首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
A group of N-benzylpiperidine-3/4-carbohydrazide-hydrazones were designed, synthesized and evaluated for acetylcholinesterase (AChE), butyrylcholinesterase (BuChE) activities, Aβ42 self-aggregation inhibitory potentials, and antioxidant capacities, in vitro. All of the compounds displayed eeAChE and huAChE inhibitory activity in a range of IC50 = 5.68–11.35 µM and IC50 = 8.80–74.40 µM, respectively and most of the compounds exhibited good to moderate inhibitory activity on BuChE enzyme. Kinetic analysis and molecular modeling studies were also performed for the most potent compounds (1g and 1j). Not only the molecular modeling studies but also the kinetic analysis suggested that these compounds might be able to interact with the catalytic active site (CAS) and the peripheral anionic site (PAS) of the enzymes. In the light of the results, compound 1g and compound 1j may be suggested as lead compounds for multifunctional therapy of AD.  相似文献   

2.
A series of N-{2-[4-(1H-benzimidazole-2-yl)phenoxy]ethyl}substituted amine derivatives were designed to assess cholinesterase inhibitor activities. Acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE) inhibitor activities were evaluated in vitro by using Ellman’s method. It was discovered that most of the compounds displayed AChE and/or BuChE inhibitor activity and few compounds were selective against AChE/BuChE. Compound 3c and 3e were the most active compounds in the series against eeAChE and hAChE, respectively. Molecular docking studies and molecular dynamics simulations were also carried out.  相似文献   

3.
A series of berberine–thiophenyl hybrids were designed, synthesised, and evaluated as inhibitors of acetylcholinesterase (AChE), butyrylcholinesterase (BuChE) and β-amyloid (Aβ) aggregation and as antioxidants. Among these hybrids, compounds 4f and 4i, berberine linked with o-methylthiophenyl and o-chlorothiophenyl by a 2-carbon spacer, were observed to be potent inhibitors of AChE, with IC50 values of 0.077 and 0.042 μM, respectively. Of the tested compounds, 4i was also the most potent inhibitor of BuChE, with an IC50 value of 0.662 μM. Kinetic studies and molecular modelling simulations of the AChE-inhibitor complex indicated that a mixed-competitive binding mode existed for these berberine derivatives. The biological studies also demonstrated that these hybrids displayed interesting activities, including Aβ aggregation inhibition and antioxidant properties.  相似文献   

4.
In the search for new treatments for complex disorders such as Alzheimer’s disease the Multi-Target-Directed Ligands represent a very promising approach. The aim of the present study was to identify multifunctional compounds among several series of non-imidazole histamine H3 receptor ligands, derivatives of 1-[2-thiazol-5-yl-(2-aminoethyl)]-4-n-propylpiperazine, 1-[2-thiazol-4-yl-(2-aminoethyl)]-4-n-propylpiperazine and 1-phenoxyalkyl-4-(amino)alkylopiperazine using in vitro and in vivo pharmacological evaluation and computational studies. Performed in vitro assays showed moderate potency of tested compounds against acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE). Molecular modeling studies have revealed possible interactions between the active compounds and both AChE and BuChE as well as the human H3 histamine receptor. Computational studies showed the high drug-likeness of selected compounds with very good physicochemical profiles. The parallel artificial membrane permeation assay proved outstanding blood–brain barrier penetration in test conditions. The most promising compound, A12, chemically methyl(4-phenylbutyl){2-[2-(4-propylpiperazin-1-yl)-1,3-thiazol-5-yl]ethyl}amine, possesses good balanced multifunctional profile with potency toward studied targets - H3 antagonist activity (pA2 = 8.27), inhibitory activity against both AChE (IC50 = 13.96 μM), and BuChE (IC50 = 14.62 μM). The in vivo pharmacological studies revealed the anti-amnestic properties of compound A12 in the passive avoidance test on mice.  相似文献   

5.
A series of novel tacrine-isatin Schiff base hybrid derivatives (7a-p) were designed, synthesized and evaluated as multi-target candidates against Alzheimer’s disease (AD). The biological assays indicated that most of these compounds displayed potent inhibitory activity toward acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE) and specific selectivity for AChE over BuChE. It was also found that they act as excellent metal chelators. The compounds 7k and 7m were found to be good inhibitors of AChE-induced amyloid-beta (Aβ) aggregation. Most of the compounds inhibited AChE with the IC50 values, ranging from 0.42 nM to 79.66 nM. Amongst them, 7k, 7m and 7p, all with a 6 carbon linker between tacrine and isatin Schiff base exhibited the strongest inhibitory activity against AChE with IC50 values of 0.42 nM, 0.62 nM and 0.95 nM, respectively. They were 92-, 62- and 41-fold more active than tacrine (IC50 = 38.72 nM) toward AChE. Most of the compounds also showed a potent BuChE inhibition among which 7d with an IC50 value of 0.11 nM for BuChE is the most potent one (56-fold more potent than that of tacrine (IC50 = 6.21 nM)). In addition, most compounds exhibited the highest metal chelating property. Kinetic and molecular modeling studies revealed that 7k is a mixed-type inhibitor, capable of binding to catalytic and peripheral site of AChE. Our findings make this hybrid scaffold an excellent candidate to modify current drugs in treating Alzheimer’s disease (AD).  相似文献   

6.
A novel series of benzylpyridinium-based benzoheterocycles (benzimidazole, benzoxazole or benzothiazole) were designed as potent acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE) inhibitors. The title compounds 4a-q were conveniently synthesized via condensation reaction of 1,2-phenylenediamine, 2-aminophenol or 2-aminothiophenol with pyridin-4-carbalehyde, followed by N-benzylation using various benzyl halides. The results of in vitro biological assays revealed that most of them, especially 4c and 4g, had potent anticholinesterase activity comparable or more potent than reference drug, donepezil. The kinetic study demonstrated that the representative compound 4c inhibits AChE in competitive manner. According to the ligand-enzyme docking simulation, compound 4c occupied the active site at the vicinity of catalytic triad. The compounds 4c and 4g were found to be inhibitors of Aβ self-aggregation as well as AChE-induced Aβ aggregation. Meanwhile, these compounds could significantly protect PC12 cells against H2O2-induced injury and showed no toxicity against HepG2 cells. As multi-targeted structures, compounds 4c and 4g could be considered as promising candidate for further lead developments to treat Alzheimer’s disease.  相似文献   

7.
A novel series of compounds obtained by fusing the acetylcholinesterase (AChE) inhibitor donepezil and the antioxidant melatonin were designed as multi-target-directed ligands for the treatment of Alzheimer’s disease (AD). In vitro assay indicated that most of the target compounds exhibited a significant ability to inhibit acetylcholinesterase (eeAChE and hAChE), butyrylcholinesterase (eqBuChE and hBuChE), and β-amyloid (Aβ) aggregation, and to act as potential antioxidants and biometal chelators. Especially, 4u displayed a good inhibition of AChE (IC50 value of 193 nM for eeAChE and 273 nM for hAChE), strong inhibition of BuChE (IC50 value of 73 nM for eqBuChE and 56 nM for hBuChE), moderate inhibition of Aβ aggregation (56.3% at 20 μM) and good antioxidant activity (3.28 trolox equivalent by ORAC assay). Molecular modeling studies in combination with kinetic analysis revealed that 4u was a mixed-type inhibitor, binding simultaneously to catalytic anionic site (CAS) and the peripheral anionic site (PAS) of AChE. In addition, 4u could chelate metal ions, reduce PC12 cells death induced by oxidative stress and penetrate the blood–brain barrier (BBB). Taken together, these results strongly indicated the hybridization approach is an efficient strategy to identify novel scaffolds with desired bioactivities, and further optimization of 4u may be helpful to develop more potent lead compound for AD treatment.  相似文献   

8.
This article describes discovery of a novel and new class of cholinesterase inhibitors as potential therapeutics for Alzheimer’s disease. A series of novel isoalloxazine derivatives were synthesized and biologically evaluated for their potential inhibitory outcome for both acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE). These compounds exhibited high activity against both the enzymes AChE as well as BuChE. Of the synthesized compounds, the most potent isoalloxazine derivatives (7m and 7q) showed IC50 values of 4.72 μM and 5.22 μM respectively against AChE; and, 6.98 μM and 5.29 μM respectively against BuChE. These two compounds were further evaluated for their anti-aggregatory activity for β-amyloid (Aβ) in presence and absence of AChE by performing Thioflavin-T (ThT) assay and Congo red (CR) binding assay. In order to evaluate cytotoxic profile of these two potential compounds, cell viability assay of SH-SY5Y human neuroblastoma cells was performed. Further, to understand the binding behavior of these two compounds with AChE and BuChE enzymes, docking studies have been reported.  相似文献   

9.
A series of new α,β-unsaturated carbonyl-based cyclohexanone derivatives was synthesized by simple condensation method and all compounds were characterized by using various spectroscopic techniques. New compounds were evaluated for their effects on acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE). These compounds were also screened for in vitro cytotoxicity and for inhibitory activity for self-induced Aβ1–42 aggregation. The effect of these compounds against amyloid β-induced cytotoxicity was also investigated. The findings of in vitro experiment revealed that most of these compounds exhibited potent inhibitory activity against AChE and self-induced Aβ1–42 aggregation. The compound 3o exhibited best AChE (IC50 = 0.037 μM) inhibitory potential. Furthermore, compound 3o disassembled the Aβ fibrils produced by self-induced Aβ aggregation by 76.6%. Compounds containing N-methyl-4-piperidone linker, showed high acetylcholinesterase and self-induced Aβ aggregation inhibitory activities as compared to reference drug donepezil. The pre-treatment of cells with synthetic compounds protected them against Aβ-induced cell death by up to 92%. Collectively, these findings suggest that some compounds from this series have potential to be promising multifunctional agents for AD treatment and our study suggest the cyclohexanone derivatives as promising new inhibitors for AChE and BuChE, potentially useful to treat neurodegenerative diseases.  相似文献   

10.
A library of isoquinolinone and azepanone derivatives were screened for both acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE) activity. The strategy adopted included (a) in vitro biological assays, against eel AChE (EeAChE) and equine serum BuChE (EqBuChE) in order to determine the compounds IC50 and their dose-response activity, consolidated by (b) molecular docking studies to evaluate the docking poses and interatomic interactions in the case of the hit compounds, validated by STD-NMR studies. Compound (1f) was identified as one of these hits with an IC50 of 89.5 μM for EeAChE and 153.8 μM for EqBuChE, (2a) was identified as a second hit with an IC50 of 108.4 μM (EeAChE) and 277.8 μM (EqBuChE). In order to gain insights into the binding mode and principle active site interactions of these molecules, (R)-(1f) along with 3 other analogues (also as the R-enantiomer) were docked into both RhAChE and hBuChE models. Galantamine was used as the benchmark. The docking study was validated by performing an STD-NMR study of (1f) with EeAChE using galantamine as the benchmark.  相似文献   

11.
A group of 2,4-disubstituted pyrimidine derivatives (7ae, 8ae and 9ad) that possess a variety of C-2 aliphatic five- and six-membered heterocycloalkyl ring in conjunction with a C-4 arylalkylamino substituent were designed, synthesized and evaluated as cholinesterase (ChE) inhibitors. The steric and electronic properties at C-2 and C-4 positions of the pyrimidine ring were varied to investigate their effect on ChE inhibitory potency and selectivity. The structure–activity relationship (SAR) studies identified N-benzyl-2-thiomorpholinopyrimidin-4-amine (7c) as the most potent cholinesterase inhibitor (ChEI) with an IC50 = 0.33 μM (acetylcholinesterase, AChE) and 2.30 μM (butyrylcholinesterase, BuChE). The molecular modeling studies indicate that within the AChE active site, the C-2 thiomorpholine substituent was oriented toward the cationic active site region (Trp84 and Phe330) whereas within the BuChE active site, it was oriented toward a hydrophobic region closer to the active site gorge entrance (Ala277). Accordingly, steric and electronic properties at the C-2 position of the pyrimidine ring play a critical role in ChE inhibition.  相似文献   

12.
Novel 4-oxobenzo[d]1,2,3-triazin derivatives bearing pyridinium moiety 6a–q were synthesized and screened against acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE). Most of the synthesized compounds showed good inhibitory activity against AChE. Among the synthesized compounds, the compound 6j exhibited the highest AChE inhibitory activity. It should be noted that these compounds displayed low anti-BuChE activity with the exception of the compound 6i, as it exhibited BuChE inhibitory activity more than donepezil. The kinetic study of the compound 6j revealed that this compound inhibited AChE in a mixed-type inhibition mode. This finding was also confirmed by the docking study. The latter study demonstrated that the compound 6j interacted with both the catalytic site and peripheral anionic site of the AChE active site. The compound 6j was also observed to have significant neuroprotective activity against H2O2-induced PC12 oxidative stress, but low activity against β-secretase.  相似文献   

13.
In an attempt to construct potential anti-Alzheimer’s agents Naphthalene-triazolopyrimidine hybrids were synthesized and screened in vitro against the two cholinesterases (ChE)s, amyloid β aggregation and for antioxidation activity. Single-crystal X-ray crystallography was utilized for crystal structure determination of one of the compounds. In vitro study of compounds revealed that most of the compounds are capable of inhibiting acetylcholinesterase and Butyrylcholinesterase activity. Particularly, the compounds 4e and 4d exhibited IC50 values ranging from 8.6 to 14 nM against AChE lower than the standard drug Donepezil (IC50 49 nM). Best result was found for compound 4e with IC50 of 8.6 nM (for AChE) and 150 nM (for BuChE). Selectivity upto that of Donepezil and even more was observed for 4a, 4c and 4h. Investigation by electron microscopy, transmission electron microscopy and ThT fluorescence assay unveils the fact that synthesized hybrids exhibit amyloid β self-aggregation inhibition. The compounds 4i and 4j revealed highest inhibitory potential, 85.46% and 72.77% at 50 μM respectively; above the standard Aβ disaggregating agent, Curcumin. Their antioxidation profile was also analyzed. Studies from DPPH free radical scavenging assay and ORAC assay depicts molecules to possess low antioxidation profile. Results suggest that triazolopyrimidines are potential candidate for Acetylcholinesterase (AChE), Butyrylcholinesterase (BuChE), and amyloid β aggregation inhibition. In silico ADMET profiling indicates drug-like properties with a very low toxic influence. Such synthesized compounds provide a strong vision for further development of potential anti-Alzheimer’s agents.  相似文献   

14.
Acetylcholinesterase (AChE) is the key enzyme targeted in Alzheimer's disease (AD) therapy, nevertheless butyrylcholinesterase (BuChE) has been drawing attention due to its role in the disease progression. Thus, we aimed to synthesize novel cholinesterases inhibitors considering structural differences in their peripheral site, exploiting a moiety replacement approach based on the potent and selective hAChE drug donepezil. Hence, two small series of N-benzylpiperidine based compounds have successfully been synthesized as novel potent and selective hBuChE inhibitors. The most promising compounds (9 and 11) were not cytotoxic and their kinetic study accounted for dual binding site mode of interaction, which is in agreement with further docking and molecular dynamics studies. Therefore, this study demonstrates how our strategy enabled the discovery of novel promising and privileged structures. Remarkably, compound 11 proved to be one of the most potent (0.17?nM) and selective (>58,000-fold) hBuChE inhibitor ever reported.  相似文献   

15.
A novel series of chalcone derivatives (4a8d) were designed, synthesized, and evaluated for the inhibition activity against acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE). The log P values of the compounds were shown to range from 1.49 to 2.19, which suggested that they were possible to pass blood brain barriers in vivo. The most promising compound 4a (IC50: 4.68 μmol/L) was 2-fold more potent than Rivastigmine against AChE (IC50: 10.54 μmol/L) and showed a high selectivity for AChE over BuChE (ratio: 4.35). Enzyme kinetic study suggested that the inhibition mechanism of compound 4a was a mixed-type inhibition. Meanwhile, the result of molecular docking showed its potent inhibition of AChE and high selectivity for AChE over BuChE.  相似文献   

16.
A number of novel naphthalimido and phthalimido vanillin derivatives were synthesised, and evaluated as antioxidants and cholinesterase inhibitors in vitro. Antioxidant activity was assessed using DPPH, FRAP, and ORAC assays. All compounds demonstrated enhanced activity compared to the parent compound, vanillin. They also exhibited BuChE selectivity in Ellman’s assay. A lead compound, 2a (2-(3-(bis(4-hydroxy-3-methoxybenzyl)amino)propyl)-1H-benzo[de]isoquinoline-1,3(2H)-dione), was identified and displayed strong antioxidant activity (IC50 of 16.67 µM in the DPPH assay, a 25-fold increase in activity compared to vanillin in the FRAP assay, and 9.43 TE in the ORAC assay). Furthermore, 2a exhibited potent BuChE selectivity, with an IC50 of 0.27 µM which was around 53-fold greater than the corresponding AChE inhibitory activity. Molecular modelling studies showed that molecules with bulkier groups, as in 2a, exhibited better BuChE selectivity. This work provides a promising basis for the development of multi-target hybrid compounds based on vanillin as potential AD therapeutics.  相似文献   

17.
A series of new cyanopyridine–triazine hybrids were designed, synthesized and screened as multitargeted anti-Alzheimer’s agents. These molecules were designed while using computational techniques and were synthesized via a feasible concurrent synthetic route. Inhibition potencies of synthetic compounds 4a4h against cholinesterases, Aβ1–42 disaggregation, oxidative stress, cytotoxicity, and neuroprotection against Aβ1–42-induced toxicity of the synthesized compounds were evaluated. Compounds 4d and 4h showed promising inhibitory activity on acetylcholinesterase (AChE) with IC50 values 0.059 and 0.080 μM, respectively, along with good inhibition selectivity against AChE over butyrylcholinesterase (BuChE). Molecular modelling studies revealed that these compounds interacted simultaneously with the catalytic active site (CAS) and the peripheral anionic site (PAS) of AChE. The mixed type inhibition of compound 4d further confirmed their dual binding nature in kinetic studies. Furthermore, the results from neuroprotection studies of most potent compounds 4d and 4h indicate that these derivatives can reduce neuronal death induced by H2O2-mediated oxidative stress and Aβ1–42 induced cytotoxicity. In addition, in silico analysis of absorption, distribution, metabolism and excretion (ADME) profile of best compounds 4d and 4h revealed that they have drug like properties. Overall, these cyanopyridine–triazine hybrids can be considered as a candidate with potential impact for further pharmacological development in Alzheimer’s therapy.  相似文献   

18.
This study deals with the synthesis of benzophenone sulfonamides hybrids (131) and screening against urease enzyme in vitro. Studies showed that several synthetic compounds were found to have good urease enzyme inhibitory activity. Compounds 1 (N′-((4′-hydroxyphenyl)(phenyl)methylene)-4′′-nitrobenzenesulfonohydrazide), 2 (N′-((4′-hydroxyphenyl)(phenyl)methylene)-3′′-nitrobenzenesulfonohydrazide), 3 (N′-((4′-hydroxyphenyl)(phenyl)methylene)-4′′-methoxybenzenesulfonohydrazide), 4 (3′′,5′′-dichloro-2′′-hydroxy-N′-((4′-hydroxyphenyl)(phenyl)methylene)benzenesulfonohydrazide), 6 (2′′,4′′-dichloro-N′-((4′-hydroxyphenyl)(phenyl)methylene)benzenesulfonohydrazide), 8 (5-(dimethylamino)-N′-((4-hydroxyphenyl)(phenyl)methylene)naphthalene-1-sulfono hydrazide), 10 (2′′-chloro-N′-((4′-hydroxyphenyl)(phenyl)methylene)benzenesulfonohydrazide), 12 (N′-((4′-hydroxyphenyl)(phenyl)methylene)benzenesulfonohydrazide) have found to be potently active having an IC50 value in the range of 3.90–17.99?µM. These compounds showed superior activity than standard acetohydroxamic acid (IC50?=?29.20?±?1.01?µM). Moreover, in silico studies on most active compounds were also performed to understand the binding interaction of most active compounds with active sites of urease enzyme. Structures of all the synthetic compounds were elucidated by 1H NMR, 13C NMR, EI-MS and FAB-MS spectroscopic techniques.  相似文献   

19.
The synthesis, molecular modeling, and pharmacological analysis of new multipotent simple, and readily available 2-aminopyridine-3,5-dicarbonitriles (320), and 2-chloropyridine-3,5-dicarbonitriles (2128), prepared from 2-amino-6-chloropyridine-3,5-dicarbonitrile (1) and 2-amino-6-chloro-4-phenylpyridine-3,5-dicarbonitrile (2) is described. The biological evaluation showed that some of these molecules were modest inhibitors of acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE), in the micromolar range. The 2-amino (3, 4), and 2-chloro derivatives 2123, 25, 26 were AChE selective inhibitors, whereas 2-amino derivatives 5, 14 proved to be selective for BuChE. Only inhibitor 24 was equipotent for both cholinesterases. Kinetic studies on compound 23 showed that this compound is a mixed-type inhibitor of AChE showing a Ki of 6.33 μM. No clear SAR can be obtained form these data, but apparently, compounds bearing small groups such as the N,N′-dimethylamino or the pyrrolidino, regardless of the presence of a 2-amino, or 6-chloro substituent in the pyridine ring, preferentially inhibit AChE. Molecular modeling on inhibitors 4, 5, 22, and 23 has been carried out to give a better insight into the binding mode on the catalytic active site (CAS), and peripheral anionic site (PAS) of AChE. The most important differences in the observed binding relay on the modifications of the group at C2, as the amino group forms two hydrogen bonds that direct the binding mode, while in the case of compounds with a chlorine atom, this is not possible. The neuroprotective profile of these molecules has been investigated. In the LDH test, only compounds 26, 3, 22, and 24 showed neuroprotection with values in the range 37.8–31.6% in SH-SY5Y neuroblastoma cells stressed with a mixture of oligomycin-A/rotenone, but in the MTT test only compound 17 (32.9%) showed a similar profile. Consequently, these compounds can be considered as attractive multipotent therapeutic molecules on two key pharmacological receptors playing key roles in the progress of Alzheimer, that is, cholinergic dysfunction and oxidative stress, and neuronal vascular diseases.  相似文献   

20.
A series of hybrids containing tacrine linked to carbohydrate-based moieties, such as d-xylose, d-ribose, and d-galactose derivatives, were synthesized by the nucleophilic substitution between 9-aminoalkylamino-1,2,3,4-tetrahydroacridines and the corresponding sugar-based tosylates. All compounds were found to be potent inhibitors of both acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE) in the nanomolar IC50 scale. Most of the d-xylose derivatives (6a-e) were selective for AChE and the compound 6e (IC50?=?2.2?nM for AChE and 4.93?nM for BuChE) was the most active compound for both enzymes. The d-galactose derivative 8a was the most selective for AChE exhibiting an IC50 ratio of 7.6 for AChE over BuChE. Only two compounds showed a preference for BuChE, namely 7a (d-ribose derivative) and 6b (d-xylose derivative). Molecular docking studies indicated that the inhibitors are capable of interacting with the entire binding cavity and the main contribution of the linker is to enable the most favorable positioning of the two moieties with CAS, PAS, and hydrophobic pocket to provide optimal interactions with the binding cavity. This finding is reinforced by the fact that there is no linear correlation between the linker size and the observed binding affinities. The majority of the new hybrids synthesized in this work do not violate the Lipinski's rule-of-five according to FAF-Drugs4, and do not demonstrated predicted hepatotoxicity according ProTox-II.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号