.
4 Our results indicate that there was a fine-scaled microgeographic genetic structure to the midge population at Tälle. Midges originating from resistant plants had a heritable trait that enabled them to establish galls on resistant plants.
5 Midges able to initiate galls on the resistant genotype had longer developmental time on the susceptible genotype. This suggests that there is a physiological cost associated with being adapted to the resistant willow genotype.
6 We suggest that driving forces behind the observed host adaptation are selection imposed on the midge population by very strong willow resistance and restricted gene flow in the midge populations due to the special life history features of D. marginemtorquens .  相似文献   

15.
Abstract  Five new species and a new genus of gall midge are described from flower galls on native chenopod plants in Eyre Peninsula, South Australia. Asphondylia vesicaria sp. n. induces galls on Atriplex vesicaria ; A. mcneilli sp. n. on Sclerolaena diacantha ; and A. tonsura sp. n. on Enchylaena tomentosa . Infested flowers develop into galls and produce no seeds. DNA analysis of part of the cytochrome-c oxidase subunit I mitochondrial gene supported the morphological and biological differences between each of the new species and the previously described A. floriformis (Veenstra-Quah & Kolesik) and A. sarcocorniae (Veenstra-Quah & Kolesik) that induce galls on leaves and branches, respectively, of Sarcocornia quinqueflora (Chenopodiaceae) in Australian salt marshes. A new genus, Dactylasioptera gen. n. and two new species of Lasiopterini, D. adentata sp. n. and D. dentata sp. n. are described – both were reared from galls of A. mcneilli and A. tonsura .  相似文献   

16.
Yearly population fluctuations of M. pustulae were investigated at 19 sites in Kyushu. In sites where a platygastrid is the only parasitoid of the midge, the percentage parasitism was very low in the incipient stage of the outbreak of the midge populations. After the number of midges reached a peak, the midge populations declined as the percentage parasitism increased, and then the outbreak ceased. On the other hand, in several populations no outbreak was found and the percentage parasitism was constantly at a high level. Therefore, the immediate cause for the outbreak seemed to be a decline of the percentage parasitism. Like the midge, the platygastrid has one generation each year, and its females also emerge in spring to deposit their eggs within host eggs. The decline of the percentage parasitism seemed to be mainly affected by the time lag between emergence periods of M. pustulae and the platygastrid. In the midge populations parasitized by both the platygastrid and a eulophid (Chrysonotomyia sp.), an extinction of the population was observed, resulting from parasitism by the latter, Chrysonotomyia sp. is polyphagous and multivoltine, and is a late parasitoid, as discussed byAskew (1975). When the density of the midges is very low, the platygastrid may leave the host eggs unparasitized, while Chrysonotomyia sp. may not, because the mature galls are conspicuous.  相似文献   

17.
The biological control of Meloidogyne arenaria on peanut (Arachis hypogaea) by Pasteuria penetrans was evaluated using a six x six factorial experiment in field microplots over 2 years. The main factors were six inoculum levels of second-stage juveniles (J2) of M. arenaria race 1 (0, 40, 200, 1,000, 5,000, and 25,000 J2/microplot, except that the highest level was 20,000 J2/microplot in 1995) and six infestation levels of P. penetrans as percentages of J2 with endospores attached (0, 20, 40, 60, 80, and 100%). The results were similar in 1994 and 1995. Numbers of eggs per root system, J2 per 100 cm³ soil at harvest, root galls, and pod galls increased with increasing nematode inoculum levels and decreased with increasing P. penetrans infestation levels (P ≤ 0.05), except that there was no effect of P. penetrans infestation levels on J2 per 100 cm³ soil in 1994 (P> 0.05). There were no statistical interaction effects between the inoculum levels of J2 and the infestation levels of P. penetrans (P > 0.05). When the infestation level was increased by 10%, the number of eggs per root system, root galls, and pod galls decreased 7.8% to 9.4%, 7.0% to 8.5%, and 8.0% to 8.7% in 1994 and 1995, respectively, whereas J2 per 100 cm³ soil decreased 8.8% in 1995 (P ≤ 0.05). The initial infestation level of P. penetrans contributed 81% to 95% of the total suppression of pod galls, whereas the infection of J2 of the subsequent generations contributed only 5% to 19% suppression of pod galls. The major suppressive mechanism of M. arenaria race 1 by P. penetrans on peanut is the initial endospore infestation of J2 at planting.  相似文献   

18.
Interspecific competition between phytophagous insects using the same host plant occurs frequently and can strongly affect population densities of competing species. Competition between gallmakers and stemborers could be especially intense because both types of herbivore are unable to avoid competition by relocation during their immature stages. For apical meristem gallmakers the main result of competition is likely to be the interruption of resources to the gall by the stemborers' devouring of stem contents. The proximate effect of such competition could be to reduce gall size, thereby increasing the number of chambers per gall unit volume, and reducing the size and potential reproductive output of the gallformer. In addition, smaller galls may be more susceptible to attack from size‐limited parasitoids, resulting in a second indirect effect of competition. Using a community of galling and stemboring insects on the saltmarsh shrub Iva frutescens L. (Asteraceae), we measured for indirect effects of competition. We examined the primary indirect effect of competition on gall midge crowding and the secondary effects on parasitism rates and parasitoid guild composition. Results indicated that galls co‐occurring with stemborers were smaller, crowding of gall inhabitants was 22% greater, and the composition of the parasitoid guild was altered relative to galls on unbored stems. The overall parasitism rate was not different between galls on bored vs. unbored stems. These results show that competition resulting from the presence of stemborers has the potential to affect the gall midge Asphondylia borrichiae Rossi & Strong (Diptera: Cecidomyiidae) and secondarily to affect its guild of hymenopteran parasitoids.  相似文献   

19.
The gall midge Obolodiplosis robiniae is a pest of black locust Robinia pseudoacacia. The species was recently introduced into Europe and it is nowadays a usual insect in Slovakia, where two-year field surveys were undertaken during 2007–2008. The main objective of this study was to determine the natural enemies attacking O. robiniae and estimate their influence on midge population, less than 3 years after its introduction. Eight parasitoids and bushcricket Tettigonia viridissima were responsible for midge regulation. The parasitoid complex was not typically that of an introduced species as it was predicted. Firstly, the midge was heavily influenced by a specialized parasitoid Platygaster robiniae, which was a predominant parasitoid and accounted for 98% of all specimens reared. Secondly, annual larval parasitism varied from 5.4 to 10.8%, though the late season average parasitism achieved 26.0% and often exceeded 40%. P. robiniae was also very efficient in exploiting galls and was capable of consistently regulating midge population. The surveys demonstrated that the average cumulative impact of natural enemies on the midge was substantial. Stably around 20% of attacked galls were recorded during the late summer. Bushcrickets were as efficient as parasitoids and played an important role at control, especially during lack of parasitoids. Greater impact of parasitoids was found in the larger settlements than it was in the countryside, when countertendency was valid for bushcrickets. There is an indication that O. robiniae parasitized by specialized parasitoid, and attacked by bushcrickets represents only a moderate risk for R. pseudoacacia or forest stands.  相似文献   

20.
The efficacy of pruning methods for managing blueberry stem galls caused by the chalcid wasp, Hemadas nubilipennis (Ashmead), was studied in five commercial lowbush blueberry (Vaccinium angustifolium Aiton) fields in Nova Scotia, Canada, between October 1999 and May 2000. Blueberry fields were mowed in the fall, and burning treatments were subsequently applied either in the fall or the spring. Three treatments were compared: mowing only, mowing plus fall burning, and mowing plus spring burning. Galls collected from the mow plus spring-burn treatment had the least wasp emergence of the three treatments, while the total number of galls was not affected by treatment. Wasp mortality, not gall destruction, is why wasp emergence is reduced in burn treatments. More galls were located and, for the burn treatments, higher wasp emergence was seen from galls found within the leaf litter than those above it. Five co-inhabitants emerged from blueberry stem galls in this study. Three, Eurytoma solenozopheriae (Ashmead), Sycophila vacciniicola (Balduf), and Orymus vacciniicola (Ashmead) are commonly found associates. The other two, Eupelmus vesicularis (Ritzius) and Pteromalus spp., are new records for Nova Scotia. O. vacciniicola is likely an inquiline because it is the largest wasp emerging from galls, and there was a positive relationship between its emergence and that of H. nubilipennis. Larger gall size improved H. nubilipennis emergence from mow and spring-burn galls. After a field has been mowed in the fall, we recommend a spring burn to reduce gall populations and the threat of product contamination.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号