首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
目的:探讨毛囊周期中,Wnt3a在毛囊及黑素细胞中的表达变化。方法:以DCT-LacZ转基因小鼠为动物模型,通过X-gal染色技术观察黑素细胞谱系在小鼠皮肤中的分布情况;采用X-gal染色结合免疫组化方法检测Wnt3a在毛囊及黑素细胞谱系中的表达情况;采用RT-PCR方法对小鼠皮肤全层Wnt3a和TYR的mRNA表达进行半定量分析。结果:在生长期毛囊中,Wnt3a蛋白在表皮、毛囊外根鞘Bulge区、内根鞘以及毛球部均有表达,在黑素干细胞与黑素细胞也观察到Wnt3a;在退化期,Wnt3a的表达逐渐减弱,仅在外根鞘有较弱的表达,但黑素干细胞中没有观察到Wnt3a;在静止期,几乎检测不到Wnt3a的表达;TYR mRNA与Wnt3a mRNA在毛囊周期中的表达模式一致,在生长期最强,退化期减弱,静止期最弱。结论:Wnt3a可能对黑素细胞谱系分化起到促进作用。  相似文献   

3.
Melanocytes originate from the neural crest in vertebrates and migrate to the body surface where they differentiate into functional cells. Genes involved in melanocyte differentiation can be classified into two groups. One of them consists of the functional genes that control proteins specific to the function of the melanocyte. As the representative gene of this category, albino (c) locus in the mouse is considered to control tyrosinase, the key enzyme in melanogenesis. cDNA for mouse tyrosinase has been cloned and sequenced. The cDNA can be used to detect tyrosinase mRNA synthesized during melanocyte differentiation. On the other hand, genes such as brown (b) or pink-eyed dilution (p) have been assumed to control melanosome proteins. The other category consists of genes that regulate the expression of these functional genes directly or indirectly. In the mouse, so-called white-spotting genes and genes of the agouti series are considered to fall into this category. Based on the fact that mutations at the white-spotting loci result in the absence of melanocytes in a particular area of skin, it is assumed that some of these loci control the factors that promote either differentiation or migration of melanoblasts and are candidates for the classic regulator genes Genes at the agouti (a) locus in the mouse determine the type of melanin synthesized in hair follicle melanocytes, that is eumelanin or pheomelanin. An interesting feature of this locus is that the site of gene action is not within the melanocytes but in the cells surrounding them. The results of our study indicate that the gene product of the a-locus interacts with α-MSH at the α-MSH receptor site, regulates the cellular cAMP level via a signal transduction system and, in turn, determines the type of melanin synthesized in the cells.  相似文献   

4.
We devised a unique new single‐cell cloning method which uses microscope cover glasses and established a melanoblast cell line derived from mouse neural crest cells. A microscope cover glass was nicked and broken into small pieces and put on a dish. Culture medium and a suspension of 20–30 cells/ml were dropped in the dish. After 1–3 d, a piece of glass to which only one cell was adhered was picked up and transferred to another dish containing culture medium. The greatest advantage of this method is that the derivation of a colony from a single cell can be directly confirmed by microscopy and there is no risk of migratory cells being contaminated by other colonies. Using this single‐cell cloning method, in this study we established a cell line derived from a neural crest cell line (NCC‐S4.1) and designated it as NCCmelb4. When the culture medium was supplemented with stem cell factor (SCF) alone, NCCmelb4 cells were KIT‐positive and tyrosinase‐negative melanocyte precursors; they remained at an immature and undifferentiated stage. When the medium was supplemented with phorbol 12‐o‐tetradecanoyl‐13‐acetate (TPA) + cholera toxin (CT), the cell morphology changed and became l ‐3,4‐dihydroxyphenylalanine (DOPA)‐positive. This observation indicates that the NCCmelb4 cells are capable of further differentiation with suitable stimulation. NCCmelb4 cells derived from the mouse neural crest has characteristics of melanocyte precursors (melanoblasts), and is a cell line which can be utilized to study differentiation‐inducing factors and growth factors without the effects of feeder cells.  相似文献   

5.
The conclusion that animal development is guided by a hierarchical system of gene expression and interaction has gained considerable support from recent molecular genetic studies on fruit flies (Drosophila melanogaster) and mice (Mus musculus). They demonstrate that the patterns of organization revealed by terminal differentiation of cells is anticipated by a myriad of transient prepatterns that channel the developing embryo toward its genetically-programmed target. The numerous white spotting mutants in mice exhibit some of the most dramatic and variable patterns of cutaneous melanin pigmentation. Until recently, the mechanisms of action of white spotting genes and their relationship to the developmental genetic hierarchy remained unknown. It now appears that certain white spotting genes may encode growth factors essential for melanoblast development. Others may be related to homeobox genes that play a number of developmental roles, the primary one being the determination of regional organization along the anterior-posterior axis of the early embryo. The patterns of homeobox gene expression are consistent with several of the developmental models for white spotting in mice and other mammals. It is evident that white spotting genes are not solely concerned with the terminal differentiation of melanoblasts into melanocytes. They are heterogeneous with regard to action and level of expression within the developmental hierarchy.  相似文献   

6.
We transfected the melanocyte-specific Mitf-M isoform into the aggressive melanoma UISO-Mel-6 cell lines. Our data show that Mitf decreases cell proliferation and results in cells which grow in clusters. By analyzing the expression of the markers of differentiation, we demonstrate that Mitf favored increased expression of tyrosinase and tyrosinase-related protein-1. In addition, Mitf induces Bcl-2 expression following transfection of UISO-Mel-6 cells. We also showed that Mitf gene affects cell-cycle distribution by resting cells preferentially in G2/G1 phase, and inducing the expression of p21 and p27. Moreover, we performed in vivo studies using subcutaneous injection of UISO-Mel-6 and UISO-Mel-6-Mitf in Balb/c nude mice. Our data show that Mitf inhibits tumor growth and decreases Ki67 expression. Tumors induced by UISO-Mel-6 cells were ulcerated and resulted in metastases to liver. None of the mice injected with UISO-Mel-6(Mitf+) cells harbored liver metastases. Our results suggest that Mitf is involved in melanoma differentiation and leads to a less aggressive phenotype.  相似文献   

7.
8.
9.
 The Armadillo family is formed by proteins which possess an Arm domain comprising multiple copies of a 42-amino-acid motif, the Arm repeat, initially described for the Drosophila segment polarity gene product Armadillo. The Arm domain serves in protein-protein interactions which are required for the family members Armadillo, β-catenin and plakoglobin to mediate cell-cell adhesion and Wnt/Wingless signalling. Similarily, p120 cas , the Arm domain containing src substrate, also binds to cadherins and becomes tyrosine phosphorylated in response to a variety of stimuli. However, a putative function of p120 cas in adhesion or signalling has not yet been demonstrated. It has also not been shown until now that an Arm domain is a common signal transduction motif. Using Xenopus embryos we show by expression of murine p120 cas 1B (mp120 cas 1B) in ventral blastomeres that this catenin cannot replace β-catenin function in dorsal axis formation. Thus, the presence of an Arm domain per se is not sufficient to activate the Wnt/Wg pathway. Indeed, injection of mp120 cas 1B into dorsal blastomeres led instead to delayed blastopore closure and posteriorized phenotypes with malformed head structures indicative of disturbed gastrulation movements. Because neither convergent extension behaviour nor adhesion to fibronectin was altered in the injected embryos we assume that mp120 cas 1B influences motility or orientation of migrating mesodermal cells. Received: 29 September 1997 / Accepted: 15 November 1997  相似文献   

10.
11.
In the hippocampus, synapses are formed between mossy fiber terminals and CA3 pyramidal cell dendrites and comprise highly developed synaptic junctions (SJs) and puncta adherentia junctions (PAJs). Dynamic remodeling of synapses in the hippocampus is implicated in learning and memory. Components of both the nectin-afadin and cadherin-catenin cell adhesion systems exclusively accumulate at PAJs. We investigated the role of afadin at synapses in mice in which the afadin gene was conditionally inactivated in hippocampal neurons. In these mutant mice, the signals for not only nectins, but also N-cadherin and β-catenin, were hardly detected in the CA3 area, in addition to loss of the signal for afadin, resulting in disruption of PAJs. Ultrastructural analysis revealed an increase in the number of perforated synapses, suggesting the instability of SJs. These results indicate that afadin is involved not only in the assembly of nectins and cadherins at synapses, but also in synaptic remodeling.  相似文献   

12.
13.
Color loci in mammals are those genetic loci in which mutations can affect pigmentation of the hair, skin, and/or eyes. In the mouse, over 800 phenotypic alleles are now known, at 127 identified color loci. As the number of color loci passed 100 only recently, we celebrate this ‘century’ with an overview of these loci, especially the 59 that have been cloned and sequenced. These fall into a number of functional groups representing melanocyte development and differentiation, melanosomal components, organelle biogenesis, organelle transport, control of pigment‐type switching, and some systemic effects. A human ortholog has been identified in all cases, and the majority of these human genes are found to be loci for human disorders, often affecting other body systems as well as pigmentation. We expect that a significant number of color loci remain to be identified. Nonetheless, the large number known already provide a treasury of resources for reconstruction of the mechanisms, at the subcellular, cellular and tissue levels, that produce a functional pigmentary system and contribute to the normal development and functioning of many other organ systems. The mutant mice also provide valuable models for the study of human disease.  相似文献   

14.
15.
16.
17.
Indispensable role of Bcl2 in the development of the melanocyte stem cell   总被引:1,自引:0,他引:1  
Bcl2 null mice display a characteristic loss of pigmentation demonstrating the importance of Bcl2 in the melanocyte (Mc) lineage. It was recently reported that this abnormal phenotype is due to the failure of melanocyte stem cell (MSC) maintenance and that Bcl2 is selectively important for the survival of MSCs. However, in our analysis of the same mouse, we observe a reduction in melanoblast (Mb) number in both epidermal and follicular populations. More importantly, there is a complete absence of MSCs. SCF downregulation in the epidermis is concomitant with the dramatic reduction in Mb numbers observed in the Bcl2 null, suggesting that Bcl2 is indispensable for the survival of Mbs in the absence of c-Kit signaling. Consistently, abrogation of c-Kit signaling in Bcl2 null mice depletes all Mbs and Mcs, whereas continuous expression of SCF in epidermal keratinocytes rescues the MSCs. Our results demonstrate that Bcl2 has a general role in Mb and Mc survival and is essential for the emergence of MSCs. Moreover, the results indicate that the first wave of Mcs that provide hair pigmentation is derived directly from epidermal Mbs bypassing MSCs. Furthermore, a Bcl2-independent mechanism of action of SCF in the Mc lineage is revealed as SCF c-Kit signaling is functional in the absence of Bcl2.  相似文献   

18.
卜淑敏  胡增  彭莎  段恩奎 《动物学报》2007,53(1):130-134
金属蛋白酶组织抑制因子-4(TIMP-4)是TIMP家族的最新成员。已有研究表明,TIMP-4mRNA大量表达于成年小鼠的睾丸中。为了证实TIMP-4基因在出生后小鼠睾丸中的表达是否具有发育依赖性,本实验利用RT-PCR、Western blotting和间接免疫荧光染色三种方法,分别检测了TIMP-4mRNA和蛋白在出生后小鼠睾丸不同发育期中的时空表达方式。RT-PCR和Western blotting结果分别显示,TIMP-4mRNA和蛋白均只在成年小鼠睾丸中表达,而在出生后的其它各阶段都不表达;间接免疫荧光染色进一步证实TIMP-4蛋白只定位在成年小鼠睾丸的Leydig细胞中。结果提示,TIMP-4在出生后小鼠睾丸中的表达具有显著的发育依赖性.  相似文献   

19.
This protocol presents a method to perform quantitative, single-cell in situ analyses of protein expression to study lineage specificationin mouse preimplantation embryos. The procedures necessary for embryo collection, immunofluorescence, imaging on a confocal microscope, and image segmentation and analysis are described. This method allows quantitation of the expression of multiple nuclear markers and the spatial (XYZ) coordinates of all cells in the embryo. It takes advantage of MINS, an image segmentation software tool specifically developed for the analysis of confocal images of preimplantation embryos and embryonic stem cell (ESC) colonies. MINS carries out unsupervised nuclear segmentation across the X, Y and Z dimensions, and produces information on cell position in three-dimensional space, as well as nuclear fluorescence levels for all channels with minimal user input. While this protocol has been optimized for the analysis of images of preimplantation stage mouse embryos, it can easily be adapted to the analysis of any other samples exhibiting a good signal-to-noise ratio and where high nuclear density poses a hurdle to image segmentation (e.g., expression analysis of embryonic stem cell (ESC) colonies, differentiating cells in culture, embryos of other species or stages, etc.).  相似文献   

20.
Summary The islet cells of the mammalian pancreas are comprised of four different endocrine cell types, each containing a specific hormone. Islet cells also contain two enzymes of the catecholamine biosynthetic pathway: tyrosine hydroxylase (TH) and aromatic L-amino acid decarboxylase (AADC). The cell lineage relationships of these different cell types have not been examined and it is not known whether, during development, they originate from the same or from different precursor populations. In this study we used immunocytochemical procedures to determine whether developing pancreatic cells express markers common to endocrine and exocrine cell types. We found that acinar cell precursors express AADC prior to the appearance of an exocrine marker and that the expression of AADC in acinar cells persists throughout embryogenesis to the first month of postnatal life. At this time, acinar cells do not contain AADC. We also found that exocrine cells containing AADC never express other islet-cell markers. These findings suggest that while acinar and islet cells both arise from precursor cells containing AADC, these progenitor cells do not express a combined endocrine-exocrine phenotype.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号