首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have performed ENDOR spectroscopy at microwave frequencies of 9 and 35 GHz at 2 K on the reduced Rieske-type [2Fe-2S] cluster of phthalate dioxygenase (PDO) from Pseudomonas cepacia. Four samples have been examined: (1) 14N (natural abundance); (2) uniformly 15N labeled; (3) [15N]histidine in a 14N background; (4) [14N]histidine in a 15N background. These studies establish unambiguously that two of the ligands to the Rieske [2Fe-2S] center are nitrogens from histidine residues. This contrasts with classical ferredoxin-type [2Fe-2S] centers in which all ligation is by sulfur of cysteine residues. Analysis of the polycrystalline ENDOR patterns has permitted us to determine for each nitrogen ligand the principal values of the hyperfine tensor and its orientation with respect to the g tensor, as well as the 14N quadrupole coupling tensor. The combination of these results with earlier M?ssbauer and resonance Raman studies supports a model for the reduced cluster with both histidyl ligands bound to the ferrous ion of the spin-coupled [Fe2+ (S = 2), Fe3+ (S = 5/2)] pair. The analyses of 15N hyperfine and 14N quadrupole coupling tensors indicate that the geometry of ligation at Fe2+ is approximately tetrahedral, with the (Fe)2(N)2 plane corresponding to the g1-g3 plane, and that the planes of the histidyl imidazoles lie near that plane, although they could not both lie in the plane. The bonding parameters of the coordinated nitrogens are fully consistent with those of an spn hybrid on a histidyl nitrogen coordinated to Fe. Differences in 14N ENDOR line width provide evidence for different mobilities of the two imidazoles when the protein is in fluid solution. We conclude that the structure deduced here for the PDO cluster is generally applicable to the full class of Rieske-type centers.  相似文献   

2.
Hydrons and electrons are substrates for the enzyme hydrogenase, but cannot be observed in X-ray crystal structures. High-resolution 1H electron nuclear double resonance (ENDOR) spectroscopy offers a means to detect the distribution of protons and unpaired electrons. ENDOR spectra were recorded from frozen solutions of the nickel-iron hydrogenases of Desulfovibrio gigas and Desulfomicrobium baculatum, in the "active" state ("Ni-C" EPR signal) and analyzed by orientationally selective simulation methods. The experimental spectra were fitted using a structural model of the nickel-iron centre based on crystallographic results, allowing for differences in electron spin distribution as well as the spatial orientation of the g-matrix ( g-tensor), and anisotropic and isotropic hyperfine couplings of the protons nearest to the nickel ion. ENDOR signals, detected after complete deuterium exchange, were assigned to six protons of the cysteines bound to nickel. The assignment took advantage of the substitution of a selenium for a sulfur ligand, which occurs naturally between the [NiFeSe] and [NiFe] hydrogenases from Dm. baculatum and D. gigas, respectively, and was found to affect just two signals. The four signals with the largest hyperfine couplings, including isotropic contributions from 4.5 to 13.5 MHz, were assigned to the beta-methylene protons of the two terminal cysteine ligands, one of which is substituted by seleno-cysteine in [NiFeSe] hydrogenase. The electron spin is delocalized onto the nickel (50%) and its sulfur ligands, with a higher proportion on the terminal than the bridging ligands. The g-matrix was found to align with the active site in such a way that the g1- g2 plane is nearly coplanar (18.3 degrees) with the plane defined by nickel and three sulfur atoms, and the g2 axis deviates by 22.9 degrees from the vector between nickel and iron. Significantly for the reaction of the enzyme, direct evidence for the binding of hydrons at the active site was obtained by the detection of H/D-exchangeable ENDOR signals.  相似文献   

3.
 Electron nuclear double resonance (ENDOR) was applied to study the active site of the oxidized "ready" state, Nir, in the [NiFe] hydrogenase of Chromatium vinosum. The magnetic field dependence of the EPR was used to select specific subsets of molecules contributing to the ENDOR response by stepping through the EPR envelope. Three hyperfine couplings could be clearly followed over the complete field range. Two protons, H1 and H2, display a very similar large isotropic coupling of 12.5 and 12.6 MHz, respectively. Their dipolar coupling is small (2.1 and 1.4 MHz, respectively). A third proton, H3, exhibits a small isotropic coupling of 0.5 MHz and a larger anisotropic contribution of 3.5 MHz. Based on a comparison with structural data obtained from X-ray crystallography of single crystals of hydrogenases from Desulfovibrio gigas and D. vulgaris and the known g-tensor orientation of Nir, an assignment of the 1H hyperfine couplings could be achieved. H1 and H2 were assigned to the β-CH2 protons of the bridging cysteine Cys533 and H3 could belong to a β-CH2 proton of Cys68 or to a protonated cysteine (-SH) of Cys68 or Cys530. Received: 26 November 1998 / Accepted: 1 April 1999  相似文献   

4.
57Fe, 33S, and 14N electron nuclear double resonance (ENDOR) studies have been performed to characterize the [4Fe-4S]+ cluster at the active site of aconitase. Q-band 57Fe ENDOLR of isotopically enriched enzyme, both substrate free and in the enzyme-substrate complex, reveals four inequivalent iron sites. In agreement with M?ssbauer studies [Kent et al. (1985) J. Biol. Chem. 260, 6371-6881], one of the iron ions, Fea, which is easily removed by oxidation to yield the [3Fe-4S]+ cluster of inactive aconitase, shows a dramatic change in the presence of substrate. The remaining iron sites, Feb1,2,3, show minor changes when substrate is bound. Methods devised by us for analyzing and simulating ENDOR spectra of a randomly oriented paramagnet have been used to determine the principal values and orientation relative to the g tensor for the hyperfine tensors of three of the four inequivalent iron sites of the [4Fe-4S]+ cluster, Fea, Feb2, and Feb3, in the substrate-free enzyme and the enzyme-substrate complex. The full tensor for the fourth site, Feb1, could not be obtained because its signal is seen only over a limited range of the EPR envelope. 33S ENDOR data for the enzyme-substrate complex using enzyme reconstituted with 33S show that the four inorganic bridging sulfide ions of the [4Fe-4S]+ cube have isotropic hyperfine couplings of A(S) less than 12 MHz, and analysis indicates that they can be divided into two pairs, one with couplings of A(S1) approximately less than 1 MHz and the other with A(S2) approximately 6-12 MHz; the analysis further places these pairs within the cube relative to the iron sites. 33S data for substrate-free enzyme is qualitatively similar and can be completely simulated by two types of S2- ion, with A(S1) approximately 7.5 and A(S2) approximately 9 MHz; the full hyperfine tensors have been determined. The hyperfine values for the two enzyme forms correspond to surprisingly small unpaired spin density on S2-. 14N ENDOR at Q-band reveals a nitrogen signal that does not change upon substrate binding.  相似文献   

5.
Electron nuclear double resonance (ENDOR) spectroscopy is used to probe the coordination of the mixed valence (Fe(II).Fe(III)) diiron cluster of the methane monooxygenase hydroxylase component (MMOH-) isolated from Methylosinus trichosporium OB3b. ENDOR resonances are observed along the principal axis directions g1 = 1.94 and g3 = 1.76 from at least nine different protons and two different nitrogens. The nitrogens are strongly coupled and appear to be directly coordinated to the cluster irons. The ratio of their superhyperfine coupling constants is roughly 4:7, which equals the ratio of the spin expectation values of the Fe(II) and Fe(III) in the ground state and suggests that at least one nitrogen is coordinated to each iron of the mixed valence cluster. Moreover, the superhyperfine and quadrupole coupling constants assigned to the Fe(III) site (AN = 13.6 MHz, PN = 0.7 MHz) are comparable with those observed for semimethemerythrin sulfide (AN = 12.1 MHz, PN = 0.7 MHz), for which the nitrogen ligands are histidines. At least three of the coupled protons exchange slowly when MMOH- is incubated in D2O, and 2H ENDOR resonances are subsequently observed. These observations are also consistent with histidine ligation of the iron cluster. On addition of the inhibitor dimethyl sulfoxide (Me2SO) to MMOH- the EPR spectrum sharpens and shifts dramatically. Only one set of 14N ENDOR resonances is observed with frequencies equal to those assigned to the Fe(III)-histidine resonances of uncomplexed MMOH- suggesting that the nitrogen coordination to the Fe(II) site is altered or possibly lost in the presence of Me2SO. 2H ENDOR resonances are observed in the presence of d6-Me2SO indicating that the inhibitor Me2SO binds near or possibly to the diiron cluster. In contrast, no 2H ENDOR resonances are observed from d4-methanol upon addition to MMOH-. Thus, the changes observed in the EPR spectrum of MMOH- upon addition of methanol may result from binding to a site away from the diiron cluster or from bulk solvent effects on the protein structure.  相似文献   

6.
Proton ENDOR resonances have been found from at least two different protons with fairly large and isotropic couplings of about 12 and 19 MHz. It is possible that such protons are attached to carbons that are one bond removed from the point of ligation to copper. A number of weakly coupled protons with anisotropic couplings have also been seen. None of the protons, either weakly or strongly coupled, appears to exchange with 2H2O. We have obtained nitrogen ENDOR from at least one nitrogen with a hyperfine coupling large enough for the nitrogen to be a ligand of copper. We have not yet demonstrated experimentally ENDOR characteristic of the copper nucleus itself.  相似文献   

7.
Q-Band ENDOR studies on carbon monoxide dehydrogenase (CODH) from the acetogenic bacterium Clostridium thermoaceticum provided unambiguous evidence that the reaction of CO with CODH produces a novel metal center that includes at least one nickel, at least three iron sites, and the carbon of one CO. The 57Fe hyperfine couplings determined by ENDOR are similar to the values used in simulation of the M?ssbauer spectra [Lindahl et al. (1989) J. Biol. Chem. 265, 3880-3888]. EPR simulation using these AFe values is equally good for a 4Fe or a 3Fe center. The 13C ENDOR data are consistent with the binding of a carbon atom to either the Ni or the Fe component of the spin-coupled cluster. The 13C hyperfine couplings are similar to those determined earlier for the C0-bound form of the H cluster of the Clostridium pasteurianum hydrogenase, proposed to be the active site of hydrogen activation [Telser et al. (1987) J. Biol. Chem. 262, 6589-5694]. The 61 Ni ENDOR data are the first nickel ENDOR recorded for an enzyme. The EPR simulation using the ENDOR-derived hyperfine values for 61Ni is consistent with a single nickel site in the Ni-Fe-C complex. On the basis of our results and the M?ssbauer data [Lindahl et al. (1989) J. Biol. Chem. 265, 3880-3888], we propose the stoichiometry of the components of the Ni-Fe-C complex to be Ni1Fe3-4S greater than or equal to 4C1, with four acid-labile sulfides.  相似文献   

8.
 The isotropic hyperfine couplings of cysteine β-protons in iron-sulfur clusters of proteins provide information about the structure and conformation of the clusters if their magnetic resonance peaks can be resolved and assigned. The application of two-dimensional ESEEM (HYSCORE) spectroscopy to the reduced [2Fe-2S] cluster in ferredoxin from red marine algae Porfira umbilicalis is described. After deuterium substitution of the exchangeable protons, highly-resolved, orientationally-selected HYSCORE spectra show cross-peaks from strongly coupled, nonexchangeable protons. When cross-peaks from all the HYSCORE spectra are linearized and transformed to a common nuclear Zeeman frequency, they fall along five straight lines. Four of these sets of peaks are assigned to β-protons of the cysteine ligands. The isotropic and anisotropic hyperfine couplings for these protons are extracted from the slopes and intercepts of these lines. Two rescaling procedures are examined for the conversion of the experimentally measured isotropic couplings from different irons in [2Fe-2S] and [4Fe-4S] clusters. The couplings from P. umbilicalis appear to fit the same empirical dependence on Fe-S-C-H dihedral angle as do the couplings from a [4Fe-4S] model cluster. A method to assign protons for proteins of unknown structure is proposed that yields the correct assignment as derived from the crystal structure of the highly homologous protein from Spirulina platensis. The conformations of the cysteines in the reduced protein, derived without any adjustable parameters from this procedure and the empirical functions, are consistent with those reported for the latest refinement of the crystal structure of the oxidized protein. Received: 24 September 1997 / Accepted: 28 October 1997  相似文献   

9.
The techniques of EPR and electron nuclear double resonance (ENDOR) were used to probe structure and electronic distribution at the nitric oxide (NO)-ligated heme alpha 3 in the nitrosylferrocytochrome alpha 3 moiety of fully reduced cytochrome c oxidase. Hyperfine and quadrupole couplings to NO (in both 15NO and 14NO forms), to histidine nitrogens, and to protons near the heme site were obtained. Parallel studies were also performed on NO-ligated myoglobin and model NO-heme-imidazole systems. The major findings and interpretations on nitrosylferrocytochrome alpha 3 were: 1) compared to other NO-heme-imidazole systems, the nitrosylferrocytochrome alpha3 gave better resolution of EPR and ENDOR signals; 2) at the maximal g value (gx = 2.09), particularly well resolved NO nitrogen hyperfine and quadrupole couplings and mesoproton hyperfine couplings were seen. These hyperfine and quadrupole couplings gave information on the electronic distribution on the NO, on the orientation of the g tensor with respect to the heme, and possibly on the orientation of the FeNO plane; 3) a combination of experimental EPR-ENDOR results and EPR spectral simulations evidenced a rotation of the NO hyperfine tensor with respect to the electronic g tensor; this implied a bent Fe-NO bond; 4) ENDOR showed a unique proton not seen in the other NO heme systems studied. The magnitude of this proton's hyperfine coupling was consistent with this proton being part of a nearby protein side chain that perturbs an axial ligand like NO or O2.  相似文献   

10.
Uteroferrin, an acid phosphatase with a spin-coupled and redox-active binuclear iron center, is paramagnetic in its pink, enzymatically active, mixed-valence (S = 1/2) state. Phosphate, a product and inhibitor of the enzymatic activity of uteroferrin, converts the pink, EPR-active form of the protein to a purple, EPR-silent species. In contrast, molybdate, a tetrahedral oxyanion analog of phosphate, transforms the EPR spectrum of uteroferrin from a rhombic to an axial form. With both electron spin echo envelope modulation (ESEEM) and electron nuclear double resonance (ENDOR) spectroscopies, we observe a hyperfine interaction of [95Mo]molybdate with the S = 1/2, Fe(II)-Fe(III) center of the protein. A pair of 95Mo resonances centered at the 95Mo Larmor frequency at the applied magnetic field and separated by a hyperfine coupling constant of 1.2 MHz is evident. Therefore, a single monomeric species of molybdate is close to, and likely a ligand of, the binuclear cluster. 1H ENDOR studies on uteroferrin reveal at least six sets of lines mirrored about the 1H Larmor frequency. Two pairs of these lines become reduced in intensity when the protein is exchanged against D2O. Moreover, ESEEM and 2H ENDOR spectra display resonances at the 2H Larmor frequency. Therefore, the metal-binding region of the protein is accessible to solvent. Additional deuterium lines observable by ESEEM spectroscopy provide evidence for a population of strongly coupled, readily exchangeable protons associated with the binuclear center. The measured hyperfine coupling constants for these deuterons are orientation-dependent with splittings of nearly 4 MHz at g3 = 1.59 and less than 1 MHz at g1 = 1.94. In the presence of molybdate, ESEEM spectra of D2O-exchanged samples reveal a resonance at the 2H Larmor frequency, with no evidence of spectral components due to strongly coupled deuterons. 1H ENDOR studies of the uteroferrin-molybdate complex show at least seven pairs of lines, mirrored about the 1H Larmor frequency, of which one pair becomes attenuated in amplitude upon deuteration. The active site thus remains accessible to solvent in the presence of molybdate.  相似文献   

11.
Previous M?ssbauer and electron nuclear double resonance (ENDOR) studies of oxidized hydrogenase I (bidirectional) from Clostridium pasteurianum W5 demonstrated that this enzyme contains two diamagnetic [4Fe-4S]2+ clusters and an iron-sulfur center of unknown structure and composition that is characterized by its novel M?ssbauer and ENDOR properties. In the present study we combine ENDOR and EPR measurements to show that the novel cluster contains 3-4 iron atoms. In addition, we have used EPR and ENDOR spectroscopies to investigate the effect of binding the competitive inhibitor carbon monoxide to oxidized hydrogenase I, using 13C-labeled CO and enzyme isotopically enriched in 57Fe. Treatment of oxidized enzyme with CO causes the g-tensor of the paramagnetic center to change from rhombic to axial symmetry. The observation of a 13C signal by ENDOR spectroscopy and analysis of the EPR broadening show that a single CO covalently binds to the paramagnetic center. The 13C hyperfine coupling constant (Ac approximately equal to 21 MHz) is within the range observed for inorganic iron-carbonyl clusters. The observation of 57Fe ENDOR signals from two types of iron site ([A1c] approximately 30-34 MHz; [A2c] approximately 6 MHz) and resolved 57Fe hyperfine interactions in the EPR spectrum from two nuclei characterized by [A1c] confirm that the iron-sulfur cluster remains intact upon CO coordination, but show that CO binding greatly changes the 57Fe hyperfine coupling constants.  相似文献   

12.
After reduction with nicotinamide adenine dinucleotide (NADH), NADH:ubiquinone oxidoreductase (complex I) of the strictly aerobic yeast Yarrowia lipolytica shows clear signals from five different paramagnetic iron-sulfur (FeS) clusters (N1-N5) which can be detected using electron paramagnetic resonance (EPR) spectroscopy. The ligand environment and the assignment of several FeS clusters to specific binding motifs found in several subunits of the complex are still under debate. In order to characterize the hyperfine interaction of the surrounding nuclei with FeS cluster N1, one- and two-dimensional electron spin echo envelope modulation experiments were performed at a temperature of 30 K. At this temperature only cluster N1 contributes to the overall signal in a pulsed EPR experiment. The hyperfine and quadrupole tensors of a nitrogen nucleus and the isotropic and dipolar hyperfine couplings of two sets of protons could be determined by numerical simulation of the one- and two-dimensional spectra. The values obtained are in perfect agreement with a ferredoxin-like binding structure by four cysteine amino acid residues and allow the assignment of the nitrogen couplings to a backbone nitrogen nucleus and the proton couplings to the beta-protons of the bound cysteine residues.  相似文献   

13.
We measured an electronic change at cysteine ligand(s) of the CuA2+ center brought on by reduction of other metal centers within cytochrome c oxidase, notably cytochrome a. This change specifically manifested itself as a modification in magnetic hyperfine coupling to the beta-protons of the beta-carbons adjacent to the cysteine sulfur in the CuA2+ coordination sphere. The electron nuclear double resonance ENDOR signals of these beta-protons had previously been assigned through study of selectively deuterated yeast oxidase. In the present study the ENDOR signals of the CuA2+ center were compared from the following forms of oxidase: resting (a3+.CuA2+.a3+3.CuB2+); mixed valence, 2-electron-reduced CO-ligated oxidase (a3+.CuA2+.a2+3CO.CuB+), and a more completely reduced mixed-valence CO-ligated oxidase. In agreement with previous studies on 3-electron-reduced oxidase, the latter more completely reduced oxidase showed cytochrome a preferentially reduced with respect to CuA, implying that the majority of paramagnetic CuA2+ centers had reduced cytochrome a partners. The ENDOR-resolved splitting of the beta-proton hyperfine features substantially decreased in going from the first two more oxidized forms to the more fully reduced latter form. Thus, the electronic structure of the CuA2+ center specifically monitored by hyperfine couplings to cysteine protons changed in response to a reductive event elsewhere in the protein. This structural change may correlate with the anticooperative redox interaction recently reported between cytochrome a and CuA.  相似文献   

14.
Electron-nuclear double resonance (ENDOR) spectroscopy has been used to study ligand and copper hyperfine interactions in Cu(II) complexes of human transferrin. A nearly isotropic superhyperfine interaction of the Cu(II) spin with a single 14N nucleus was identified, and the principal values of its tensor were estimated. All principal values of the copper hyperfine tensor were also directly measured for the first time. Resonances from at least two exchangeable protons were observed, but their origin could not be ascertained. At physiological pH, and in the presence of bicarbonate, ENDOR spectra of the two metal-binding sites were virtually indistinguishable.  相似文献   

15.
The binuclear Cu(A) site engineered into Pseudomonas aeruginosa azurin has provided a Cu(A)-azurin with a well-defined crystal structure and a CuSSCu core having two equatorial histidine ligands, His120 and His46. The mutations His120Asn and His120Gly were made at the equatorial His120 ligand to understand the histidine-related modulation to Cu(A), notably to the valence delocalization over the CuSSCu core. For these His120 mutants Q-band electron nuclear double resonance (ENDOR) and multifrequency electron paramagnetic resonance (EPR) (X, C, and S-band), all carried out under comparable cryogenic conditions, have provided markedly different electronic measures of the mutation-induced change. Q-band ENDOR of cysteine C(beta) protons, of weakly dipolar-coupled protons, and of the remaining His46 nitrogen ligand provided hyperfine couplings that were like those of other binuclear mixed-valence Cu(A) systems and were essentially unperturbed by the mutation at His120. The ENDOR findings imply that the Cu(A) core electronic structure remains unchanged by the His120 mutation. On the other hand, multifrequency EPR indicated that the H120N and H120G mutations had changed the EPR hyperfine signature from a 7-line to a 4-line pattern, consistent with trapped-valence, Type 1 mononuclear copper. The multifrequency EPR data imply that the electron spin had become localized on one copper by the His120 mutation. To reconcile the EPR and ENDOR findings for the His120 mutants requires that either: if valence localization to one copper has occurred, the spin density on the cysteine sulfurs and the remaining histidine (His46) must remain as it was for a delocalized binuclear Cu(A) center, or if valence delocalization persists, the hyperfine coupling for one copper must markedly diminish while the overall spin distribution on the CuSSCu core is preserved.  相似文献   

16.
Two different hydrogenases have been isolated from Clostridium pasteurianum W5. Hydrogenase II (uptake) is active in H2 oxidation while hydrogenase I (bidirectional) is active both in H2 oxidation and evolution. Previous EPR and electron nuclear double resonance (ENDOR) studies of oxidized hydrogenase I have now been complemented by analogous studies on oxidized 57Fe-enriched hydrogenase II and its CO derivative (using 12CO and 13CO). Binding of CO greatly changes the EPR spectrum of oxidized hydrogenase II, and use of 13CO leads to resolved hyperfine splitting from interaction with a single 13CO molecule (AC approximately 34 MHz). This coupling is over 50% larger than that seen for hydrogenase I. 57Fe ENDOR disclosed two types of iron site in both oxidized hydrogenase II and its CO derivative. Combination of EPR, ENDOR, and M?ssbauer results shows that site 1 has AFe1 = 18 MHz shifting to approximately 30 MHz upon CO binding and consisting of two Fe atoms and site 2 has A2 approximately 7 MHz shifting to approximately 10 MHz and containing a single Fe. These results are very similar to those seen for hydrogenase I, which indicates that a structurally similar 3Fe cluster, believed to be the catalytically active site, is present in both. Proton ENDOR shows a solvent exchangeable resonance only in the CO derivative of hydrogenase II. This indicates a structural difference between hydrogenases I and II that is brought out by CO binding. No evidence of 14N coordination to the cluster is seen for either enzyme.  相似文献   

17.
18.
The nature of the [Fe(IV)-O] center in hemoprotein Compounds II has recently received considerable attention, as several experimental and theoretical investigations have suggested that this group is not necessarily the traditionally assumed ferryl ion, [Fe(IV)=O]2+, but can be the protonated ferryl, [Fe(IV)-OH]3+. We show here that cryoreduction of the EPR-silent Compound II by gamma-irradiation at 77 K produces Fe(III) species retaining the structure of the precursor [Fe(IV)=O]2+ or [Fe(IV)-OH]3+, and that the properties of the cryogenerated species provide a report on structural features and the protonation state of the parent Compound II when studied by EPR and 1H and 14N ENDOR spectroscopies. To give the broadest view of the properties of Compounds II we have carried out such measurements on cryoreduced Compounds II of HRP, Mb, DHP and CPO and on CCP Compound ES. EPR and ENDOR spectra of cryoreduced HRP II, CPO II and CCP ES are characteristic of low-spin hydroxy-Fe(III) heme species. In contrast, cryoreduced "globins", Mb II, Hb II, and DHP II, show EPR spectra having lower rhombicity. In addition the cryogenerated ferric "globin" species display strongly coupled exchangeable (1)H ENDOR signals, with A max approximately 20 MHz and a iso approximately 14 MHz, both substantially greater than for hydroxide/water ligand protons. Upon annealing at T > 180 K the cryoreduced globin compounds II relax to the low-spin hydroxy-ferric form with a solvent kinetic isotope effect, KIE > 6. The results presented here together with published resonance Raman and Mossbauer data suggest that the high-valent iron center of globin and HRP compounds II, as well as of CCP ES, is [Fe(IV)=O]2+, and that its cryoreduction produces [Fe(III)-O]+. Instead, as proposed by Green and co-workers, CPO II contains [Fe(IV)-OH]3+ which forms [Fe(III)-OH]2+ upon radiolysis. The [Fe(III)-O]+ generated by cryoreduction of HRP II and CCP ES protonate at 77 K, presumably because the heme is linked to a distal-pocket hydrogen bonding/proton-delivery network through an H-bond to the "oxide" ligand. The data also indicate that Mb and HRP compounds II exist as two major conformational substates.  相似文献   

19.
Protons in the vicinity of the oxygen-evolving manganese cluster in photosystem II were studied by proton matrix ENDOR. Six pairs of proton ENDOR signals were detected in both the S(0) and S(2) states of the Mn-cluster. Two pairs of signals that show hyperfine constants of 2.3/2.2 and 4.0 MHz, respectively, disappeared after D(2)O incubation in both states. The signals with 2.3/2.2 MHz hyperfine constants in S(0) and S(2) state multiline disappeared after 3 h of D(2)O incubation in the S(0) and S(1) states, respectively. The signal with 4.0 MHz hyperfine constants in S(0) state multiline disappeared after 3 h of D(2)O incubation in the S(0) state, while the similar signal in S(2) state multiline disappeared only after 24 h of D(2)O incubation in the S(1) state. The different proton exchange rates seem to be ascribable to the change in affinities of water molecules to the variation in oxidation state of the Mn cluster during the water oxidation cycle. Based on the point dipole approximation, the distances between the center of electronic spin of the Mn cluster and the exchangeable protons were estimated to be 3.3/3.2 and 2.7 A, respectively. These short distances suggest the protons belong to the water molecules ligated to the manganese cluster. We propose a model for the binding of water to the manganese cluster based on these results.  相似文献   

20.
We have employed EPR and a set of recently developed electron nuclear double resonance (ENDOR) spectroscopies to characterize a suite of [2Fe?C2S] ferredoxin clusters from Aquifex aeolicus (Aae Fd1, Fd4, and Fd5). Antiferromagnetic coupling between the FeII, S?=?2, and FeIII, S?=?5/2, sites of the [2Fe?C2S]+ cluster in these proteins creates an S?=?1/2 ground state. A complete discussion of the spin-Hamiltonian contributions to g includes new symmetry arguments along with references to related FeS model compounds and their symmetry and EPR properties. Complete 57Fe hyperfine coupling (hfc) tensors for each iron, with respective orientations relative to g, have been determined by the use of ??stochastic?? continuous wave and/or ??random hopped?? pulsed ENDOR, with the relative utility of the two approaches being emphasized. The reported hyperfine tensors include absolute signs determined by a modified pulsed ENDOR saturation and recovery (PESTRE) technique, RD-PESTRE??a post-processing protocol of the ??raw data?? that comprises an ENDOR spectrum. The 57Fe hyperfine tensor components found by ENDOR are nicely consistent with those previously found by M?ssbauer spectroscopy, while accurate tensor orientations are unique to the ENDOR approach. These measurements demonstrate the capabilities of the newly developed methods. The high-precision hfc tensors serve as a benchmark for this class of FeS proteins, while the variation in the 57Fe hfc tensors as a function of symmetry in these small FeS clusters provides a reference for higher-nuclearity FeS clusters, such as those found in nitrogenase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号