首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
I measured natural selection on body size and laying date in a population of tree swallows (Tachycineta bicolor) from 1986 to 1988. There was little evidence of selection on body size associated with overwinter survival. Disruptive selection on tarsus length, associated with female reproductive success, was detected in one of three years. Both repeatability and mother-daughter regression suggested that laying date was heritable. I found weak evidence of selection on laying date, associated with both overwinter survival and reproduction in females. The ecological implications of both tarsus length and laying date variation in this population could not be identified. Consequently, although I was able to identify the targets of natural selection, the ecological link between trait variation and selection remains unknown.  相似文献   

2.
We documented temporal patterns of natural selection on beak and body traits in a song sparrow population. We looked for evidence of selection in association with reproduction and overwinter survival in order to identify the conditions under which size in beak and body traits is adaptive. We also attempted to identify the specific traits most closely associated with fitness under these conditions. Selection was observed in association with both survival and reproduction. Patterns of selection differed between the sexes. Selection on males was weak and stabilizing in association with overwinter survival. Selection on females was strong, was both stabilizing and directional, and was associated with both survival and reproduction. In females, traits that enhanced juvenile survival also reduced reproductive success; i.e., there was a trade-off between survival and reproduction. Patterns of selection in the song sparrow parallel those reported for the Galápagos finch, Geospiza fortis. However, in song sparrows, selection occurred mainly on tarsus length and beak length, and not on beak depth or width as in G. fortis. This difference may occur because most North American sparrows partition food resources by habitat, while most Galápagos ground finches partition food by seed size.  相似文献   

3.
Sexual size dimorphism of adults proximately results from a combination of sexually dimorphic growth patterns and selection on growing individuals. Yet, most studies of the evolution of dimorphism have focused on correlates of only adult morphologies. Here we examined the ontogeny of sexual size dimorphism in an isolated population of the house finch (Carpodacus mexicanus). Sexes differed in growth rates and growth duration; in most traits, females grew faster than males, but males grew for a longer period. Sexual dimorphism in bill traits (bill length, width, depth) and in body traits (wing, tarsus, and tail length; mass) developed during different periods of ontogeny. Growth of bill traits was most different between sexes during the juvenile period (after leaving the nest), whereas growth of body traits was most sexually dimorphic during the first few days after hatching. Postgrowth selection on juveniles strongly influenced sexual dimorphism in all traits; in some traits, this selection canceled or reversed dimorphism patterns produced by growth differences between sexes. The net result was that adult sexual dimorphism, to a large degree, was an outcome of selection for survival during juvenile stages. We suggest that previously documented fast and extensive divergence of house finch populations in sexual size dimorphism may be partially produced by distinct environmental conditions during growth in these populations.  相似文献   

4.
The extent to which fluctuating selection can maintain evolutionary stasis in most populations remains an unresolved question in evolutionary biology. Climate has been hypothesized to drive reversals in the direction of selection among different time periods and may also be responsible for intense episodic selection caused by rare weather events. We measured viability selection associated with morphological traits in cliff swallows (Petrochelidon pyrrhonota) in western Nebraska, USA, over a 14‐year period following a rare climatic event. We used mark‐recapture to estimate the annual apparent survival of over 26 000 individuals whose wing, tail, tarsus and bill had been measured. The fitness functions associated with tarsus length and bill dimensions fluctuated depending on annual climate conditions on the birds' breeding grounds. The oscillating yearly patterns may have slowed and occasionally reversed directional change in trait trajectories, although there was a trend over time for all traits except tarsus to increase in size. The net positive directional selection on some traits, despite periodic climate‐associated fluctuations, suggests that cliff swallow morphology in the population is likely to keep changing and supports recent work contending that selection in general does not fluctuate enough to be an effective driver of stasis.  相似文献   

5.
D. W. Larson 《Oecologia》1989,78(1):87-92
Summary We examined the relative ability of multiple factors to explain variation in two interrelated life-history traits, interclutch interval and annual reproductive success, in feral pigeons. Seasonal influences, brood size, and female body mass and tarsus length explained significant amounts of variation in interclutch interval in this population, while female plumage phenotype was insignificant. These results are discussed in terms of resource allocation and responses to environmental heterogeneity. Multivariate selection analysis revealed strong directional fecundity selection on body mass, and correlated selection response on bill length. A prospective selection analysis based on estimates of the genetic variance-covariance matrix revealed that the mean change in a trait often differed in sign from the directional selection estimate. The relationship between annual reproductive success and these two traits was found only in melanic females, suggesting that selection differentials may covary with plumage pattern.  相似文献   

6.
Size assortative mating has received increasing attention due to its potential to drive divergence and perhaps speciation. In this study, we examined assortative pairing at 17 nests of Darwin’s Small Tree Finches, Camarhynchus parvulus. We found positive assortative pairing for two traits: bill length and tarsus length, and these traits showed a significant positive correlation to each other. Assortative pairing could be driven by female choice for similar phenotypes because male–male competition has rarely been observed in the Small Tree Finch, nor have males been observed to reject potential mates. Given the high heritability of bill morphology in Darwin’s finches, it is possible that female preference for male bill length, a trait that is known to be important for foraging, will influence offspring bill size to maximise efficient exploitation of resources. The finding of size assortative pairing on the basis of tarsus length requires more research, but suggests different trait utilities for different foraging niches. Interestingly, the highland distribution of tarsus length across the population showed a unimodal distribution, but a bimodal distribution after pairing. While not significant, we found comparatively large differences across study plots in tarsus length, which suggests the possibility of phenotype–habitat matching at a small spatial scale in this species. Our findings are significant in the context of the adaptive radiation of Darwin’s finches as they are consistent with the allopatric model of speciation but also show potential for adaptive divergence in sympatry in Darwin’s tree finches.  相似文献   

7.
动物中普遍存在雌雄个体身体大小的性二态现象。了解近缘种之间身体大小性二态现象的差异,可为深入探讨身体大小性二态现象的潜在驱动机制提供证据。国外对欧亚大山雀(Parus major)的研究发现,其喙长、跗跖长、翅长等 6 项身体大小指标存在着明显的性二态,且喙长的性二态存在季节间差异。大山雀(P. cinereus)曾被作为欧亚大山雀的一个亚种,其形态和行为与欧亚大山雀存在着诸多相似之处。为探讨大山雀是否也存在身体大小性二态及季节性差异,本研究分析了 2018 至 2020 年间在河南董寨国家级自然保护区捕捉的 226 只(雌性 96 只和雄性 130 只)大山雀的喙长、头喙长、跗跖长、翅长、尾长和体长这 6 项体征指标的两性差异及其季节变化。结果显示,大山雀上述 6 项身体大小指标均存在不同程度的性二态现象,且雄性个体仅喙长与雌性的差异不显著,其余 5 项指标均显著大于雌性。此外,身体大小指标的两性差异不随季节显著变化,但两性的跗跖长在秋季均显著短于冬季和繁殖季,尾长在繁殖季均显著长于秋季和冬季。上述结果表明,大山雀身体大小的性二态及其季节性差异与欧亚大山雀并不完全相似。无论其身体大小存在性二态和季节变化的原因,还是其与欧亚大山雀在身体大小性二态模式上的差别,都有待今后进一步的研究。  相似文献   

8.
When selection differs between the sexes for traits that are genetically correlated between the sexes, there is potential for the effect of selection in one sex to be altered by indirect selection in the other sex, a situation commonly referred to as intralocus sexual conflict (ISC). While potentially common, ISC has rarely been studied in wild populations. Here, we studied ISC over a set of morphological traits (wing length, tarsus length, bill depth and bill length) in a wild population of great tits (Parus major) from Wytham Woods, UK. Specifically, we quantified the microevolutionary impacts of ISC by combining intra‐ and intersex additive genetic (co)variances and sex‐specific selection estimates in a multivariate framework. Large genetic correlations between homologous male and female traits combined with evidence for sex‐specific multivariate survival selection suggested that ISC could play an appreciable role in the evolution of this population. Together, multivariate sex‐specific selection and additive genetic (co)variance for the traits considered accounted for additive genetic variance in fitness that was uncorrelated between the sexes (cross‐sex genetic correlation = ?0.003, 95% CI = ?0.83, 0.83). Gender load, defined as the reduction in a population's rate of adaptation due to sex‐specific effects, was estimated at 50% (95% CI = 13%, 86%). This study provides novel insights into the evolution of sexual dimorphism in wild populations and illustrates how quantitative genetics and selection analyses can be combined in a multivariate framework to quantify the microevolutionary impacts of ISC.  相似文献   

9.
In many hummingbird species there is an opposite pattern of sexual dimorphism in bill length and other morphometric measures of body size. These differences seem to be closely related with differences in foraging ecology directly associated with a different resource exploitation strategy. The aim of this study was to assess if natural selection is acting on wing length and bill size in hummingbird males and females with different resource exploitation strategies (i.e., territorial males and non-territorial females). If competition for resources promotes sexual dimorphism as a selective pressure, males should be subjected to negative directional selection pressure for wing length and no selection pressure over bill size, while females should undergo positive directional selection pressure for both bill size and wing length. The morphometric data we collected suggests that there is no selection for wing length and bill size in male hummingbirds. In contrast, our females exhibited positive directional selection for both wing length and bill size. Although we cannot reject sexual selection acting on sexually dimorphic traits, this study suggests that natural selection may promote sexual dimorphism in traits that are closely related with hummingbird foraging ecology and resource exploitation strategies.  相似文献   

10.
There have been very few reports of body size measurements of live Temminck’s Stints, but earlier studies have shown sex differences in body mass and tarsus length. Here we use molecular techniques to determine the sex of Temminck’s Stints from a Norwegian breeding population. In total, we report measurements of body weight, wing length, tarsus length, bill length, skull length and keel length from 17 males and 30 females. We found significant sex differences in all of these variables, with the exception of tarsus length. The differences in skull length disappeared after the bill lengths had been subtracted from the measurements. A discriminant function analysis based on wing length and bill length correctly classified 86% of the cases (12/16 males, 25/27 females). Female Temminck’s Stints are known to regularly lay more than one clutch of eggs per season and could therefore be expected to be physiologically deprived of bodily energy stores. Nevertheless, we found females to be in better body condition than males.  相似文献   

11.
Evidence for natural selection on seven bill and body characters is examined in the two bill morphs of the African estrildid finch Pyrenestes ostrinus. Two regression methods are used in examining natural selection in association with survivorship: a parametric (Lande and Arnold, 1983) and a non-parametric (Schluter, 1988) method. Selection was estimated in adult males, females and juveniles over a four-year period in a population in south-central Cameroon. Selection was common among groups but patterns differed and depended on the method used in detecting selection. The non-parametric method revealed evidence for disruptive selection occurring on bill width and is explained within the context of known feeding efficiencies and the hardness of important seeds in finch diets. Directional selection was common on bill characters in all groups, but infrequent on other characters. There was no evidence of selection on generalized size or shape characters. Selection on bill characters was common across groups despite low annual variation in rainfall. This contrasts with studies of Galápagos finches in which selection is frequently associated with dramatic changes in food supply caused by high variance in annual rainfall. Patterns of selection on bill traits in P. ostrinus also differ from those in song sparrows and Galápagos finches by exhibiting evidence for natural selection on all bill dimensions.  相似文献   

12.
We present heritability estimates for final size of body traits and egg size as well as phenotypic and genetic correlations between body and egg traits in a recently established population of the barnacle goose (Branta leucopsis) in the Baltic area. Body traits as well as egg size were heritable and, hence, could respond evolutionarily to phenotypic selection. Genetic correlations between body size traits were significantly positive and of similar magnitude or higher than the corresponding phenotypic correlations. Heritability estimates for tarsus length obtained from full-sib analyses were higher than those obtained from midoffspring-midparent regressions, and this indicates common environment effects on siblings. Heritabilities for tarsus length obtained from midoffspring-mother regressions were significantly higher than estimates from midoffspring-father regressions. The results suggest that this discrepancy is not caused by maternal effects through egg size, nor by extra-pair fertilizations, but by a socially inherited foraging site fidelity in females.  相似文献   

13.
We know very little about male mating preferences and how they influence the evolution of female traits. Theory predicts that males may benefit from choosing females on the basis of traits that indicate their fecundity. Here, we explore sexual selection generated by male choice on two components of female body size (wing length and body mass) in Drosophila serrata. Using a dietary manipulation to alter female size and 828 male mate choice trials, we analysed linear and nonlinear sexual selection gradients on female mass and wing length. In contrast to theoretical expectations and prevailing empirical data, males exerted stabilizing rather than directional sexual selection on female body mass, a correlate of fecundity. Sexual selection was detected only among females with access to standard resource levels as an adult, with no evidence for sexual selection among resource-depleted females. Thus the mating success of females with the same body mass differed depending upon their access to resources as an adult. This suggests that males in this species may rely on signal traits to assess body mass rather than assessing it directly. Stabilizing rather than directional sexual selection on body mass together with recent evidence for stabilizing sexual selection on candidate signal traits in this species suggests that females may trade-off resources allocated to reproduction and sexual signalling.  相似文献   

14.
ABSTRACT: BACKGROUND: A number of studies have measured selection in nature to understand how populations adapt to their environment; however, the temporal dynamics of selection is rarely investigated. The aim of this study was to assess the temporal variation in selection by comparing the mode, direction and strength of selection on fitness related traits between two cohorts of coho salmon (Oncorhynchus kisutch). Specifically, we quantified individual reproductive success and examined selection on date of return and body length in a wild population at Big Beef Creek, Washington (USA). RESULTS: Reproductive success and the mode, direction and strength of selection on date of return and body length differed between two cohorts sampled in 2006 and 2007. Adults of the first brood year had greater success over those of the second. In 2006, disruptive selection favored early and late returning individuals in 2-year-old males, and earlier returning 3-year-old males had higher fitness. No evidence of selection on date of return was detected in females. In 2007, selection on date of return was not observed in males of either age class, but stabilizing selection on date of return was observed in females. No selection on body length was detected in males of both age classes in 2006, and large size was associated with higher fitness in females. In 2007, selection favored larger size in 3-year-old males and intermediate size in females. Correlational selection between date of return and body length was observed only in 2-year-old males in 2006. CONCLUSIONS: We found evidence of selection on body length and date of return to the spawning ground, both of which are important fitness-related traits in salmonid species, but this selection varied over time. Fluctuation in the mode, direction and strength of selection between two cohorts are likely to be due to factors such as changes in precipitation, occurrence of catastrophic events (flooding), the proportion of younger- versus older-maturing males, and sex ratio and densities of spawners.  相似文献   

15.
Lande and Arnold's (1983) technique for measuring selection on correlated quantitative traits was used to identify the targets of selection and to reveal the direction of selection on three bill dimensions, during different stages of the life cycle in a population of Darwin's finches, Geospiza conirostris, on Isla Genovesa, Galápagos. There was a tendency towards disruptive selection during dry conditions, arising from differential survival. In terms of longevity and breeding success of females, the direction of selection was to increase bill length. For males competing for territories, selection acted to increase bill depth and bill length. The effects of male-male interactions were separated from those of female choice. Male-male interactions selected for deep and long bills, whereas females chose their mates on the basis of a male's territory position and plumage coloration. The results reveal three factors constraining changes in bill dimensions: a tendency for the mean of a dimension to shift in one direction is counteracted by selection in the opposite direction on 1) another, positively correlated, bill dimension, 2) the same dimension in the other sex, and 3) the same dimension at another stage of the life cycle. If these factors are overcome by strong directional selection at one stage of the life cycle and relaxation at another, there can be an evolutionary response because the bill dimensions in this population are known to be heritable. The results complement those found in studies of G. fortis on another island and strengthen the view that these populations of Darwin's finches are frequently subjected to natural selection.  相似文献   

16.
Understanding the magnitude and long‐term patterns of selection in natural populations is of importance, for example, when analysing the evolutionary impact of climate change. We estimated univariate and multivariate directional, quadratic and correlational selection on four morphological traits (adult wing, tarsus and tail length, body mass) over a time period of 33 years (≈ 19 000 observations) in a nest‐box breeding population of collared flycatchers (Ficedula albicollis). In general, selection was weak in both males and females over the years regardless of fitness measure (fledged young, recruits and survival) with only few cases with statistically significant selection. When data were analysed in a multivariate context and as time series, a number of patterns emerged; there was a consistent, but weak, selection for longer wings in both sexes, selection was stronger on females when the number of fledged young was used as a fitness measure, there were no indications of sexually antagonistic selection, and we found a negative correlation between selection on tarsus and wing length in both sexes but using different fitness measures. Uni‐ and multivariate selection gradients were correlated only for wing length and mass. Multivariate selection gradient vectors were longer than corresponding vector of univariate gradients and had more constrained direction. Correlational selection had little importance. Overall, the fitness surface was more or less flat with few cases of significant curvature, indicating that the adaptive peak with regard to body size in this species is broader than the phenotypic distribution, which has resulted in weak estimates of selection.  相似文献   

17.
The heritability estimate (±SE) for tarsus length in the pied flycatcher is 0.53 ± 0.10, based on mother-offspring regressions. The heritability is almost the same (0.50 ± 0.22) for offspring transferred to other nests and reared by foster parents, whereas there is no resemblance (0.04 ± 0.23) between the offspring and their foster mothers. Hence, the nest environment does not affect parent-offspring resemblance. However, a full-sib correlation yields an estimate of the heritability twice as high as the parent-offspring regression did, indicating that shared environment effects, which are not correlated with the tarsus length of parents, must be important. An environmental deviation due to food factors affecting tarsus length is demonstrated. The most important food factors are probably associated with 1) polygyny, which leads to reduced paternal feeding at secondary nests, 2) high breeding density, and 3) progress of the breeding season. All three are associated with reductions in offspring mean tarsus length. We estimate selection on tarsus length for the major components of lifetime reproductive success. Offspring with the shortest tarsi have reduced survival from fledging until breeding, and males with tarsus length close to the mean are most successful in attracting mates. Clutch size increases with female tarsus length, except for individuals with very long tarsi. In general, directional selection is weak, but stabilizing selection is rather strong for survival and male mating success.  相似文献   

18.
鸟类性二态现象广泛存在,比如身体大小、羽色等,性二态很可能是自然选择和性选择共同作用的结果.为了探索和更好地了解雀形目鸟类身体大小性二态的进化,在2019年繁殖季节早期研究了灰椋鸟(Sturnus cineraceus)野外种群身体大小和内脏器官形态的两性差异.结果表明,除嘴宽外,其他身体特征参数均雄性显著大于雌性,表...  相似文献   

19.
Temporal patterns of natural and sexual selection on male badge size and body traits were studied in a population of house sparrows, Passer domesticus. Badge size was a heritable trait as revealed by a significant father-son regression. Survival during autumn dispersal and winter was not related to badge size or body traits in yearling male house sparrows. Badges that signal dominance status were affected positively by directional selection for mating. Adult male house sparrows suffered an opposing selection pressure on badge size during autumn. Contrary to males, female house sparrows did not experience significant directional or stabilizing selection on any body trait. Directional sexual selection on male badge size due to female choice moves male sparrows away from their survival optimum. Opposing directional natural selection on badge size due to autumn mortality caused by predation maintains a stable badge size.  相似文献   

20.
1. The effect of mating success, female fecundity and survival probability associated with intra‐sex variation in body size was studied in Mesophylax aspersus, a caddisfly species with female‐biased sexual size dimorphism, which inhabits temporary streams and aestivates in caves. Adults of this species do not feed and females have to mature eggs during aestivation. 2. Thus, females of larger size should have a fitness advantage because they can harbour more energy reserves that could influence fecundity and probability of survival until reproduction. In contrast, males of smaller size might have competitive advantages over others in mating success. 3. These hypotheses were tested by comparing the sex ratio and body size of individuals captured before and after the aestivation period. The associations between body size and female fecundity, and between mating success and body size of males, were explored under laboratory conditions. 4. During the aestivation period, the sex ratio changed from 1 : 1 to male biased (4 : 1), and a directional selection on body size was detected for females but not for males. Moreover, larger clutches were laid by females of larger size. Finally, differences in mating success between small and large males were not detected. These results suggest that natural selection (i.e. the differential mortality of females associated with body size) together with possible fecundity advantages, are important factors responsible of the sexual size dimorphism of M. aspersus. 5. These results highlight the importance of taking into account mechanisms other than those traditionally used to explain sexual dimorphism. Natural selection acting on sources of variation, such as survival, may be as important as fecundity and sexual selection in driving the evolution of sexual size dimorphism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号