首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Seasonal changes in foliage nitrogen (N) and carbon (C) concentrations and δ15N and δ13C ratios were monitored during a year in Erica arborea, Myrtus communis and Juniperus communis co-occurring at a natural CO2 spring (elevated [CO2], about 700 μmol mol−1) and at a nearby control site (ambient [CO2], 360 μmol mol−1) in a Mediterranean environment. Leaf N concentration was lower in elevated [CO2] than in ambient [CO2] for M. communis, higher for J. communis, and dependent on the season for E. arborea. Leaf C concentration was negatively affected by atmospheric CO2 enrichment, regardless of the species. C/N ratio varied concomitantly to N. Leaves in elevated [CO2] showed lower δ13C, and therefore likely lower water use efficiencies than leaves at the control site, regardless of the species, suggesting substantial photosynthetic acclimation under long-term CO2-enriched atmosphere. Leaves of E. arborea showed lower values of δ15N under elevated [CO2], but this was not the case of M. communis and J. communis foliage. The use of the resources and leaf chemical composition are affected by elevated [CO2], but such an effect varies during the year, and is species-dependent. The seasonal dependency and species specificity suggest that plants are able to exploit different available water and N resources within Mediterranean sites. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

2.
Plants may be more sensitive to carbon dioxide (CO2) enrichment at subambient concentrations than at superambient concentrations, but field tests are lacking. We measured soil‐water content and determined xylem pressure potentials and δ13C values of leaves of abundant species in a C3/C4 grassland exposed during 1997–1999 to a continuous gradient in atmospheric CO2 spanning subambient through superambient concentrations (200–560 µmol mol2?1). We predicted that CO2 enrichment would lessen soil‐water depletion and increase xylem potentials more over subambient concentrations than over superambient concentrations. Because water‐use efficiency of C3 species (net assimilation/leaf conductance; A/g) typically increases as soils dry, we hypothesized that improvements in plant‐water relations at higher CO2 would lessen positive effects of CO2 enrichment on A/g. Depletion of soil water to 1.35 m depth was greater at low CO2 concentrations than at higher CO2 concentrations during a mid‐season drought in 1998 and during late‐season droughts in 1997 and 1999. During droughts each year, mid‐day xylem potentials of the dominant C4 perennial grass (Bothriochloa ischaemum (L.) Keng) and the dominant C3 perennial forb (Solanum dimidiatum Raf.) became less negative as CO2 increased from subambient to superambient concentrations. Leaf A/g—derived from leaf δ13C values—was insensitive to feedbacks from CO2 effects on soil water and plant water. Among most C3 species sampled—including annual grasses, perennial grasses and perennial forbs—A/g increased linearly with CO2 across subambient concentrations. Leaf and air δ13C values were too unstable at superambient CO2 concentrations to reliably determine A/g. Significant changes in soil‐ and plant‐water relations over subambient to superambient concentrations and in leaf A/g over subambient concentrations generally were not greater over low CO2 than over higher CO2. The continuous response of these variables to CO2 suggests that atmospheric change has already improved water relations of grassland species and that periodically water‐limited grasslands will remain sensitive to CO2 enrichment.  相似文献   

3.
We studied carbon‐based secondary and structural compounds (CBSSCs) in Myrtus communis, Erica arborea, and Juniperus communis co‐occurring in a natural CO2 spring site and in a nearby control site in a Mediterranean environment. Leaf concentrations of phenolics and CBSSCs, such as lignin, cellulose, and hemicellulose, total nonstructural carbohydrates (TNCs), and lipids were measured monthly (phenolics) and every two months (the other compounds) throughout a year. There was a slight seasonal trend towards maximum concentrations of most of these CBSSCs during autumn–winter and minimum values during the spring season, particularly in Myrtus communis. For most of the CBSSCs and species, there were no consistent or significant patterns in response to the elevated [CO2] (c. 700 μmol mol?1) of the spring site. These results were not due to a dilution effect by increased structural or nonstructural carbon. Therefore, in contrast to many experimental studies of CO2 enrichment, mainly conducted for short periods, there were no greater concentrations of phenolics, and, as in many of these studies, there were neither greater concentrations of the other CBSSCs. These results do not agree with the predictions of the carbon source‐sink hypotheses. Possible causes of this disagreement are discussed. These causes include the complex heterogeneous environmental conditions and the variability of resource availabilities in the field, photosynthetic down‐regulation, and/or the homeostatic and evolutionary nature of organisms. These results suggest evolutionary adaptive responses to changes in CO2. They also suggest caution in attributing increased CBSSC concentrations to elevated [CO2] at long‐term scale in natural conditions, and therefore in their implications for plant–herbivore interactions and for decomposition.  相似文献   

4.
It has been suggested that desert vegetation will show the strongest response to rising atmospheric carbon dioxide due to strong water limitations in these systems that may be ameliorated by both photosynthetic enhancements and reductions in stomatal conductance. Here, we report the long‐term effect of 55 Pa atmospheric CO2 on photosynthesis and stomatal conductance for three Mojave Desert shrubs of differing leaf phenology (Ambrosia dumosa—drought‐deciduous, Krameria erecta—winter‐deciduous, Larrea tridentata—evergreen). The shrubs were growing in an undisturbed ecosystem fumigated using FACE technology and were measured over a four‐year period that included both above and below‐average precipitation. Daily integrated photosynthesis (Aday) was significantly enhanced by elevated CO2 for all three species, although Krameria erecta showed the greatest enhancements (63% vs. 32% for the other species) enhancements were constant throughout the entire measurement period. Only one species, Larrea tridentata, decreased stomatal conductance by 25–50% in response to elevated CO2, and then only at the onset of the summer dry season and following late summer convective precipitation. Similarly, reductions in the maximum carboxylation rate of Rubisco were limited to Larrea during spring. These results suggest that the elevated CO2 response of desert vegetation is a function of complex interactions between species functional types and prevailing environmental conditions. Elevated CO2 did not extend the active growing season into the summer dry season because of overall negligible stomatal conductance responses that did not result in significant water conservation. Overall, we expect the greatest response of desert vegetation during years with above‐average precipitation when the active growing season is not limited to ~ 2 months and, consequently, the effects of increased photosynthesis can accumulate over a biologically significant time period.  相似文献   

5.
Summary Mechanisms of dry-season drought resistance were evaluated for five evergreen shrubs (Psychotria, Rubiaceae) which occur syntopically in tropical moist forest in central Panama. Rooting depths, leaf conductance, tissue osmotic potentials and elasticity, and the timing of leaf production were evaluated. From wet to dry season, tissue osmotic potentials declined and moduli of elasticity increased in four and five species, respectively. Irrigation only affected osmotic adjustment by P. furcata. The other seasonal changes in leaf tissue properties represented ontogenetic change. Nevertheless, they made an important contribution to dry-season turgor maintenance. Small between-year differences in dry season rainfall had large effects on plant water status. In 1986, 51 mm of rain fell between 1 January and 31 March, and pre-dawn turgor potentials averaged <0.1 MPa for all five Psychotria species in March (Wright 1991). In 1989, 111 mm of rain fell in the same period, pre-dawn turgor potentials averaged from 0.75 to 1.0 MPa for three of the species in April, and only P. chagrensis lost turgor. The relation between leaf production and drought differed among species. P. limonensis was buffered against drought by the lowest dry-season conductances and the deepest roots (averaging 244% deeper than its congeners) and was the only species to produce large numbers of leaves in the dry season. P. chagrensis was most susceptible to drought, and leaf production ceased as turgor loss developed. For the other species, water stress during severe dry seasons may select against dry-season leaf production.  相似文献   

6.
M. A. Sobrado 《Oecologia》1986,68(3):413-416
Summary This study compared the tissue water relations and seasonal changes in leaf water potential components of an evergreen tree,Morisonia americana, and two evergreen shrubs,Capparis verrucosa andC. aristiquetae, with two deciduous trees,Humboltiella arborea andLonchocarpus dipteroneurus, and the deciduous vineMansoa verrucifera. All these species coexist in a tropical dry forest in Venezuela. Leaves of the evergreen species are sclerophyllous, while those of the deciduous species are mesophytic. Leaf area to leaf weight ratios of fully mature leaves were about 75 and 170 cm2 g–1 in evergreen and deciduous species, respectively. Seasonal fluctuations of leaf water content per unit of dry weight, water potential, and turgor pressure were smaller in evergreen than in deciduous species. The analysis of tissue water relations using pressurevolume curves showed that evergreen species could develop a higher leaf turgor and lose turgor at lower leaf water potentials than deciduous species. This was related to a lower osmotic potential at full turgor in evergreen (-3.0 MPa)_than in deciduous (-2.0 MPa) species, rather than to the elastic properties of leaf tissue. The volumetric modulus of elasticity was 14 MPa in evergreen compared with 7–10 MPa in deciduous species. Thus, leaf characteristics are important in determining the drought resistance of evergreen species of this tropical dry forest.  相似文献   

7.
Seedling recruitment is an important determinant of community structure in desert ecosystems. Positive photosynthetic growth and water balance responses to increasing atmospheric carbon dioxide (CO2) concentrations ([CO2]) are predicted to be substantial in desert plants, suggesting that recruitment could be stimulated. However, to date no studies have addressed the response of perennial plant recruitment in natural populations of desert shrubs exposed to elevated [CO2]. In April 1997, we employed Free‐Air Carbon Dioxide Enrichment (FACE) in order to increase atmospheric [CO2] in an undisturbed Mojave Desert ecosystem from ambient (~~ 370 µmol mol?1) to elevated CO2 (~~ 550 µmol mol?1). From 1997 to 2001 we seasonally examined survival, growth, gas exchange and water potential responses of Larrea tridentata and Ambrosia dumosa seedlings that germinated in Fall, 1997. Recruitment densities were not influenced by [CO2] in either species, although a two‐fold higher adult Ambrosia density under elevated [CO2] resulted in two‐fold higher seedling density (0.87 vs 0.40 seedlings m?2). Mortality was greatest for both species during the first summer (1998), despite above‐average rainfall during the previous Winter–Spring. A significant [CO2] × time interaction revealed that early survival was greater under elevated CO2, whereas a significant species time interaction revealed that overall survival was greater for Ambrosia (28%) than for Larrea (15%), regardless of [CO2]. Microsite (understorey or interspace) alone had no significant influence on survival. Significant species, microsite and species × microsite effects on growth (seedling height, stem diameter and canopy size) were found, but elevated CO2 had minimal impact on these parameters. Photosynthetic rates (Asat) for both species were higher at elevated [CO2] during certain seasons, but not consistently so. These results suggest that increased atmospheric [CO2] may enhance carbon (C) assimilation and survival of aridland perennial shrubs during favourable growing conditions, but that it may not counteract the effects of prolonged drought on mortality.  相似文献   

8.
The effect of increasing atmospheric CO2 concentrations on tissue water relations was examined in Betula populifolia, a common pioneer tree species of the northeastern U.S. deciduous forests. Components of tissue water relations were estimated from pressure volume curves of tree seedlings grown in either ambient (350 l l–1) or elevated CO2 (700 l l–1), and both mesic and xeric water regimes. Both CO2 and water treatment had significant effects on osmotic potential at full hydration, apoplasmic fractions, and tissue elastic moduli. Under xeric conditions and ambient CO2 concentrations, plants showed a decrease in osmotic potentials of 0.15 MPa and an increase in tissue elastic moduli at full hydration of 1.5 MPa. The decrease in elasticity may enable plants to improve the soil-plant water potential gradient given a small change in water content, while lower osmotic potentials shift the zero turgor loss point to lower water potentials. Under elevated CO2, plants in xeric conditions had osmotic potentials 0.2 MPa lower than mesic plants and decreased elastic moduli at full hydration. The increase in tissue elasticity at elevated CO2 enabled the xeric plants to maintain positive turgor pressures at lower water potentials and tissue water contents. Surprisingly, the elevated CO2 plants under mesic conditions had the most inelastic tissues. We propose that this inelasticity may enable plants to generate a favorable water potential gradient from the soil to the plant despite the low stomatal conductances observed under elevated CO2 conditions.  相似文献   

9.
The effects of elevated CO2 and drought on ecophysiological parameters in grassland species have been examined, but few studies have investigated the effect of competition on those parameters under climate change conditions. The objective of this study was to determine the effect of elevated CO2 and drought on the response of plant water relations, gas exchange, chlorophyll a fluorescence and aboveground biomass in four grassland species, as well as to assess whether the type of competition modulates that response. Elevated CO2 in well‐watered conditions increased aboveground biomass by augmenting CO2 assimilation. Drought reduced biomass by reducing CO2 assimilation rate via stomatal limitation and, when drought was more severe, also non‐stomatal limitation. When plants were grown under the combined conditions of elevated CO2 and drought, drought limitation observed under ambient CO2 was reduced, permitting higher CO2 assimilation and consequently reducing the observed decrease in aboveground biomass. The response to climate change was species‐specific and dependent on the type of competition. Thus, the response to elevated CO2 in well‐watered grasses was higher in monoculture than in mixture, while it was higher in mixture compared to monoculture for forbs. On the other hand, forbs were more affected than grasses by drought in monoculture, while in mixture the negative effect of drought was higher in grasses than in forbs, due to a lower capacity to acquire water and mineral nutrients. These differences in species‐level growth responses to CO2 and drought may lead to changes in the composition and biodiversity of the grassland plant community in future climate conditions.  相似文献   

10.
Leaf mineral concentrations of co‐occurring Erica arborea, Juniperus communis and Myrtus communis were measured at bimonthly intervals throughout a year in a natural CO2 spring and in a nearby control site with similar soil chemistry in a Mediterranean environment. There were different responses to the elevated [CO2] (c. 700 μL L?1) of the spring site plants depending on the element and the species. In the CO2 spring site K, Ca, Mg, Mn, Al, Fe, and Ti leaf concentrations and the ratio C/N showed significant greater values in at least one or two of the three species. Leaf S concentration were greater in all three species. Leaf concentrations of N, Sr, Co, and B were lower in at least one or two species, and those of C and Ba were lower in all the three studied species near the CO2 spring. P, Na, Zn, Si, Cu, Ni, Cr, Pb, Mo, V and Cd leaf concentrations and the specific leaf area (SLA, measured in Myrtus communis) did not show any consistent or significant pattern in response to the elevated [CO2] of the spring site. There was a slight trend towards maximum concentrations of most of these elements during autumn–winter and minimum values during the spring season, especially in Myrtus communis. Multivariate principal component analyses based on the leaf elemental concentrations clearly differentiated the two sites and the three species. Lower concentrations at the spring site were not the result of a dilution effect by increased structural or nonstructural carbon. In contrast to most experimental studies of CO2 enrichment, mainly conducted for short periods, several of these elements had greater concentrations in the CO2 spring site. Nutrient acclimation and possible causes including decreased nutrient export, increased nutrient uptake capacity, photosynthetic down‐regulation, Mediterranean water stress, and higher H2S concentration in the spring site are discussed.  相似文献   

11.
Six open‐top chambers were installed on the shortgrass steppe in north‐eastern Colorado, USA from late March until mid‐October in 1997 and 1998 to evaluate how this grassland will be affected by rising atmospheric CO2. Three chambers were maintained at current CO2 concentration (ambient treatment), three at twice ambient CO2, or approximately 720 μmol mol?1 (elevated treatment), and three nonchambered plots served as controls. Above‐ground phytomass was measured in summer and autumn during each growing season, soil water was monitored weekly, and leaf photosynthesis, conductance and water potential were measured periodically on important C3 and C4 grasses. Mid‐season and seasonal above‐ground productivity were enhanced from 26 to 47% at elevated CO2, with no differences in the relative responses of C3/C4 grasses or forbs. Annual above‐ground phytomass accrual was greater on plots which were defoliated once in mid‐summer compared to plots which were not defoliated during the growing season, but there was no interactive effect of defoliation and CO2 on growth. Leaf photosynthesis was often greater in Pascopyrum smithii (C3) and Bouteloua gracilis (C4) plants in the elevated chambers, due in large part to higher soil water contents and leaf water potentials. Persistent downward photosynthetic acclimation in P. smithii leaves prevented large photosynthetic enhancement for elevated CO2‐grown plants. Shoot N concentrations tended to be lower in grasses under elevated CO2, but only Stipa comata (C3) plants exhibited significant reductions in N under elevated compared to ambient CO2 chambers. Despite chamber warming of 2.6 °C and apparent drier chamber conditions compared to unchambered controls, above‐ground production in all chambers was always greater than in unchambered plots. Collectively, these results suggest increased productivity of the shortgrass steppe in future warmer, CO2 enriched environments.  相似文献   

12.
Soil moisture profiles can affect species composition and ecosystem processes, but the effects of increased concentrations of atmospheric carbon dioxide ([CO2]) on the vertical distribution of plant water uptake have not been studied. Because plant species composition affects soil moisture profiles, and is likely to shift under elevated [CO2], it is also important to test whether the indirect effects of [CO2] on soil water content may depend on species composition. We examined the effects of elevated [CO2] and species composition on soil moisture profiles in an annual grassland of California. We grew monocultures and a mixture of Avena barbata and Hemizonia congesta– the dominant species of two phenological groups – in microcosms exposed to ambient (~370 μmol mol?1) and elevated (~700 μmol mol?1) [CO2]. Both species increased intrinsic and yield‐based water use efficiency under elevated [CO2], but soil moisture increased only in communities with A. barbata, the dominant early‐season annual grass. In A. barbata monocultures, the [CO2] treatment did not affect the depth distribution of soil water loss. In contrast to communities with A. barbata, monocultures of H. congesta, a late‐season annual forb, did not conserve water under elevated [CO2], reflecting the increased growth of these plants. In late spring, elevated [CO2] also increased the efficiency of deep roots in H. congesta monocultures. Under ambient [CO2], roots below 60 cm accounted for 22% of total root biomass and were associated with 9% of total water loss, whereas in elevated [CO2], 16% of total belowground biomass was associated with 34% of total water loss. Both soil moisture and isotope data showed that H. congesta monocultures grown under elevated [CO2] began extracting water from deep soils 2 weeks earlier than plants in ambient [CO2].  相似文献   

13.
Summary Leaf water relationships were studied in four widespread forest tree species (Ilex opaca Ait., Cornus florida L., Acer rubrum L., and Liriodendron tulipifera L.). The individuals studied all occurred on the same site and were selected to represent a range of growth forms and water relationships in some of the principal tree species of the region. The water relations of the species were analyzed using the concept of the water potential-water content relationship. The pressure-volume method was used to measure this relationship using leaf material sampled from naturally occurring plants in the field. Water potential components (turgor, osmotic, and matric) were obtained by analysis of the pressure-volume curves.Initial osmotic potentials (the value of the osmotic component at full turgidity) were highest (least negative) at the start of the growing season. They decreased (becoming progressively more negative) as the season progressed through a drought period. Following a period of precipitation at the end of the drought period, initial osmotic potentials increased toward the values measured earlier in the season.Seasonal osmotic adjustments were sufficient in all species to allow maintenance of leaf turgor through the season, with one exception: Acer appeared to undergo some midday turgor loss during the height of the July drought period.In addition to environmental influences, tissue stage of development played a role; young Ilex leaves had higher early season initial osmotic potentials than overwintering leaves from the same tree.The seasonal pattern of initial osmotic potential in Liriodendron and the observed pattern of leaf mortality suggested a possible role of osmotic potentials in the resistance of those leaves to drought conditions. The fraction of total leaf water which is available to affect osmotic potentials, called the osmotic water fraction in this study, was greatest in young tissue early in the season and declined as the season progressed.The results of this study showed that the water potential-water content relationship represents a dynamic mechanism by which plant internal water relations may vary in response to a changing external water-availability regime. The measured water relationships confirmed the relative positions of the species along a water-availability gradient, with Cornus at the wettest end and Ilex at the driest end of the gradient. Acer and Liriodendron were intermediate in their water relations. The spread of these species along a water-availability gradient on the same site suggested that coexistence is partially based on differential water use patterns.  相似文献   

14.
Turgor maintenance, solute content and recovery from water stress were examined in the drought-tolerant shrub Artemisia tridentata. Predawn water potentials of shrubs receiving supplemental water remained above ?2 MPa throughout summer, while predawn water potentials of untreated shrubs decreased to ?5 MPa. Osmotic potentials decreased in conjunction with water potentials maintaining turgor pressures above 0 MPa. The decreases in osmotic potentials were not the result of osmotic adjustment (i.e. solute accumulation). Leaf solute contents decreased during drought, but leaf water volumes decreased more than 75% from spring to summer, thereby passively concentrating solutes within the leaves. The maintenance of positive turgor pressures despite decreases in leaf water volumes is consistent with other studies of species with elastic cell walls. Inorganic ion, organic acid, and carbohydrate contents of leaves declined during drought. The only solutes accumulating in leaves of A. tridentata with water stress were proline and a cyclitol, both considered compatible solutes. Total and osmotic potentials recovered rapidly following rewatering of shrubs; solute contents did not change except for a decrease in proline. Maintaining turgor through the passive concentration of solutes may be advantageous compared to synthesis of new solutes for osmotic adjustment in arid environments.  相似文献   

15.
It has been reported that elevated temperature accelerates the time‐to‐mortality in plants exposed to prolonged drought, while elevated [CO2] acts as a mitigating factor because it can reduce stomatal conductance and thereby reduce water loss. We examined the interactive effects of elevated [CO2] and temperature on the inter‐dependent carbon and hydraulic characteristics associated with drought‐induced mortality in Eucalyptus radiata seedlings grown in two [CO2] (400 and 640 μL L?1) and two temperature (ambient and ambient +4 °C) treatments. Seedlings were exposed to two controlled drying and rewatering cycles, and then water was withheld until plants died. The extent of xylem cavitation was assessed as loss of stem hydraulic conductivity. Elevated temperature triggered more rapid mortality than ambient temperature through hydraulic failure, and was associated with larger water use, increased drought sensitivities of gas exchange traits and earlier occurrence of xylem cavitation. Elevated [CO2] had a negligible effect on seedling response to drought, and did not ameliorate the negative effects of elevated temperature on drought. Our findings suggest that elevated temperature and consequent higher vapour pressure deficit, but not elevated [CO2], may be the primary contributors to drought‐induced seedling mortality under future climates.  相似文献   

16.
Suitability of Drought-Preconditioning Techniques in Mediterranean Climate   总被引:3,自引:1,他引:2  
Abstract Arid and semiarid ecosystems in the Mediterranean are under high risk of desertification. Revegetation with native well‐adapted evergreen shrubs is desirable, but techniques for successful establishment of these species are not fully developed. Transplant shock is a key hurdle to plantation success. The application of a drought‐preconditioning treatment during the last months of nursery culture is a potential technique for reducing transplant shock. This technique has been widely applied in boreal habitats and humid temperate areas. Three representative Mediterranean species (Pistacia lentiscus, Quercus coccifera, and Juniperus oxycedrus seedlings) were exposed to classic drought‐preconditioning treatment consisting of reductions in the watering regime. The effects of preconditioning on seedling quality were assessed by cell water relationships (pressure–volume curves), minimal transpiration, leaf capacitance, chlorophyll fluorescence, and gas exchange. Moreover, seedlings were exposed to transplant shock (intense drought period) during which water potential (predawn and midday) and maximal photochemical efficiency were evaluated to establish seedling performance. Results showed that preconditioning did not affect cell water relationships and minimal transpiration in any of the three species. Preconditioned seedlings of P. lentiscus maintained higher water content during desiccating conditions as a consequence of an increase in leaf water content at full turgor. These changes allowed plants to maintain higher net CO2 assimilation rates and an elevated photosystem II status, facilitating an increase in drought survival. Preconditioning improved the performance of Q. coccifera and J. oxycedrus seedlings, but these two species were much less responsive than P. lentiscus seedlings. Finally, results suggest that sensitivity to drought preconditioning may be related to drought tolerance or avoidance strategy of each species. Drought‐related strategies should be considered to optimize management scale preconditioning.  相似文献   

17.
Leaf water relations, net gas exchange and leaf and root constituent responses to 9 days of drought stress (DS) or soil flooding were studied in 6‐month‐old seedlings of Carrizo citrange [Citrus sinensis (L.) Osb. ×Poncirus trifoliata L.; Carr] and Cleopatra mandarin (Citrus resnhi Hort. ex Tanaka; Cleo) growing in containers of native sand in the greenhouse. At the end of the drought period, both species had similar minimum stem water potentials but Cleo had higher leaf relative water content (RWC) and higher leaf osmotic potential at full turgor () than Carr. Flooding had no effect on RWC but osmotic adjustment (OA) and were higher in Cleo than in Carr. Net CO2 assimilation rate (ACO2) in leaves was decreased more by drought than by flooding in both species but especially in Carr. Leaf water‐use efficiency (ACO2/transpiration) was lower in Carr and was decreased more by DS and flooding stress than in Cleo. Higher values of intercellular CO2 concentration (Ci) in stressed plants than in control plants indicated that non‐stomatal factors including chlorophyll degradation and chlorophyll fluorescence [maximum quantum efficiency of PSII (Fv/Fm, where Fm is the maximum fluorescence and F0, minimum fluorescence in dark‐adapted leaves)] were more important limitations on ACO2 than stomatal conductance. In both genotypes, leaf proline was increased by drought but not by flooding, whereas both stresses increased proline in roots. Soluble sugars in leaves were increased by DS, and flooding decreased leaf sugars in Cleo. In general, DS tended to increase the concentrations of Ca, K, Mg, Na and Cl in both leaves and roots, whereas flooding tended to decrease these ions with the exception of leaf Ca in Cleo. Based on water relations and net gas exchange, Cleo was more tolerant to short‐term DS and flooding stress than Carr.  相似文献   

18.
Atmospheric CO2 enrichment usually changes the relative contributions of plant species to biomass production of grasslands, but the types of species favored and mechanisms by which change is mediated differ among ecosystems. We measured changes in the contributions of C3 perennial forbs and C4 grasses to aboveground biomass production of tallgrass prairie assemblages grown along a field CO2 gradient (250–500 μmol mol?1) in central Texas USA. Vegetation was grown on three soil types and irrigated each season with water equivalent to the growing season mean of precipitation for the area. We predicted that CO2 enrichment would increase the forb contribution to community production, and favor tall‐grasses over mid‐grasses by increasing soil water content and reducing the frequency with which soil water fell below a limitation threshold. CO2 enrichment favored forbs over grasses on only one of three soil types, a Mollisol. The grass fraction of production increased dramatically across the CO2 gradient on all soils. Contribution of the tall‐grass Sorghastrum nutans to production increased at elevated CO2 on the two most coarse‐textured of the soils studied, a clay Mollisol and sandy Alfisol. The CO2‐caused increase in Sorghastrum was accompanied by an offsetting decline in production of the mid‐grass Bouteloua curtipendula. Increased CO2 favored the tall‐grass over mid‐grass by increasing soil water content and apparently intensifying competition for light or other resources (Mollisol) or reducing the frequency with which soil water dipped below threshold levels (Alfisol). An increase in CO2 of 250 μmol mol?1 above the pre‐industrial level thus led to a shift in the relative production of established species that is similar in magnitude to differences observed between mid‐grass and tallgrass prairies along a precipitation gradient in the central USA. By reducing water limitation to plants, atmospheric CO2 enrichment may alter the composition and even structure of grassland vegetation.  相似文献   

19.
Reduced stomatal conductance (gs) during soil drought in angiosperms may result from effects of leaf turgor on stomata and/or factors that do not directly depend on leaf turgor, including root‐derived abscisic acid (ABA) signals. To quantify the roles of leaf turgor‐mediated and leaf turgor‐independent mechanisms in gs decline during drought, we measured drought responses of gs and water relations in three woody species (almond, grapevine and olive) under a range of conditions designed to generate independent variation in leaf and root turgor, including diurnal variation in evaporative demand and changes in plant hydraulic conductance and leaf osmotic pressure. We then applied these data to a process‐based gs model and used a novel method to partition observed declines in gs during drought into contributions from each parameter in the model. Soil drought reduced gs by 63–84% across species, and the model reproduced these changes well (r2 = 0.91, P < 0.0001, n = 44) despite having only a single fitted parameter. Our analysis concluded that responses mediated by leaf turgor could explain over 87% of the observed decline in gs across species, adding to a growing body of evidence that challenges the root ABA‐centric model of stomatal responses to drought.  相似文献   

20.

A net, leaf net CO2 assimilation
ca, CO2 concentration of air surrounding a leaf
ci, leaf intercellular CO2 concentration
Δ, 13C isotope discrimination
δ13C, relative stable carbon isotope content
?, ratio of Anet at ca = 560μmol mol–1 to Anet at ca = 360 μmol mol–1
FACE, free-air CO2 enrichment
gw, stomatal conductance to water vapour
Πi, initial leaf osmotic potential
Rt, relative water content at incipient turgor loss
Ψl, xylem water potential of leaves
Ψm, soil matric potential

Elevated CO2 is expected to reduce forest water use as a result of CO2-induced stomatal closure, which has implications for ecosystem-scale phenomena controlled by water availability. Leaf-level CO2 and H2O exchange responses and plant and soil water relations were examined in a maturing loblolly pine (Pinus taeda L.) stand in a free-air CO2 enrichment (FACE) experiment in North Carolina, USA to test if these parameters were affected by elevated CO2. Current-year foliage in the canopy was continuously exposed to elevated CO2 (ambient CO2+200μmol mol–1) in free-air during needle growth and development for up to 400 d. Photosynthesis in upper canopy foliage was stimulated by 50–60% by elevated CO2 compared with ambient controls. This enhancement was similar in current-year, ambient-grown foliage temporarily measured at elevated CO2 compared with long-term elevated CO2 grown foliage. Significant photosynthetic enhancement by CO2 was maintained over a range of conditions except during peak drought. There was no evidence of water savings in elevated CO2 plots in FACE compared to ambient plots under drought and non-drought conditions. This was supported by evidence from three independent measures. First, stomatal conductance was not significantly different in elevated CO2 versus ambient trees of P. taeda. Calculations of time-integrated ci/ca ratios from analysis of foliar δ13C showed that these ratios were maintained in foliage under elevated CO2. Second, soil moisture was not significantly different between ambient and elevated CO2 plots during drought. Third, pre-dawn and mid-day leaf water potentials were also unaffected by the seasonal CO2 exposure, as were tissue osmotic potentials and turgor loss points. Together the results strongly support the hypothesis that maturing P. taeda trees have low stomatal responsiveness to elevated CO2. Elevated CO2 effects on water relations in loblolly pine-dominated forest ecosystems may be absent or small apart from those mediated by leaf area. Large photosynthetic enhancements in the upper canopy of P. taeda by elevated CO2 indicate that this maturing forest may have a large carbon sequestration capacity with limiting water supply.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号