首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Korb  R.E.  & Gerard  V.A. 《Journal of phycology》2000,36(S3):38-38
Halimedales (Chlorophyta) are widely distributed in reefs and lagoons throughout the tropics and subtropics. One genus, Chlorodesmis , consists of simple, branching siphons that persist into the mature sexual phase. In most other genera, only the juvenile stages exhibit such simple anatomy. Their mature, often-calcified thalli possess complex siphonal anatomy and differentiation depending on the location in the thallus. We obtained a nuclear ribosomal DNA phylogeny encompassing many genera in order to unravel the evolution of this complexity. Results pinpoint Caulerpa as outgroup to a clade with all other genera included in this study. The first dichotomy separates Halimeda from the remaining genera. Distinct gametangial anatomy defines these two principal clades. Within the remainder, Tydemania and its sister Flabellia are nearest neighbors to a clade containing Rhipocephalus , Udotea , Penicillus and Chlorodesmis. The latter three genera are polyphyletic. Therefore, character states of thallus superstructure defining these genera appear to be homoplasies. Chlorodesmis represents a case of neoteny where the juvenile stage persists into reproductive maturity. We will evaluate which morphological characters do change state in agreement with the molecular phylogeny and can, therefore, serve as diagnostic characters for a more natural classification.  相似文献   

2.
This paper presents the first phylogenetic analysis of Pachydeminae Reitter, 1902 ; one of the least known subfamilies of Melolonthidae, `leaf‐chafers' (Scarabaeoidea, Coleoptera). Some species of Pachydeminae have recently become agricultural pests in southern Spain. We analysed the phylogenetic relationships among 49 species belonging to 16 genera in the Palearctic region, based on a set of 63 morphological characters from the adult external morphology, wing anatomy, mouthparts and male and female genitalia. The last three sets of characters are described here for the first time. The phylogeny shows that the Palearctic Pachydeminae are monophyletic within the subfamily. Mouthparts and male and female genitalia provide the best synapomorphies for intergeneric relationships. In contrast, most of the external morphological characters used in the taxonomy of Pachydeminae are highly homoplastic. The phylogeny shows a basal split between the genera Hemictenius Reitter, 1897; Pachydema Castelnau, 1832, and the monospecific Peritryssus Reitter, 1918; and a second clade including the rest of genera. The remarkable Peritryssus is confirmed as a Pachydeminae, being the sister group to the monophyletic Hemictenius . Except for the position of P. rubripennis (Lucas, 1848) and P. zhora Normand, 1951, the phylogeny supports the monophyly of Pachydema but rejects the traditional division into species groups and the monophyly of the endemic Canarian species. In contrast, Tanyproctus Faldermann, 1835, must be rejected as polyphyletic. Otoclinius Brenske, 1896, is also probably polyphyletic (two new species synonymies), whereas Leptochristina Baraud and Branco, 1991 , is either mono‐ or paraphyletic. The two Mediterranean genera Ceramida Baraud, 1897, and Elaphocera Gené, 1836, form a monophyletic group, this clade being the best supported by the data set. Ceramida is clearly monophyletic, whereas Elaphocera is probably monophyletic except for E. barbara Rambur, 1843, which shares with Ceramida the character state for numerous mouthpart and genitalic characters. The phylogeny questions the generic status of the small and monospecific genera of Pachydeminae. The monotypic Alaia Petrovitz, 1980 , and Brenskiella Berg, 1898, are merged with Europtron Marseul, 1867, into one clade, whereas Atanyproctus Petrovitz, 1954, is grouped with some species of Tanyproctus , and the monotypic Pachydemocera Reitter, 1902 , is proposed as a junior synonym of Elaphocera .  相似文献   

3.
Evolutionary and ecological hypotheses of the freshwater mussel subfamily Ambleminae are intensely geographically biased—a consequence of the complete exclusion of Mesoamerican taxa in phylogenetic reconstructions of the clade. We set out to integrate a portion of the Mesoamerican freshwater mussel assemblage into existing hypotheses of amblemine classification and evolution by generating a molecular phylogeny that includes four previously unsampled Mesoamerican genera and nine species endemic to that region. Given the traditionally hypothesized affinity to Nearctic mussels and the understanding that classification should reflect common ancestry, we predicted that (a) Mesoamerican genera would be recovered as members of the recognized tribes of the Ambleminae, and (b) genera would be supported as monophyletic. The mutilocus phylogeny (COI + 28S + 16S) reported herein does not fully support either of those hypotheses. Neither Cyrtonaias nor Psorula were supported as monophyletic and we predict several other Mesoamerica genera are also non‐monophyletic. The reconstructed phylogeny recovered four independent lineages of Mesoamerican freshwater mussels and these clades are distributed across the phylogeny of the Ambleminae, including the tribe Quadrulini (Megalonaias), Lampsilini (two lineages: Cyrtonaias explicata/Sphenonaias microdon, and Pachynaias), and a previously unrecognized, exclusively Mesoamerican and Rio Grande clade consisting of the genera Psoronaias, Psorula and Popenaias. The latter clade possesses several morphological characteristics that distinguish it from its sister taxon, tribe Lampsilini, and we recognize this newly identified Mesoamerican clade as a fifth tribe of the Ambleminae attributable to the Popenaiadini Heard & Guckert, 1970. This revised classification more completely recognizes the suprageneric diversity of the Ambleminae.  相似文献   

4.
5.
Pollen morphology has played a major role in elucidating infrafamiliar‐level systematics and evolution within Annonaceae, especially within the African genera. The Monodora clade is composed of five genera, Asteranthe, Hexalobus, Isolona, Monodora and Uvariastrum, which are restricted to Africa and contain together c. 50 species. A molecular phylogeny of the family showed that the monophyly of the Monodora clade is strongly supported and that it is part of a larger clade of 11 African genera. In order to support classification a detailed survey was made of the pollen morphological variation within the Monodora clade, using scanning and transmission electron microsopy. For the two most species‐rich genera, Isolona and Monodora, a molecular species‐level phylogeny was used to assess the taxonomic usefulness of the pollen characters. The survey showed a wide range of pollen morphological diversity. The most conspicuous variation concerned the occurrence of monads without a thicker outer foliation in the basal exine layer in Isolona in contrast to tetrads with a thicker outer foliation in Asteranthe, Hexalobus, Monodora and Uvariastrum. At the infrageneric level, Hexalobus, Isolona and Monodora showed the largest diversity, with various pollen types based on tectum morphology. Hexalobus is exceptional with three types within only five species. The pollen types defined in this study are hardly useful in characterizing major groups identified within both Isolona and Monodora, but they do illustrate relationships within smaller groups.  相似文献   

6.
The phylogeny of subtribe Gorteriinae (Asteraceae‐Arctotideae) is investigated by means of cladistic analysis of morphological characters. Two sister groups are formed, namely a Gorteria clade also containing Hirpicium and Gazania, and a Berkheya clade, which also contains Cullumia, Cuspidia, Didelta and Heterorhachis. The Gorteria clade has strong jackknife support and is diagnosed by four morphological characters (leaves with longitudinally striate hairs, fringed anther apical appendages, pollen of the “Gazania‐type”, and subulate‐ensiform, ascending style sweeping hairs) that are unique within the Asteraceae. The Berkheya clade is moderately supported and diagnosed by two characters without contradiction (spiny leaves, and mamillate, large style sweeping hairs). Hirpicium and Berkheya are paraphyletic, with the other, morphologically more homogeneous genera (Gorteria, and Gazania, Cullumia, Cuspidia, Didelta and Heterorhachis, respectively) nested within them. There is some evidence for a radiation of species of the summer rainfall area of South Africa and tropical Africa and the corresponding species are nested within a grade confined to the Cape Floristic Region. © The Willi Hennig Society 2006.  相似文献   

7.
Molossidae is a large (roughly 100 species) pantropically distributed clade of swift aerially insectivorous bats for which the phylogeny remains relatively unknown and little studied compared with other speciose groups of bats. We investigated phylogenetic relationships among 62 species, representing all extant molossid genera and most of the subgenera, using 102 morphological characters from the skull, dentition, postcrania, external morphology, tongue, and penis, based on direct observation and literature reports. Both parsimony and Bayesian analyses were used in phylogenetic reconstruction. Our analysis supports two main clades of molossids, both of which mingle Old World and New World taxa. One clade is comprised of Mormopterus,Platymops, Sauromys, Neoplatymops, Molossops, Cynomops, Cheiromeles, Molossus, and Promops. The other clade includes Tadarida, Otomops, Nyctinomops, Eumops, Chaerephon, and Mops. The position of Myopterus with respect to these two groups is unclear. As in other recent analyses, we find that several genera do not appear to be monophyletic (e.g. Tadarida, Chaerephon, and Molossops sensu lato). We recommend that the subgenera of Molossops sensu lato and Austronomus be recognized at the generic level. We conclude that much more data are needed to investigate lower level problems (generic monophyly and relationships within genera) and to resolve the higher‐level branching pattern of the family.  相似文献   

8.
9.
LabyrinthaMalcolm, Elix & Owe-Larsson, a new genus in the Porpidiaceae, is described. It is based on the crustose taxonL. implexaMalcolm, Elix & Owe-Larsson, a saxicolous species from acidic rocks in alpine and subalpine areas in New Zealand.Labyrinthais distinguished from closely related genera by a combination of characters: cephalodia, immersed apothecia, large, simple ascospores (60-70×30-35 μm), halonate when young and dark-pigmented when mature, fusiform conidia, no cortex, no thallus chemistry, densely packed anticlinal hyphae, and a previously undescribed thallus anatomy in which the photobiont is arranged in anastomosing vertical sheets.  相似文献   

10.
The phylogeny of the poroid and hydnoid genera Antrodiella, Junghuhnia, and Steccherinum (Polyporales, Basidiomycota) was studied utilizing sequences of the gene regions ITS, nLSU, mtSSU, atp6, rpb2, and tef1. Altogether 148 taxa, represented by 549 sequences, were included in analyses. Results show that most species of these genera form a well supported clade in the Polyporales, called Steccherinaceae, along with 12 other hydnoid and poroid genera. Within the Steccherinaceae, generic concepts need to be revised: no fewer than 15 new genera are needed to accommodate existing and new species. At least 16 transitions have taken place between poroid and hydnoid hymenophore types within the Steccherinaceae, and similar plasticity can be seen in microscopic characters. Nevertheless, natural genera revealed in the analysis can mostly be characterized morphologically and, with few exceptions, poroid and hydnoid species belong to separate genera. The genus Steccherinum is shown to contain both hydnoid and poroid species. Species of the former Antrodiella belong to at least 10 genera within the Steccherinaceae. © The Willi Hennig Society 2011.  相似文献   

11.
To gain insights into the phylogeny of the Euglenales, we analyzed the plastid LSU rDNA sequences from 101 strains of the photosynthetic euglenoids belonging to nine ingroup genera (Euglena, Trachelomonas, Strombomonas, Monomorphina, Cryptoglena, Colacium, Discoplastis, Phacus, and Lepocinclis) and two outgroup genera (Eutreptia and Eutreptiella). Bayesian and maximum‐likelihood (ML) analyses resulted in trees of similar topologies and four major clades: a Phacus and Lepocinclis clade; a Colacium clade; a Trachelomonas, Strombomonas, Monomorphina, and Cryptoglena clade; and a Euglena clade. The Phacus and Lepocinclis clade was the sister group of all other euglenalian genera, followed by Discoplastis spathirhyncha (Skuja) Triemer and the Colacium clade, respectively, which was inconsistent with their placement based on nuclear rDNA genes. The Trachelomonas, Strombomonas, Monomorphina, and Cryptoglena clade was sister to the Euglena clade. The loricate genera, Trachelomonas and Strombomonas, were closely related to each other, while Monomorphina and Cryptoglena also grouped together. The Euglena clade formed a monophyletic lineage comprising most species from taxa formerly allocated to the subgenera Calliglena and Euglena. However, within this genus, none of the subgenera was monophyletic.  相似文献   

12.
A cladistic study ofDipsacaceae (Asteridae, Dipsacales) was undertaken, based mainly on morphological and palynological characters, obtained by investigations of herbarium material and from the literature. Outgroups includedMorinaceae, Triplostegiaceae, and a subset ofValerianaceae. The consensus tree resulting from three equally parsimonious cladograms shows thatDipsacaceae are divided into two major clades, one withDipsacus andCephalaria, the other including the remaining genera. Within the latter clade,Knautia is the sister group of the rest of the taxa. This study is a reappraisal ofDipsacaceae phylogeny, and the results broadly match previous evidence.  相似文献   

13.
Lichen-forming ascomycetes exhibit often complex morphologies of the vegetative thallus that are usually not found in non-lichenized fungi. This includes the thallus organization and appendical structures associated with the main thallus, such as cilia and rhizines. Such morphological characters are widely employed in the taxonomy of parmelioid lichens, especially at generic level. Within parmelioid lichens, several monophyletic groups can be distinguished, the Hypotrachyna clade being one of them, which includes mostly tropical taxa. In this first molecular study focused specifically on the Hypotrachyna clade, we used maximum parsimony and Bayesian analyses of a combined data set of nuclear ITS and mitochondrial SSU rDNA sequences to (1) test the monophyly of genera presently accepted within the clade and (2) evaluate the phylogenetic value of the morphological characters used to circumscribe genera in parmelioid lichens. Out of the 89 mtSSU and 88 nuITS sequences included in the present study, 121 sequences were newly obtained. Our results show that the taxa within the clade fall into two major groups and that the genus Hypotrachyna is polyphyletic. Everniastrum and Parmelinopsis are nested within Hypotrachyna sensu stricto, the latter being also polyphyletic. Bulbothrix is paraphyletic with Parmelinella nested within and is basal to the second major Hypotrachyna clade. Monophylies of Bulbothrix and Hypotrachyna are significantly rejected. The phylogenetic analysis demonstrates that morphological characters currently used to circumscribe genera in parmelioid lichens, such as cortical anatomy, lobe configuration, cilia, and rhizines have been overestimated and have only minor value in identifying monophyletic groups.  相似文献   

14.
The phylogeny of Oedogoniales was investigated by using nuclear 18S rDNA sequences. Results showed that the genus Oedocladium, as a separated clade, was clustered within the clade of Oedogonium; whereas the genus Bulbochaete was in a comparatively divergent position to the other two genera. The relationship among the species of Oedogonium was discussed, focusing on ITS-2 phylogeny analyzed combining with some morphological characteristics. Our results showed that all the dioecious nannandrous taxa involved in this study were resolved into one clade, while all the monocious taxa were clustered into another clade as a sister group to the former. The report also suggests that the dioecious macrandrous taxa form a paraphyly and could be more basally situated than the dioecious nannandrous and the monoecious taxa by means of molecular phylogeny and morphotype investigations.  相似文献   

15.
Abstract. We investigated the phylogeny and taxonomy of the Prenolepis genus‐group, a clade of ants we define within the subfamily Formicinae comprising the genera Euprenolepis, Nylanderia, gen. rev. , Paraparatrechina, gen. rev. & stat. nov. , Paratrechina, Prenolepis and Pseudolasius. We inferred a phylogeny of the Prenolepis genus‐group using DNA sequence data from five genes (CAD, EF1αF1, EF1αF2, wingless and COI) sampled from 50 taxa. Based on the results of this phylogeny the taxonomy of the Prenolepis genus‐group was re‐examined. Paratrechina (broad sense) species segregated into three distinct, robust clades. Paratrechina longicornis represents a distinct lineage, a result consistent with morphological evidence; because this is the type species for the genus, Paratrechina is redefined as a monotypic genus. Two formerly synonymized subgenera, Nylanderia and Paraparatrechina, are raised to generic status in order to provide names for the other two clades. The majority of taxa formerly placed in Paratrechina, 133 species and subspecies, are transferred to Nylanderia, and 28 species and subspecies are transferred to Paraparatrechina. In addition, two species are transferred from Pseudolasius to Paraparatrechina and one species of Pseudolasius is transferred to Nylanderia. A morphological diagnosis for the worker caste of all six genera is provided, with a discussion of the morphological characters used to define each genus. Two genera, Prenolepis and Pseudolasius, were not recovered as monophyletic by the molecular data, and the implications of this result are discussed. A worker‐based key to the genera of the Prenolepis genus‐group is provided.  相似文献   

16.
17.
The Nes subgroup of the Gobiosomatini (Teleostei: Gobiiformes: Gobiidae) is an ecologically diverse clade of fishes endemic to the tropical western Atlantic and eastern Pacific oceans. It has been suggested that morphological characters in gobies tend to evolve via reduction and loss associated with miniaturization, and this, coupled with the parallel evolution of adaptations to similar microhabitats, may lead to homoplasy and ultimately obscure our ability to discern phylogenetic relationships using morphological characters alone. This may be particularly true for the Nes subgroup of gobies, where several genera that are diagnosed by ‘reductive characters’ have been shown to be polyphyletic. Here we present the most comprehensive phylogeny to date of the Nes subgroup using mitochondrial and nuclear sequence data. We then evaluate the congruence between the distribution of morphological characters and our molecular tree using maximum‐likelihood ancestral state reconstruction, and test for phylogenetic signal in characters using Pagel's λ tree transformations (Nature, 401 , 1999 and 877). Our results indicate that all of the characters previously used to diagnose genera of the Nes subgroup display some degree of homoplasy with respect to our molecular tree; however, many characters display considerable phylogenetic signal and thus may be useful in diagnosing genera when used in combination with other characters. We present a new classification for the group in which all genera are monophyletic and in most cases diagnosed by combinations of morphological characters. The new classification includes four new genera and nine new species described here, many of which were collected from rarely sampled deep Caribbean reefs using manned submersibles. The group now contains 38 species in the genera Carrigobius gen. nov., Chriolepis, Eleotrica, Gobulus, Gymneleotris, Nes, Paedovaricus gen. nov., Pinnichthys gen. nov., Psilotris, and Varicus. Lastly, we provide a key to all named species of the Nes subgroup along with photographs and illustrations to aid in identification.  相似文献   

18.
19.
Phylogenetic relationships among marsupial taxa have proven to be more complex than the simple grouping of species by continent. Recent marsupials are distributed across the New World, Australia, New Guinea, and certain neighboring islands. Morphological characteristics of various groups bridge different geographical areas. We investigated the origin of these characteristics by assembling a morphological data matrix consisting of a new suite of 149 postcranial characters and incorporated a series of previously published data on the craniodental (76 characters) and soft tissue (5 characters) anatomy. Twenty‐one marsupial terminal taxa representing all the major radiations of marsupials and 10 outgroups, most of which are exceptionally well‐preserved fossils such as Vincelestes, Ukhaatherium, and a few basal metatherian taxa, were investigated. A maximum parsimony analysis was conducted, resulting in one most parsimonious tree. Relationships among outgroups are congruent with current understanding of mammalian phylogeny. All currently accepted marsupial orders were recovered by the analysis. We confirmed previous results showing the South American “monito del monte”Dromiciops nested within the Australasian radiation. Within this australidelphian clade, Dromiciops was closely allied with the Diprotodontia. The South American paucituberculates appeared more closely related to the Australidelphia than to the American Didelphimorphia. The marsupial mole Notoryctes and the Peramelia were closely allied to each other and in turn were the sister group of the Dromiciops plus Diprotodontia clade. This pattern of relationships left Dasyuromorphia as the most basal offshoot of the Australidelphia. Whereas this tree topology recovers some signal that had been detected by previous studies, morphological and/or molecular, some novel hypotheses are also supported.  相似文献   

20.
The Order Stolidobranchiata comprises the families Pyuridae, Styelidae and Molgulidae. Early molecular data was consistent with monophyly of the Stolidobranchiata and also the Molgulidae. Internal phylogeny and relationships between Styelidae and Pyuridae were inconclusive however. In order to clarify these points we used mitochondrial and nuclear sequences from 31 species of Styelidae and 25 of Pyuridae. Phylogenetic trees recovered the Pyuridae as a monophyletic clade, and their genera appeared as monophyletic with the exception of Pyura. The Styelidae, on the other hand, appeared as a paraphyletic group split into several clades. One of them was formed by solitary oviparous species, of which the Pyuridae were a sister group. A second clade included the colonial genera Botryllus, Botrylloides and Symplegma. The remaining colonial and solitary genera formed several poorly resolved clades. One of the more species genus, Polycarpa, was shown to be polyphyletic, and the species Styela plicata grouped into two genetically distant clades suggesting the existence of two cryptic species. The internal phylogeny of Styelidae has bearings on the origin of coloniality in this family. We suggest to abandon the traditional division of colonial forms into social and compound species and use instead the categories of aggregated colonies that do not have common vascular systems, and integrated colonies, that do possess such systems. Our molecular results indicate that there have been several independent acquisitions of coloniality in the Styelidae, and that viviparity may be a pre-adaptation for a colonial life-style.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号