首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
季节性高温和干旱对亚热带毛竹林碳通量的影响   总被引:1,自引:0,他引:1  
采用涡度相关技术对安吉亚热带毛竹林生态系统碳通量进行连续观测,选取2011和2013年月尺度净生态系统生产力(NEP)、生态系统呼吸(Re)和总生态系统生产力(GEP)数据,探讨季节性高温、干旱对毛竹林生态系统碳通量的影响.结果表明: 安吉毛竹林年际间NEP有较大差异;2013年7和8月由于水热不同步而造成的高温干旱使其NEP明显下降,相比于2011年同期分别下降了59.9%和80.0%.对2011和2013年月尺度下NEP、Re和GEP与环境因子进行相关分析发现,Re和GEP与温度因子均呈显著相关(P<0.05),但两者对空气和土壤水分的响应方式和程度有所不同,GEP相比于Re更易受到土壤水分降低的影响,而饱和水汽压差的升高会在一定程度上促进Re、同时抑制GEP,这是造成2013年7和8月安吉毛竹林NEP降低的根本原因.  相似文献   

2.
Process‐based models are effective tools to synthesize and/or extrapolate measured carbon (C) exchanges from individual sites to large scales. In this study, we used a C‐ and nitrogen (N)‐cycle coupled ecosystem model named CN‐CLASS (Carbon Nitrogen‐Canadian Land Surface Scheme) to study the role of primary climatic controls and site‐specific C stocks on the net ecosystem productivity (NEP) of seven intermediate‐aged to mature coniferous forest sites across an east–west continental transect in Canada. The model was parameterized using a common set of parameters, except for two used in empirical canopy conductance–assimilation, and leaf area–sapwood relationships, and then validated using observed eddy covariance flux data. Leaf Rubisco‐N dynamics that are associated with soil–plant N cycling, and depend on canopy temperature, enabled the model to simulate site‐specific gross ecosystem productivity (GEP) reasonably well for all seven sites. Overall GEP simulations had relatively smaller differences compared with observations vs. ecosystem respiration (RE), which was the sum of many plant and soil components with larger variability and/or uncertainty associated with them. Both observed and simulated data showed that, on an annual basis, boreal forest sites were either carbon‐neutral or a weak C sink, ranging from 30 to 180 g C m?2 yr?1; while temperate forests were either a medium or strong C sink, ranging from 150 to 500 g C m?2 yr?1, depending on forest age and climatic regime. Model sensitivity tests illustrated that air temperature, among climate variables, and aboveground biomass, among major C stocks, were dominant factors impacting annual NEP. Vegetation biomass effects on annual GEP, RE and NEP showed similar patterns of variability at four boreal and three temperate forests. Air temperature showed different impacts on GEP and RE, and the response varied considerably from site to site. Higher solar radiation enhanced GEP, while precipitation differences had a minor effect. Magnitude of forest litter content and soil organic matter (SOM) affected RE. SOM also affected GEP, but only at low levels of SOM, because of low N mineralization that limited soil nutrient (N) availability. The results of this study will help to evaluate the impact of future climatic changes and/or forest C stock variations on C uptake and loss in forest ecosystems growing in diverse environments.  相似文献   

3.
Net ecosystem productivity (NEP) was continuously measured using the eddy covariance (EC) technique from 2003 to 2005 at three forest sites of ChinaFLUX. The forests include Changbaishan temperate mixed forest (CBS), Qianyanzhou subtropical coniferous plantation (QYZ), and Dinghushan subtropical evergreen broad‐leaved forest (DHS). They span wide ranges of temperature and precipitation and are influenced by the eastern Asian monsoon climate to varying extent. In this study, we estimated ecosystem respiration (RE) and gross ecosystem productivity (GEP). Comparison of ecosystem carbon exchange among the three forests shows that RE was mainly determined by temperature, with the forest at CBS exhibiting the highest temperature sensitivity among the three ecosystems. The RE was highly dependent on GEP across the three forests, and the ratio of RE to GEP decreased along the North–South Transect of Eastern China (NSTEC) (i.e. from the CBS to the DHS), with an average of 0.77 ± 0.06. Daily GEP was mainly influenced by temperature at CBS, whereas photosynthetic photon flux density was the dominant factor affecting the daily GEP at both QYZ and DHS. Temperature mainly determined the pattern of the interannual variations of ecosystem carbon exchange at CBS. However, water availability primarily controlled the interannual variations of ecosystem carbon exchange at QYZ. At DHS, NEP attained the highest values at the beginning of the dry seasons (autumn) rather than the rainy seasons (summer), probably because insufficient radiation and frequent fog during the rainy seasons hindered canopy photosynthesis. All the three forest ecosystems acted as a carbon sink from 2003 to 2005. The annual average values of NEP at CBS, QYZ, and DHS were 259 ± 19, 354 ± 34, and 434 ± 66 g C m−2 yr−1, respectively. The slope of NEP that decreased with increasing latitude along the NSTEC was markedly different from that observed on the forest transect in the European continent. Long‐term flux measurements over more forest ecosystems along the NSTEC will further help verify such a difference between the European forest transect and the NSTEC and provide insights into the responses of ecosystem carbon exchange to climate change in China.  相似文献   

4.
We conducted ecosystem carbon and water vapour exchange studies in an old‐growth Pinus ponderosa forest in the Pacific North‐west region of the United States. The canopy is heterogeneous, with tall multiaged trees and an open, clumped canopy with low leaf area. Carbon assimilation can occur throughout relatively mild winters, although night frosts can temporarily halt the process and physiological factors limit its efficiency. In contrast, carbon assimilation is often limited in the ‘growing season’ by stomatal closure associated with high evaporative demand (D) and soil water deficits. All of these factors present a challenge to effectively modelling ecosystem processes. Our objective was to generate an understanding of the controls on ecosystem processes across seasonal and annual cycles from a combination of fine‐scale process modelling, ecophysiological measurements, and carbon and water vapour fluxes measured by the eddy covariance method. Flux measurements showed that 50% and 70% of the annual carbon uptake occurred outside the ‘growing season’ (defined as bud break to senescence, ~ days 125–275) in 1996 and 1997. On a daily basis in summer, net ecosystem productivity (NEP) was low when D and soil water deficits were large. Whole ecosystem water vapour fluxes (LE) increased from spring to summer (1.0–1.9 mm d?1) as conducting leaf area increased by 30% and as evaporative demand increased, while evaporation from the soil surface became a smaller portion of total LE as soil water deficits increased. The models underestimated soil evaporation, particularly following rain. In the SPA model, varying the temperature optimum for photosynthesis seasonally resulted in overestimation of carbon uptake in winter and spring, showing that in coniferous forests, assumptions about temperature optima are clearly important. Daily estimates of soil surface CO2 flux from measurements and site meteorological data demonstrated that modelling of soil CO2 flux based on an Arrhenius‐type equation in CANPOND overestimated CO2 respired from the soil during drought and when temperatures were low.  相似文献   

5.
Savannas comprise a large area of the global land surface and are subject to frequent disturbance through fire. The role of fire as one of the primary natural carbon cycling mechanisms is a key issue in considering global change feedbacks. The savannas of Northern Australia burn regularly and we aimed to determine their annual net ecosystem productivity (NEP) and the impact of fire on productivity. We established a long‐term eddy covariance flux tower at Howard Springs, Australia and present here 5 years of data from 2001 to 2005. Fire has direct impacts through emissions but also has indirect effects through the loss of productivity due to reduced functional leaf area index and the carbon costs of rebuilding the canopy. The impact of fire on the canopy latent energy exchange was evident for 40 days while the canopy was rebuilt; however, the carbon balance took approximately 70 days to recover. The annual fire free NEP at Howard Springs was estimated at −4.3 t C ha−1 yr−1 with a range of −3.5 to −5.1 t C ha−1 yr−1 across years. We calculated the average annual indirect fire effect as +0.7 t C ha−1 yr−1 using a neural network model approach and estimated average emissions of fine and coarse fuels as +1.6 t C ha−1 yr‐1. This allowed us to calculate a net biome production of −2.0 t C ha−1 yr‐1. We then partitioned this remaining sink and suggest that most of this can be accounted for by woody increment (1.2 t C ha−1 yr‐1) and shrub encroachment (0.5 t C ha−1 yr‐1). Given the consistent sink at this site, even under an almost annual fire regime, there may be management options to increase carbon sequestration by reducing fire frequency.  相似文献   

6.
We use eddy covariance measurements of net ecosystem productivity (NEP) from 21 FLUXNET sites (153 site-years of data) to investigate relationships between phenology and productivity (in terms of both NEP and gross ecosystem photosynthesis, GEP) in temperate and boreal forests. Results are used to evaluate the plausibility of four different conceptual models. Phenological indicators were derived from the eddy covariance time series, and from remote sensing and models. We examine spatial patterns (across sites) and temporal patterns (across years); an important conclusion is that it is likely that neither of these accurately represents how productivity will respond to future phenological shifts resulting from ongoing climate change. In spring and autumn, increased GEP resulting from an ‘extra’ day tends to be offset by concurrent, but smaller, increases in ecosystem respiration, and thus the effect on NEP is still positive. Spring productivity anomalies appear to have carry-over effects that translate to productivity anomalies in the following autumn, but it is not clear that these result directly from phenological anomalies. Finally, the productivity of evergreen needleleaf forests is less sensitive to phenology than is productivity of deciduous broadleaf forests. This has implications for how climate change may drive shifts in competition within mixed-species stands.  相似文献   

7.
Annual measurements of the diameter growth and litter fall of trees began in 1998 using a 1.0 ha permanent plot beneath a flux tower at the Takayama flux site, central Japan. This opened up an opportunity for studies that compare the interannual variability in tree growth with eddy covariance-based net ecosystem production (NEP). A possible link between multiyear biometric-based net primary production (NPP) and eddy covariance-based NEP was investigated to determine the contribution of autotrophic production and heterotrophic respiration (HR) to the interannual variability of NEP in deciduous forest ecosystems. We also defined the NEP* as the measurable organic matter stored in an ecosystem during the interval in which soil respiration (SR) measurements were taken. The difference of biometric-based NEP* from eddy covariance-based NEP within a given year varied between 55% and 105%. Woody tissue NPP (stems and coarse roots) varied markedly from 0.88 to 1.96 Mg C ha−1 yr−1 during the 8-year study period (1999–2006). Annual woody tissue NPP was positively correlated with eddy covariance-based NEP ( r 2=0.52, P <0.05). However, neither foliage NPP ( r 2=0.03) nor HR ( r 2=0.06) were correlated with eddy covariance-based NEP. Therefore, it was hypothesized that interannual variability in the ecosystem carbon exchange was directly responsible for much of the interannual variation in autotrophic production, especially carbon accumulation in the woody components of the ecosystem. Moreover, similar interannual variations of biometric-based NEP* and eddy covariance-based NEP with small variations in SR and foliage NPP suggest a constant net accumulation of carbon in nonliving pools at the Takayama site.  相似文献   

8.
The eddy covariance method was used for continuous measurement of the seasonal courses of the following parameters of the carbon cycle in a sedge-grass marsh type of wetland ecosystem (49°01′29″N, 14°46′13″E, South Bohemia, Czech Republic, Central Europe): gross ecosystem production (GEP), net ecosystem production (NEP) and ecosystem respiration. During a 3-year series of measurements, we recorded marked fluctuations of the water table, which affected the overall water regime of the wetland studied. Between-year differences in the water regime strongly influenced the total annual carbon sequestration. The lowest annual GEP and NEP of 996 and 152 g m−2 of carbon, respectively, were recorded in 2006, a year with two large floods, one in the spring, the other in the summer. By contrast, in the dry year of 2007, with no flood, the highest annual GEP and NEP were recorded: 1,328 and 274 g m−2, respectively. Significant differences were found in the efficiency of solar energy use for GEP [gross radiation use efficiency, GRUE = GEP/PhAR (photosynthetically active radiation), i.e., amount of carbon gained per energy unit]. The highest GRUE was recorded immediately after the 2006 summer flood. In 2007, the GRUE decreased linearly with rising water table. A variable water regime thus markedly affects the processes of carbon accumulation and the efficiency of solar energy use for organic matter production in freshwater wetlands of the sedge-grass marsh type.  相似文献   

9.
 干旱对陆地生态系统的影响已成为全球变化研究的焦点问题之一。该研究基于生态系统过程模型——CEVSA2, 结合涡度相关通量观测, 分析了不同程度干旱对亚热带人工针叶林碳交换的影响及其关键控制因素。结果表明: 1)干旱使生态系统碳交换显著下降, 2003和2004年的干旱使得年净生态系统生产力(Net ecosystem production, NEP)相比无干旱影响情景的模拟结果分别减少了63%和47%; 2)光合和呼吸对干旱具有不同的响应, 干旱时光合的下降比呼吸更为显著, 这导致了NEP的显著下降; 3)当饱和水气压差(Vapor pressure deficit, VPD)达到1.5 kPa以上时, 生态系统的光合、呼吸和净碳吸收均开始下降, 当VPD大于2.5 kPa、土壤相对含水量(土壤含水量/土壤饱和含水量)(Relative soil water content, RSW)低于40%时, 生态系统的碳收支由碳汇转为碳源; 4)土壤干旱是造成碳交换下降的主要驱动因素, 对年NEP下降的平均贡献率为46%, 而大气干旱的贡献率仅为4%。  相似文献   

10.
This paper discusses the advantages and disadvantages of the different methods that separate net ecosystem exchange (NEE) into its major components, gross ecosystem carbon uptake (GEP) and ecosystem respiration (Reco). In particular, we analyse the effect of the extrapolation of night‐time values of ecosystem respiration into the daytime; this is usually done with a temperature response function that is derived from long‐term data sets. For this analysis, we used 16 one‐year‐long data sets of carbon dioxide exchange measurements from European and US‐American eddy covariance networks. These sites span from the boreal to Mediterranean climates, and include deciduous and evergreen forest, scrubland and crop ecosystems. We show that the temperature sensitivity of Reco, derived from long‐term (annual) data sets, does not reflect the short‐term temperature sensitivity that is effective when extrapolating from night‐ to daytime. Specifically, in summer active ecosystems the long‐term temperature sensitivity exceeds the short‐term sensitivity. Thus, in those ecosystems, the application of a long‐term temperature sensitivity to the extrapolation of respiration from night to day leads to a systematic overestimation of ecosystem respiration from half‐hourly to annual time‐scales, which can reach >25% for an annual budget and which consequently affects estimates of GEP. Conversely, in summer passive (Mediterranean) ecosystems, the long‐term temperature sensitivity is lower than the short‐term temperature sensitivity resulting in underestimation of annual sums of respiration. We introduce a new generic algorithm that derives a short‐term temperature sensitivity of Reco from eddy covariance data that applies this to the extrapolation from night‐ to daytime, and that further performs a filling of data gaps that exploits both, the covariance between fluxes and meteorological drivers and the temporal structure of the fluxes. While this algorithm should give less biased estimates of GEP and Reco, we discuss the remaining biases and recommend that eddy covariance measurements are still backed by ancillary flux measurements that can reduce the uncertainties inherent in the eddy covariance data.  相似文献   

11.
Understanding the dynamics and underlying mechanism of carbon exchange between terrestrial ecosystems and the atmosphere is one of the key issues in global change research. In this study, we quantified the carbon fluxes in different terrestrial ecosystems in China, and analyzed their spatial variation and environmental drivers based on the long‐term observation data of ChinaFLUX sites and the published data from other flux sites in China. The results indicate that gross ecosystem productivity (GEP), ecosystem respiration (ER), and net ecosystem productivity (NEP) of terrestrial ecosystems in China showed a significantly latitudinal pattern, declining linearly with the increase of latitude. However, GEP, ER, and NEP did not present a clear longitudinal pattern. The carbon sink functional areas of terrestrial ecosystems in China were mainly located in the subtropical and temperate forests, coastal wetlands in eastern China, the temperate meadow steppe in the northeast China, and the alpine meadow in eastern edge of Qinghai‐Tibetan Plateau. The forest ecosystems had stronger carbon sink than grassland ecosystems. The spatial patterns of GEP and ER in China were mainly determined by mean annual precipitation (MAP) and mean annual temperature (MAT), whereas the spatial variation in NEP was largely explained by MAT. The combined effects of MAT and MAP explained 79%, 62%, and 66% of the spatial variations in GEP, ER, and NEP, respectively. The GEP, ER, and NEP in different ecosystems in China exhibited ‘positive coupling correlation’ in their spatial patterns. Both ER and NEP were significantly correlated with GEP, with 68% of the per‐unit GEP contributed to ER and 29% to NEP. MAT and MAP affected the spatial patterns of ER and NEP mainly by their direct effects on the spatial pattern of GEP.  相似文献   

12.
Global‐scale studies suggest that dryland ecosystems dominate an increasing trend in the magnitude and interannual variability of the land CO2 sink. However, such analyses are poorly constrained by measured CO2 exchange in drylands. Here we address this observation gap with eddy covariance data from 25 sites in the water‐limited Southwest region of North America with observed ranges in annual precipitation of 100–1000 mm, annual temperatures of 2–25°C, and records of 3–10 years (150 site‐years in total). Annual fluxes were integrated using site‐specific ecohydrologic years to group precipitation with resulting ecosystem exchanges. We found a wide range of carbon sink/source function, with mean annual net ecosystem production (NEP) varying from ‐350 to +330 gCm?2 across sites with diverse vegetation types, contrasting with the more constant sink typically measured in mesic ecosystems. In this region, only forest‐dominated sites were consistent carbon sinks. Interannual variability of NEP, gross ecosystem production (GEP), and ecosystem respiration (Reco) was larger than for mesic regions, and half the sites switched between functioning as C sinks/C sources in wet/dry years. The sites demonstrated coherent responses of GEP and NEP to anomalies in annual evapotranspiration (ET), used here as a proxy for annually available water after hydrologic losses. Notably, GEP and Reco were negatively related to temperature, both interannually within site and spatially across sites, in contrast to positive temperature effects commonly reported for mesic ecosystems. Models based on MODIS satellite observations matched the cross‐site spatial pattern in mean annual GEP but consistently underestimated mean annual ET by ~50%. Importantly, the MODIS‐based models captured only 20–30% of interannual variation magnitude. These results suggest the contribution of this dryland region to variability of regional to global CO2 exchange may be up to 3–5 times larger than current estimates.  相似文献   

13.
The combined effects of vegetation and climate change on biosphere–atmosphere water vapor (H2O) and carbon dioxide (CO2) exchanges are expected to vary depending, in part, on how biotic activity is controlled by and alters water availability. This is particularly important when a change in ecosystem composition alters the fractional covers of bare soil, grass, and woody plants so as to influence the accessibility of shallower vs. deeper soil water pools. To study this, we compared 5 years of eddy covariance measurements of H2O and CO2 fluxes over a riparian grassland, shrubland, and woodland. In comparison with the surrounding upland region, groundwater access at the riparian sites increased net carbon uptake (NEP) and evapotranspiration (ET), which were sustained over more of the year. Among the sites, the grassland used less of the stable groundwater resource, and increasing woody plant density decoupled NEP and ET from incident precipitation (P), resulting in greater exchange rates that were less variable year to year. Despite similar gross patterns, how groundwater accessibility affected NEP was more complex than ET. The grassland had higher respiration (Reco) costs. Thus, while it had similar ET and gross carbon uptake (GEP) to the shrubland, grassland NEP was substantially less. Also, grassland carbon fluxes were more variable due to occasional flooding at the site, which both stimulated and inhibited NEP depending upon phenology. Woodland NEP was large, but surprisingly similar to the less mature, sparse shrubland, even while having much greater GEP. Woodland Reco was greater than the shrubland and responded strongly and positively to P, which resulted in a surprising negative NEP response to P. This is likely due to the large accumulation of carbon aboveground and in the surface soil. These long‐term observations support the strong role that water accessibility can play when determining the consequences of ecosystem vegetation change.  相似文献   

14.
Two independent methods of estimating gross ecosystem production (GEP) were compared over a period of 2 years at monthly integrals for a mixed forest of conifers and deciduous hardwoods at Harvard Forest in central Massachusetts. Continuous eddy flux measurements of net ecosystem exchange (NEE) provided one estimate of GEP by taking day to night temperature differences into account to estimate autotrophic and heterotrophic respiration. GEP was also estimated with a quantum efficiency model based on measurements of maximum quantum efficiency (Qmax), seasonal variation in canopy phenology and chlorophyll content, incident PAR, and the constraints of freezing temperatures and vapour pressure deficits on stomatal conductance. Quantum efficiency model estimates of GEP and those derived from eddy flux measurements compared well at monthly integrals over two consecutive years (R2= 0–98). Remotely sensed data were acquired seasonally with an ultralight aircraft to provide a means of scaling the leaf area and leaf pigmentation changes that affected the light absorption of photosynthetically active radiation to larger areas. A linear correlation between chlorophyll concentrations in the upper canopy leaves of four hardwood species and their quantum efficiencies (R2= 0–99) suggested that seasonal changes in quantum efficiency for the entire canopy can be quantified with remotely sensed indices of chlorophyll. Analysis of video data collected from the ultralight aircraft indicated that the fraction of conifer cover varied from < 7% near the instrument tower to about 25% for a larger sized area. At 25% conifer cover, the quantum efficiency model predicted an increase in the estimate of annual GEP of < 5% because unfavourable environmental conditions limited conifer photosynthesis in much of the non-growing season when hardwoods lacked leaves.  相似文献   

15.
Long‐term trends in ecosystem resource use efficiencies (RUEs) and their controlling factors are key pieces of information for understanding how an ecosystem responds to climate change. We used continuous eddy covariance and microclimate data over the period 1999–2017 from a 120‐year‐old black spruce stand in central Saskatchewan, Canada, to assess interannual variability, long‐term trends, and key controlling factors of gross ecosystem production (GEP) and the RUEs of carbon (CUE = net primary production [NPP]/GEP), light (LUE = GEP/absorbed photosynthetic radiation [APAR]), and water (WUE = GEP/evapotranspiration [E]). At this site, annual GEP has shown an increasing trend over the 19 years (p < 0.01), which may be attributed to rising atmospheric CO2 concentration. Interannual variability in GEP, aside from its increasing trend, was most strongly related to spring temperatures. Associated with the significant increase in annual GEP were relatively small changes in NPP, APAR, and E, so that annual CUE showed a decreasing trend and annual LUE and WUE showed increasing trends over the 19 years. The long‐term trends in the RUEs were related to the increasing CO2 concentration. Further analysis of detrended RUEs showed that their interannual variation was impacted most strongly by air temperature. Two‐factor linear models combining CO2 concentration and air temperature performed well (R2~0.60) in simulating annual RUEs. LUE and WUE were positively correlated both annually and seasonally, while LUE and CUE were mostly negatively correlated. Our results showed divergent long‐term trends among CUE, LUE, and WUE and highlighted the need to account for the combined effects of climatic controls and the ‘CO2 fertilization effect’ on long‐term variations in RUEs. Since most RUE‐based models rely primarily on one resource limitation, the observed patterns of relative change among the three RUEs may have important implications for RUE‐based modeling of C fluxes.  相似文献   

16.
Although mature black spruce forests are a dominant cover type in the boreal forest of North America, it is not clear how their carbon (C) budgets vary across the continent. The installation of an eddy covariance flux tower on an Old Black Spruce (OBS) site in eastern Canada (EOBS, Québec) provided a first opportunity to compare and contrast its annual (2004) and seasonal C exchange with two other pre-existing OBS flux sites from different climatic regions located in Saskatchewan [Southern OBS (SOBS)] and Manitoba [Northern OBS (NOBS)]. Although there was a relatively uniform seasonal pattern of net ecosystem productivity (NEP) among sites, EOBS had a lower total annual NEP than the other two sites. This was primarily because warmer soil under a thicker snowpack at EOBS appeared to increase winter C losses and low light suppressed both NEP and gross ecosystem productivity (GEP) in June. Across sites, greater total annual GEP and ecosystem respiration ( R ) were associated with greater mean annual air temperatures and an earlier beginning of the growing season. Also, GEP at all three sites showed a stronger relationship with air temperature in spring and early summer compared with later in the growing season, highlighting the importance of springtime conditions to the C budget of these boreal ecosystems. The three sites had different parameter estimates describing the responses of R and GEP at the half hour time scale to near surface temperature and light, respectively. On the other hand, the responses of both R and GEP to temperature at the monthly scale did not differ among sites. These results suggest that a general parameterization could be sufficient at coarse time resolutions to model the response of C exchange to environmental factors of mature black spruce forests from different climatic regions.  相似文献   

17.
Carbon sequestration in boreal jack pine stands following harvesting   总被引:2,自引:0,他引:2  
A large area of boreal jack pine (Pinus banksiana Lamb.) forest in Canada is recovering from clear‐cut harvesting, and the carbon (C) balance of these regenerating forests remains uncertain. Net ecosystem CO2 exchange was measured using the eddy‐covariance technique at four jack pine sites representing different stages of stand development: three postharvest sites (HJP02, HJP94, and HJP75) and one preharvest site (OJP). The four sites, located in the southern Canadian boreal forest, Saskatchewan, Canada, are typical of low productivity jack pine stands and were 2, 10, 29, and 90 years old in 2004, respectively. Mean annual net ecosystem production (NEP) for 2004 and 2005 was ?137±11, 19±16, 73±28, and 22±30 g C m?2 yr?1 at HJP02, HJP94, HJP75 and OJP, respectively, showing the postharvest jack pine stands to be moderate C sources immediately after harvesting, weak sinks at 10 years, moderate C sinks at 30 years, then weak C sinks at 90 years. Mean annual gross ecosystem photosynthesis (GEP) for the 2 years was 96±10, 347±20, 576±34, and 583±35 g C m?2 yr?1 at HJP02, HJP94, HJP75, and OJP, respectively. The ratio of annual ecosystem respiration (R) to annual GEP was 2.51±0.15, 0.95±0.04, 0.87±0.03, and 0.96±0.03. Seasonally, NEP peaked in May or June at all four sites but GEP and R were highest in July. R at a reference soil temperature of 10 °C, ecosystem quantum yield and photosynthetic capacity were lowest for the 2‐year‐old stand. R was most sensitive to soil temperature for the 90‐year‐old stand. The primary source of variability in NEP over the course of succession of the jack pine ecosystem following harvesting was stand age due to the changes in leaf area index. Intersite variability in GEP and R was an order of magnitude greater than interannual variability at OJP. For both young and old stands, GEP had greater interannual variability than R and played a more important role than R in interannual variation in NEP. Based on year‐round flux measurements from 2000 to 2005, the 10‐year stand had larger interannual variability in GEP and R than the 90‐year stand. Interannual variability in NEP was driven primarily by early‐growing‐season temperature and growing‐season length. Photosynthesis played a dominant role in the rapid rise in NEP early in stand development. Late in stand development, however, the subtle decrease in NEP resulted primarily from increasing respiration.  相似文献   

18.
鲁韦坤  李蒙  程晋昕  窦小东 《生态学报》2024,44(4):1441-1455
净初级生产力(NPP)和净生态系统生产力(NEP)是估算陆地生态系统碳源/汇的重要指标,云南为我国碳汇的主要区域之一,开展云南NPP和NEP时空变化特征分析对科学评估陆地生态系统碳源/汇功能,以及开展碳排放交易具有重要意义。基于BEPS模型1981—2019年NPP和NEP产品,采用线性趋势分析、文献对比等方法,研究云南NPP和NEP时空变化特征及其在云南的适用性。结果表明:(1)1981—1999年云南NPP和NEP呈水平波动,2000年后云南NPP和NEP呈明显波动上升趋势,2000—2019年云南NPP高值区域主要分布在西部和南部,而NEP高值区则主要分布在东部和西部局部地区;(2)2000—2019年云南NPP和NEP除西北部部分地区为下降趋势外,其余大部地区为上升趋势;(3)云南NPP峰值出现在7、8月,谷值出现在2月,NEP峰值出现月份与NPP基本相同,但谷值出现月份较NPP滞后1—3个月,6—10月是云南碳汇的主要月份;(4)BEPS模型估算的NPP与目前广泛应用的CASA和遥感模型结果较为一致,时空变化特征与云南生态恢复措施和气候特征吻合,其估算的NEP与陆地生物圈模型...  相似文献   

19.
Carbon exchange by the terrestrial biosphere is thought to have changed since pre-industrial times in response to increasing concentrations of atmospheric CO2 and variations (anomalies) in inter-annual air temperatures. However, the magnitude of this response, particularly that of various ecosystem types (biomes), is uncertain. Terrestrial carbon models can be used to estimate the direction and size of the terrestrial responses expected, providing that these models have a reasonable theoretical base. We formulated a general model of ecosystem carbon fluxes by linking a process-based canopy photosynthesis model to the Rothamsted soil carbon model for biomes that are not significantly affected by water limitation. The difference between net primary production (NPP) and heterotrophic soil respiration (Rh) represents net ecosystem production (NEP). The model includes (i) multiple compartments for carbon storage in vegetation and soil organic matter, (ii) the effects of seasonal changes in environmental parameters on annual NEP, and (iii) the effects of inter-annual temperature variations on annual NEP. Past, present and projected changes in atmospheric CO2 concentration and surface air temperature (at different latitudes) were analysed for their effects on annual NEP in tundra, boreal forest and humid tropical forest biomes. In all three biomes, annual NEP was predicted to increase with CO2 concentration but to decrease with warming. As CO2 concentrations and temperatures rise, the positive carbon gains through increased NPP are often outweighed by losses through increased Rh, particularly at high latitudes where global warming has been (and is expected to be) most severe. We calculated that, several times during the past 140 years, both the tundra and boreal forest biomes have switched between being carbon sources (annual NEP negative) and being carbon sinks (annual NEP positive). Most recently, significant warming at high latitudes during 1988 and 1990 caused the tundra and boreal forests to be net carbon sources. Humid tropical forests generally have been a carbon sink since 1960. These modelled responses of the various biomes are in agreement with other estimates from either field measurements or geochemical models. Under projected CO2 and temperature increases, the tundra and boreal forests will emit increasingly more carbon to the atmosphere while the humid tropical forest will continue to store carbon. Our analyses also indicate that the relative increase in the seasonal amplitude of the accumulated NEP within a year is about 0–14% year?1 for boreal forests and 0–23% year?1 in the tundra between 1960 and 1990.  相似文献   

20.
Carbon balance of different aged Scots pine forests in Southern Finland   总被引:4,自引:0,他引:4  
We estimated annual net ecosystem exchange (NEE) of a chronosequence of four Scots pine stands in southern Finland during years 2000–2002 using eddy covariance (EC). Net ecosystem productivity (NEP) was estimated using growth measurements and modelled mass losses of woody debris. The stands were 4, 12, 40 and 75 years old. The 4‐year‐old clearcut was a source of carbon throughout the year combining a low gross primary productivity (GPP) with a total ecosystem respiration (TER) similar to the forest stands. The annual NEE of the clearcut, measured by EC, was 386 g C m?2. Tree growth was negligible and the estimated NEP was ?262 g C m?2 a?1. The annual GPPs at the other sites were close to each other (928?1072 g C m?2 a?1), but TER differed markedly, being greatest at the 12‐year‐old site (905 g C m?2 a?1) and smallest in the 75‐year‐old stand (616 g C m?2 a?1). Measurements of soil CO2 efflux showed that different rates of soil respiration largely explained the differences in TER. The NEE and NEP of the 12‐year‐old stand were close to zero. The forested stands were sinks of carbon. They had similar annual patterns of carbon exchange and half‐hourly eddy fluxes were highly correlated, indicating similar responses to the environment. The NEE in the 40‐year‐old stand varied between ?179 and –192 g C m?2 a?1, while NEP was between 214 and 242 g C m?2 a?1. The annual NEE of the 75‐year‐old stand was 323 g C m?2 and NEP was 252 g C m?2. This indicates that there was no reduction in carbon sink strength with stand age.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号