首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
In recent years, metagenomic strategies have been widely used to isolate and identify new enzymes from uncultivable components of microbial communities. Among these enzymes, various lipases have been obtained from metagenomic libraries from different environments and characterized. Although many of these lipases have characteristics that could make them interesting for application in biocatalysis, relatively little work has been done to evaluate their potential to catalyze industrially important reactions. In the present article, we highlight the latest research on lipases obtained through metagenomic tools, focusing on studies of activity and stability and investigations of application in biocatalysis. We also discuss the challenges of metagenomic approaches for the bioprospecting of new lipases.  相似文献   

2.
In 1997 and the first half of 1998, numerous publications appeared reporting studies of cofactors and their analogues in classical model systems and in enzyme-catalyzed reactions directed at understanding the enzymatic reactions of their natural cofactors. Model systems based on flavins have provided new insights into enzymatic modulation of the flavin reduction potential, and enzymatic reactions of coenzyme A analogues and derivatives have been employed in several studies of coenzyme A utilizing enzymes. Coenzyme B12 analogues have been utilized as alternate cofactors for B12-utilizing enzymes, while pyrroloquinoline quinone esters and analogues have been employed in model studies of the reactions of quinoprotein-catalyzed reactions.  相似文献   

3.
The past few years have seen significant advances in research related to the 'latent skills' of enzymes - namely, their capacity to promiscuously catalyze reactions other than the ones they evolved for. These advances regard (i) the mechanism of catalytic promiscuity - how enzymes, that generally exert exquisite specificity, promiscuously catalyze other, and sometimes barely related, reactions; (ii) the evolvability of promiscuous functions - namely, how latent activities evolve further, and in particular, how promiscuous activities can firstly evolve without severely compromising the original activity. These findings have interesting implications on our understanding of how new enzymes evolve. They support the key role of catalytic promiscuity in the natural history of enzymes, and suggest that today's enzymes diverged from ancestral proteins catalyzing a whole range of activities at low levels, to create families and superfamilies of potent and highly specialized enzymes.  相似文献   

4.
Expanding the repertoire of reactions available to enzymes is an enduring challenge in biocatalysis. Owing to the synthetic versatility of transition metals, metalloenzymes have been favored targets for achieving new catalytic functions. Although less well explored, enzymes lacking metal centers can also be effective catalysts for non-natural reactions, providing access to reaction modalities that compliment those available to metals. By understanding how these activation modes can reveal new functions, strategies can be developed to access novel biocatalytic reactions. This review will cover discoveries in the last two years which access catalytic reactions that go beyond the native repertoire of metal-free biocatalysts.  相似文献   

5.
The number of identified and confirmed α-keto acid dependent oxygenases is increasing rapidly. All of these enzymes have a relatively simple liganding arrangement for a single ferrous ion but collectively conduct a highly diverse set of chemistries. While hydroxylations and a variety of oxidation reactions have been most commonly observed, new reactions involving dealkylations, epimerizations and halogenations have recently been discovered. In this minireview we present what is known of the α-keto acid dependent enzymes and offer an argument that the chemistry that is unique to each enzyme occurs only after the production of a pivotal ferryl-oxo intermediate. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

6.
Endopeptidases and prohormone processing   总被引:4,自引:0,他引:4  
Peptide hormones and peptide transmitters are generated from polypeptide precursors by specific cleavage reactions which take place principally at sites formed by single or paired basic residues. Not all the possible cleavage sites are utilised, however, and the degree of processing of many propeptides has been found to vary according to the tissue of origin. The restricted nature of processing reactions could point to the existence of a series of enzymes with stringent specificities, recognising regions of structure in addition to the single or paired basic residues. Alternatively the action of processing enzymes may be directed by conformation of the pro-peptide which could focus the action of a protease onto or away from a particular site. In addition certain post-translational modifications such as glycosylation or phosphorylation may influence the accessibility of a site to the approach of a processing enzyme. In this review we describe recent advances that have been made in the characteristisation of proteolytic processing enzymes, we examine the relevance of the various factors that could account for restricted processing and discuss new approaches that may lead to better understanding of the mechanisms involved.  相似文献   

7.
Antibiotics--cloning of biosynthetic pathways   总被引:1,自引:0,他引:1  
Biosynthetic pathways leading to antibiotics have often been found to be clustered, and new organizational forms of multifunctional enzymes have been discovered. Such polyenzymes accomplish the synthesis of complex metabolites such as peptides or polyketides by a sequence of enzymatic reactions. So, reactions leading to the tripeptide precursor of beta-lactam antibiotics, ACV, or to the cycloundecapeptide cyclosporine have been fused into single polypeptide chain synthetases, respectively. In certain isofunctional sites restricted similarities have been detected.  相似文献   

8.
In the past year, site-directed mutagenesis and other forms of protein engineering have been used to reverse the substrate specificity of several pairs of enzymes, including disulphide oxidoreductases, proteases, sugar-processing enzymes, and nucleases, as well as the specificity of hormones and their receptors. Mutations have been found that affect rate-determining steps, allowing normally transient intermediates to accumulate. Other mutations endow enzymes with totally new chemical reactions, and even novel biological functions. A combination of molecular genetics and chemical modification has been used for protein engineering.  相似文献   

9.
There is a tendency that a unit of enzyme genes in an operon-like structure in the prokaryotic genome encodes enzymes that catalyze a series of consecutive reactions in a metabolic pathway. Our recent analysis shows that this and other genomic units correspond to chemical units reflecting chemical logic of organic reactions. From all known metabolic pathways in the KEGG database we identified chemical units, called reaction modules, as the conserved sequences of chemical structure transformation patterns of small molecules. The extracted patterns suggest co-evolution of genomic units and chemical units. While the core of the metabolic network may have evolved with mechanisms involving individual enzymes and reactions, its extension may have been driven by modular units of enzymes and reactions.  相似文献   

10.
Although the search of inhibitors of the key enzymes of HIV replication has remained a topical and intensively studied topic over the last several decades, potential inhibitors of the enzymes bearing thiocyano groups have been little studied. In this work, we tried to synthesize polymethylene derivatives of nucleic bases bearing thiocyano groups at the ω-position of the polymethylene chain. The reaction of new alkylating reagents, methyl α-thiocyano-ω-chloroalkanoates, with nucleic bases led to a complicated and barely separated product mixture. The only exceptions were the reactions of uracil or thymine with methyl 2-thiocyano- 2-chloropentanoate, in which 2-(N 1-uracilyl or -thyminyl)tetrahydrothiophene-2-carboxylates were isolated in 45–50% yields. The potential mechanism of the reaction is discussed.  相似文献   

11.
Modified versions - paralogs - of the catalytic domain of at least three different aminoacyl-tRNA synthetases have been found to serve catalytic or regulatory roles in other reactions. These findings suggest that the first modern tRNA-synthetases could have been derived from amino-acid biosynthetic enzymes.  相似文献   

12.
Single molecule methods offer an unprecedented opportunity to examine complex macromolecular reactions that are obfuscated by ensemble averaging. The application of single molecule techniques to study DNA processing enzymes has revealed new mechanistic details that are unobtainable from bulk biochemical studies. Homologous DNA recombination is a multi-step pathway that is facilitated by numerous enzymes that must precisely and rapidly manipulate diverse DNA substrates to repair potentially lethal breaks in the DNA duplex. In this review, we present an overview of single molecule assays that have been developed to study key aspects of homologous recombination and discuss the unique information gleaned from these experiments.  相似文献   

13.
The expansion of functions in an enzyme superfamily is thought to occur through recruitment of latent promiscuous functions within existing enzymes. Thus, the promiscuous activities of enzymes represent connections between different catalytic landscapes and provide an additional layer of evolutionary connectivity between functional families alongside their sequence and structural relationships. Functional connectivity has been observed between individual functional families; however, little is known about how catalytic landscapes are connected throughout a highly diverged superfamily. Here, we describe a superfamily-wide analysis of evolutionary and functional connectivity in the metallo-β-lactamase (MBL) superfamily. We investigated evolutionary connections between functional families and related evolutionary to functional connectivity; 24 enzymes from 15 distinct functional families were challenged against 10 catalytically distinct reactions. We revealed that enzymes of this superfamily are generally promiscuous, as each enzyme catalyzes on average 1.5 reactions in addition to its native one. Catalytic landscapes in the MBL superfamily overlap substantially; each reaction is connected on average to 3.7 other reactions whereas some connections appear to be unrelated to recent evolutionary events and occur between chemically distinct reactions. These findings support the idea that the highly distinct reactions in the MBL superfamily could have evolved from a common ancestor traversing a continuous network via promiscuous enzymes. Several functional connections (e.g., the lactonase/phosphotriesterase and phosphonatase/phosphodiesterase/arylsulfatase reactions) are also observed in structurally and evolutionary distinct superfamilies, suggesting that these catalytic landscapes are substantially connected. Our results show that new enzymatic functions could evolve rapidly from the current diversity of enzymes and range of promiscuous activities.  相似文献   

14.
Biocatalysis is coming of age, with an increasing number of reactions being scaled-up and developed. The diversity of reactions is also increasing and oxidation reactions have recently been considered for scale-up to commercial processes. One important chemical conversion, which is difficult to achieve enantio- or enantiotopo- selectively, is the Baeyer-Villiger (BV) oxidation of ketones. Using cyclohexanone monooxygenase to catalyse the reaction produces optically pure esters and lactones with exquisite enantiomeric excess values. Recently, these enzymes and their many applications in synthetic chemistry have been explored. The scale-up of these conversions has been examined with the idea of implementing the first commercial Baeyer-Villiger monooxygenase-based process. Here, we review the state-of-the-art situation for the scale-up and exploitation of these enzymes.  相似文献   

15.
The ongoing trends to process improvements, cost reductions and increasing quality, safety, health and environment requirements of industrial chemical transformations have strengthened the translation of global biocatalysis research work into industrial applications. One focus has been on biocatalytic single-step reactions with one or two substrates, the identification of bottlenecks and molecular as well as engineering approaches to overcome these bottlenecks. Robust industrial procedures have been established along classes of biocatalytic single-step reactions. Multi-step reactions and multi-component reactions (MCRs) enable a bottom-up approach with biocatalytic reactions working together in one compartment and recations hindering each other within different compartments or steps. The understanding of the catalytic functions of known and new enzymes is key for the development of new sustainable chemical transformations.  相似文献   

16.
Only a very few examples of enzymes known to catalyze pericyclic reactions have been reported, and presently no enzyme has been demonstrated unequivocally to catalyze a Diels-Alder reaction. Nevertheless, research into secondary metabolism has led to the discovery of numerous natural products exhibiting the structural hallmarks of [4+2] cycloadditions, prompting efforts to characterize the responsible enzymatic processes. These efforts have resulted in a growing collection of enzymes believed to catalyze pericyclic [4+2] cycloaddition reactions; however, in each case the complexity of the substrates and catalytic properties of these enzymes poses significant challenges in substantiating these hypotheses. Herein we consider the principles motivating these efforts and the enzymological systems currently under investigation.  相似文献   

17.
Principles of antibody catalysis   总被引:6,自引:0,他引:6  
Antibodies have now been shown to catalyze a variety of chemical transformations, including hydrolytic, concerted, and bimolecular reactions. The inherent chirality of the antibody binding pocket has been exploited to exert precise stereochemical control over their catalyzed reactions. The mechanisms by which antibodies catalyze reactions are not expected to differ in any general way from those of natural enzymes. Antibodies use their binding energy to stabilize species of higher free energy which appear along the reaction coordinate or effect general acid/base catalysis. The advent of catalytic antibodies promises new catalysts that extend the range of catalysis by proteins to chemical transformations that were not required during the evolution of enzymes.  相似文献   

18.
Benzoates are a class of natural products containing compounds of industrial and strategic importance. In plants, the compounds exist in free form and as conjugates to a wide range of other metabolites such as glucose, which can be attached to the carboxyl group or to specific hydroxyl groups on the benzene ring. These glucosylation reactions have been studied for many years, but to date only one gene encoding a benzoate glucosyltransferase has been cloned. A phylogenetic analysis of sequences in the Arabidopsis genome revealed a large multigene family of putative glycosyltransferases containing a consensus sequence typically found in enzymes transferring glucose to small molecular weight compounds such as secondary metabolites. Ninety of these sequences have now been expressed as recombinant proteins in Escherichia coli, and their in vitro catalytic activities toward benzoates have been analyzed. The data show that only 14 proteins display activity toward 2-hydroxybenzoic acid, 4-hydroxybenzoic acid, and 3,4-dihydroxybenzoic acid. Of these, only two enzymes are active toward 2-hydroxybenzoic acid, suggesting they are the Arabidopsis salicylic acid glucosyltransferases. All of the enzymes forming glucose esters with the metabolites were located in Group L of the phylogenetic tree, whereas those forming O-glucosides were dispersed among five different groups. Catalytic activities were observed toward glucosylation of the 2-, 3-, or 4-hydroxyl group on the ring. To further explore their regioselectivity, the 14 enzymes were analyzed against benzoic acid, 3-hydroxybenzoic acid, 2,3-, 2,4-, 2,5-, and 2,6-dihydroxybenzoic acid. The data showed that glycosylation of specific sites could be positively or negatively influenced by the presence of additional hydroxyl groups on the ring. This study provides new tools for biotransformation reactions in vitro and a basis for engineering benzoate metabolism in plants.  相似文献   

19.
The role of S-adenosylmethionine (SAM) as a precursor to organic radicals, generated by one-electron reduction of SAM and subsequent fission to form 5'-deoxyadenosyl radical and methionine, has been known for some time. Only recently, however, has it become apparent how widespread such enzymes are, and what a wide range of chemical reactions they catalyze. In the last few years several new SAM radical enzymes have been identified. Spectroscopic and kinetic investigations have begun to uncover the mechanism by which an iron sulfur cluster unique to these enzymes reduces SAM to generate adenosyl radical. Most recently, the first X-ray structures of SAM radical enzymes, coproporphyrinogen-III oxidase, and biotin synthase have been solved, providing a structural framework within which to interpret mechanistic studies.  相似文献   

20.
Insights on active DNA demethylation disproved the original assumption that DNA methylation is a stable epigenetic modification. Interestingly, mammalian DNA methyltransferases 3A and 3B (DNMT-3A and -3B) have also been reported to induce active DNA demethylation, in addition to their well-known function in catalyzing methylation. In situations of extremely low levels of S-adenosyl methionine (SAM), DNMT-3A and -3B might demethylate C-5 methyl cytosine (5mC) via deamination to thymine, which is subsequently replaced by an unmodified cytosine through the base excision repair (BER) pathway. Alternatively, 5mC when converted to 5- hydroxymethylcytosine (5hmC) by TET enzymes, might be further modified to an unmodified cytosine by DNMT-3A and -3B under oxidized redox conditions, although exact pathways are yet to be elucidated. Interestingly, even direct conversion of 5mC to cytosine might be catalyzed by DNMTs. Here, we summarize the evidence on the DNA dehydroxymethylase and demethylase activity of DNMT-3A and -3B. Although physiological relevance needs to be demonstrated, the current indications on the 5mC- and 5hmC-modifying activities of de novo DNA C-5 methyltransferases shed a new light on these enzymes. Despite the extreme circumstances required for such unexpected reactions to occur, we here put forward that the chromatin microenvironment can be locally exposed to extreme conditions, and hypothesize that such waves of extremes allow enzymes to act in differential ways.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号