首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The EphA2 receptor plays key roles in many physiological and pathological events, including cancer. The process of receptor endocytosis and the consequent degradation have attracted attention as possible means of overcoming the negative outcomes of EphA2 in cancer cells and decreasing tumor malignancy. A recent study indicates that Sam (sterile alpha motif) domains of Odin, a member of the ANKS (ankyrin repeat and sterile alpha motif domain-containing) family of proteins, are important for the regulation of EphA2 endocytosis. Odin contains two tandem Sam domains (Odin-Sam1 and -Sam2). Herein, we report on the nuclear magnetic resonance (NMR) solution structure of Odin-Sam1; through a variety of assays (employing NMR, surface plasmon resonance, and isothermal titration calorimetry techniques), we clearly demonstrate that Odin-Sam1 binds to the Sam domain of EphA2 in the low micromolar range. NMR chemical shift perturbation experiments and molecular modeling studies point out that the two Sam domains interact with a head-to-tail topology characteristic of several Sam-Sam complexes. This binding mode is similar to that we have previously proposed for the association between the Sam domains of the lipid phosphatase Ship2 and EphA2. This work further validates structural elements relevant for the heterotypic Sam-Sam interactions of EphA2 and provides novel insights for the design of potential therapeutic compounds that can modulate receptor endocytosis.  相似文献   

2.
The lipid phosphatase Ship2 is a protein that intervenes in several diseases such as diabetes, cancer, neurodegeneration, and atherosclerosis. It is made up of a catalytic domain and several protein docking modules such as a C‐terminal Sam (Sterile alpha motif) domain. The Sam domain of Ship2 (Ship2–Sam) binds to the Sam domains of the EphA2 receptor (EphA2–Sam) and the PI3K effector protein Arap3 (Arap3–Sam). These heterotypic Sam–Sam interactions occur through formation of dimers presenting the canonical “Mid Loop/End Helix” binding mode. The central region of Ship2–Sam, spanning the C‐terminal end of α2, the α3 and α4 helices together with the α2α3 and α3α4 interhelical loops, forms the Mid Loop surface that is needed to bind partners Sam domains. A peptide encompassing most of the Ship2–Sam Mid Loop interface (Shiptide) capable of binding to both EphA2–Sam and Arap3–Sam, was previously identified. Here we investigated the conformational features of this peptide, through solution CD and NMR studies in different conditions. These studies reveal that the peptide is highly flexible in aqueous buffer, while it adopts a helical conformation in presence of 2,2,2‐trifluoroethanol. The discovered structural insights and in particular the identification of a helical motif, may lead to the design of more constrained and possibly cell permeable Shiptide analogs that could work as efficient antagonists of Ship2–Sam heterotypic interactions and embrace therapeutic applications. © 2014 Wiley Periodicals, Inc. Biopolymers 101: 1088–1098, 2014.  相似文献   

3.
Leone M  Cellitti J  Pellecchia M 《Biochemistry》2008,47(48):12721-12728
Sterile alpha motif (Sam) domains are protein interaction modules that are implicated in many biological processes mainly via homo- and heterodimerization. It has been recently reported that the lipid phosphatase Ship2 regulates endocytosis of the EphA2 receptor, a process that has been investigated as a possible route to reduce tumor malignancy. A heterotypic Sam-Sam domain interaction is mediating this process. Here, we report NMR and ITC (isothermal titration calorimetry) studies on the Sam domain of Ship2 revealing its three-dimensional structure and its possible mode of interaction with the Sam domain from the EphA2 receptor. These studies have also resulted in the identification of a minimal peptide region of Ship2 that retains binding affinity for the Sam domain of the EphA2 receptor. Hence, this peptide and the detection of key structural elements important for EphA2 receptor endocytosis provide possible ways for the development of novel small molecule antagonists with potential anticancer activity.  相似文献   

4.
EphA2 receptor plays a critical and debatable function in cancer and is considered a target in drug discovery. Lately, there has been a growing interest in its cytosolic C-terminal SAM domain (EphA2-SAM) as it engages protein modulators of receptor endocytosis and stability. Interestingly, EphA2-SAM binds the SAM domain from the lipid phosphatase Ship2 (Ship2-SAM) mainly producing pro-oncogenic outcomes. In an attempt to discover novel inhibitors of the EphA2-SAM/Ship2-SAM complex with possible anticancer properties, we focused on the central region of Ship2-SAM (known as Mid-Loop interface) responsible for its binding to EphA2-SAM. Starting from the amino acid sequence of the Mid-Loop interface virtual peptide libraries were built through ad hoc inserted mutations with either l- or d- amino acids and screened against EphA2-SAM by docking techniques. A few virtual hits were synthesized and experimentally tested by a variety of direct and competition-type interaction assays relying on NMR (Nuclear Magnetic Resonance), SPR (Surface Plasmon Resonance), MST (Microscale Thermophoresis) techniques. These studies guided the discovery of an original EphA2-SAM ligand antagonist of its interaction with Ship2-SAM.  相似文献   

5.

Background  

Sterile alpha motif (Sam) domains are small protein modules that can be involved in homotypic or heterotypic associations and exhibit different functions. Previous studies have demonstrated that the Sam domain of the lipid phosphatase Ship2 can hetero-dimerize with the Sam domain of the PI3K effector protein Arap3.  相似文献   

6.
The RNA-binding protein Sam68 is involved in apoptosis, but its cellular mRNA targets and its mechanism of action remain unknown. We demonstrate that Sam68 binds the mRNA for Bcl-x and affects its alternative splicing. Depletion of Sam68 by RNA interference caused accumulation of antiapoptotic Bcl-x(L), whereas its up-regulation increased the levels of proapoptotic Bcl-x(s). Tyrosine phosphorylation of Sam68 by Fyn inverted this effect and favored the Bcl-x(L) splice site selection. A point mutation in the RNA-binding domain of Sam68 influenced its splicing activity and subnuclear localization. Moreover, coexpression of ASF/SF2 with Sam68, or fusion with an RS domain, counteracted Sam68 splicing activity toward Bcl-x. Finally, Sam68 interacted with heterogenous nuclear RNP (hnRNP) A1, and depletion of hnRNP A1 or mutations that impair this interaction attenuated Bcl-x(s) splicing. Our results indicate that Sam68 plays a role in the regulation of Bcl-x alternative splicing and that tyrosine phosphorylation of Sam68 by Src-like kinases can switch its role from proapoptotic to antiapoptotic in live cells.  相似文献   

7.
The 68 kDa Src substrate associated during mitosis (Sam68) is an RNA binding protein with Src homology (SH) 2 and 3 domain binding sites. We have recently found that Sam68 is a substrate of the insulin receptor (IR) that translocates from the nucleus to the cytoplasm and that Tyr-phosphorylated Sam68 associates with the SH2 domains of p85 PI3K and GAP, in vivo and in vitro. In the present work, we have further demonstrated the cytoplasmic localization of Sam68, which is increased in cells overexpressing IR. Besides, we sought to further study the association of Sam68 with the Ras-GAP pathway by assessing the interactions with SH3 domains of Grb2. We employed GST-fusion proteins containing the SH3 domains of Grb2 (N or C), and recombinant Sam68 for in vitro studies. In vivo studies of protein-protein interaction were assessed by co-immunoprecipitation experiments with specific antibodies against Sam68, GAP, Grb2, SOS, and phosphotyrosine; and by affinity precipitation with the fusion proteins (SH3-Grb2). Insulin stimulation of HTC-IR cells promotes phosphorylation of Sam68 and its association with the SH2 domains of GAP. Sam68 is constitutively associated with the SH3 domains of Grb2 and it does not change upon insulin stimulation, but Sam68 is Tyr-phosphorylated and promotes the association of GAP with the Grb2-SOS complex. In vitro studies with fusion proteins showed that Sam68 association with Grb2 is preferentially mediated by the C-terminal SH3 domains of Grb2. In conclusion, Sam68 is a substrate of the IR and may have a role as a docking protein in IR signaling, recruiting GAP to the Grb2-SOS complex, and in this way it may modulate Ras activity.  相似文献   

8.
The EphA2 receptor is a promising drug target for cancer treatment, since EphA2 activation can inhibit metastasis and tumor progression. It has been recently described that the TYPE7 peptide activates EphA2 using a novel mechanism that involves binding to the single transmembrane domain of the receptor. TYPE7 is a conditional transmembrane (TM) ligand, which only inserts into membranes at neutral pH in the presence of the TM region of EphA2. However, how membrane interactions can activate EphA2 is not known. We systematically altered the sequence of TYPE7 to identify the binding motif used to activate EphA2. With the resulting six peptides, we performed biophysical and cell migration assays that identified a new potent peptide variant. We also performed a mutational screen that determined the helical interface that mediates dimerization of the TM domain of EphA2 in cells. These results, together with molecular dynamic simulations, allowed to elucidate the molecular mechanism that TYPE7 uses to activate EphA2, where the membrane peptide acts as a molecular clamp that wraps around the TM dimer of the receptor. We propose that this binding mode stabilizes the active conformation of EphA2. Our data, additionally, provide clues into the properties that TM ligands need to have in order to achieve activation of membrane receptors.  相似文献   

9.
Vav1 functions in the hematopoietic system as a specific GDP/GTP nucleotide exchange factor regulated by tyrosine phosphorylation. An intact C-terminal SH3 domain of Vav1 (Vav1SH3C) was shown to be necessary for Vav1-induced transformation, yet the associating protein(s) necessary for this activity have not yet been identified. Using a proteomics approach, we identified Sam68 as a Vav1SH3C-associating protein. Sam68 (Src-associated in mitosis of 68 kD) belongs to the heteronuclear ribonucleoprotein particle K (hnRNP-K) homology (KH) domain family of RNA-binding proteins. The Vav1/Sam68 interaction was observed in vitro and in vivo. Mutants of Vav1SH3C previously shown to lose their transforming potential did not associate with Sam68. Co-expression of Vav1 and Sam68 in Jurkat T cells led to increased localization of Vav1 in the nucleus and changes in cell morphology. We then tested the contribution of Sam68 to known functions of Vav1, such as focus-forming in NIH3T3 fibroblasts and NFAT stimulation in T cells. Co-expression of oncogenic Vav1 with Sam68 in NIH3T3 fibroblasts resulted in a dose-dependent increase in foci, yet no further enhancement of NFAT activity was observed in Jurkat T cells, as compared to cells overexpressing only Vav1 or Sam68. Our results strongly suggest that Sam68 contributes to transformation by oncogenic Vav1.  相似文献   

10.
促红细胞生成素产生肝细胞受体(Eph receptor) 是受体酪氨酸激酶(RTK)家族中最大的亚家族,其介导的双向信号传导对细胞的形态、黏附、运动、增殖、生存及分化都有重要的调控作用。EphA2是Eph受体家族中一个被广泛研究的重要亚型,在白内障和乳腺癌等病理发生过程中发挥了重要作用。既往研究发现:EphA2受体的激酶结构域可结合细胞膜,其激酶活性受磷脂膜的调控,但是相邻的SAM结构域对激酶结构域与脂膜的相互作用以及激酶活性的影响尚不清楚。在此项研究中,通过与磷酸酶PTP1B1-301活性片段共表达的方式,表达、纯化了EphA2受体的胞内段激酶-SAM串联结构域,通过比较胞内段激酶-SAM串联结构域与单独激酶结构域的脂质体结合能力,以及测定对应的激酶活性,发现:EphA2受体胞内段的SAM结构域使其激酶结构域与脂质体(4 mg/mL)的结合能力增强约6倍(P<0.001);磷酸化后的EphA2胞内段激酶-SAM串联结构域结合脂质体(4 mg/mL)的能力比非磷酸化的胞内段激酶-SAM串联结构域提高2.5倍(P<0.05);而结合脂质体后,激酶结构域的激酶活性也被进一步提高,从而形成正反馈。综上所述,本研究的发现提示:EphA2胞内段的酪氨酸激酶结构域与相邻的SAM结构域可形成一个完整的结构功能单位,其激酶活性和脂质体结合能力与单独的激酶结构域相比都形成了明显的差异,我们的这一发现对进一步理解Eph受体家族其他亚型的激酶结构域的活性调控提供了参考与思路。  相似文献   

11.
The erythropoietin-producing hepatocellular (Eph) family of receptor tyrosine kinases regulates a multitude of physiological and pathological processes. Despite the numerous possible research and therapeutic applications of agents capable of modulating Eph receptor function, no small molecule inhibitors targeting the extracellular domain of these receptors have been identified. We have performed a high throughput screen to search for small molecules that inhibit ligand binding to the extracellular domain of the EphA4 receptor. This yielded a 2,5-dimethylpyrrolyl benzoic acid derivative able to inhibit the interaction of EphA4 with a peptide ligand as well as the natural ephrin ligands. Evaluation of a series of analogs identified an isomer with similar inhibitory properties and other less potent compounds. The two isomeric compounds act as competitive inhibitors, suggesting that they target the high affinity ligand-binding pocket of EphA4 and inhibit ephrin-A5 binding to EphA4 with K(i) values of 7 and 9 mum in enzyme-linked immunosorbent assays. Interestingly, despite the ability of each ephrin ligand to promiscuously bind many Eph receptors, the two compounds selectively target EphA4 and the closely related EphA2 receptor. The compounds also inhibit ephrin-induced phosphorylation of EphA4 and EphA2 in cells, without affecting cell viability or the phosphorylation of other receptor tyrosine kinases. Furthermore, the compounds inhibit EphA4-mediated growth cone collapse in retinal explants and EphA2-dependent retraction of the cell periphery in prostate cancer cells. These data demonstrate that the Eph receptor-ephrin interface can be targeted by inhibitory small molecules and suggest that the two compounds identified will be useful to discriminate the activities of EphA4 and EphA2 from those of other co-expressed Eph receptors that are activated by the same ephrin ligands. Furthermore, the newly identified inhibitors represent possible leads for the development of therapies to treat pathologies in which EphA4 and EphA2 are involved, including nerve injuries and cancer.  相似文献   

12.
13.
Endocytosis of Eph receptors is critical for a number of biological processes, including modulating axon growth cone collapse response and regulating cell surface levels of receptor in epithelial cells. In particular, ephrin-A ligand stimulation of tumor cells induces EphA2 receptor internalization and degradation, a process that has been explored as a means to reduce tumor malignancy. However, the mechanism and regulation of ligand-induced Eph receptor internalization are not well understood. Here we show that SHIP2 (Src homology 2 domain-containing phosphoinositide 5-phosphatase 2) is recruited to activated EphA2 via a heterotypic sterile alpha motif (SAM)-SAM domain interaction, leading to regulation of EphA2 internalization. Overexpression of SHIP2 inhibits EphA2 receptor endocytosis, whereas suppression of SHIP2 expression by small interfering RNA-mediated gene silencing promotes ligand-induced EphA2 internalization and degradation. SHIP2 regulates EphA2 endocytosis via phosphatidylinositol 3-kinase-dependent Rac1 activation. Phosphatidylinositol 3,4,5-trisphosphate levels are significantly elevated in SHIP2 knockdown cells, phosphatidylinositol 3-kinase inhibitor decreases phosphatidylinositol 3,4,5-trisphosphate levels and suppresses increased EphA2 endocytosis. Ephrin-A1 stimulation activates Rac1 GTPase, and the Rac1-GTP levels are further increased in SHIP2 knockdown cells. A dominant negative Rac1 GTPase effectively inhibited ephrin-A1-induced EphA2 endocytosis. Together, our findings provide evidence that recruitment of SHIP2 to EphA2 attenuates a positive signal to receptor endocytosis mediated by phosphatidylinositol 3-kinase and Rac1 GTPase.  相似文献   

14.
Receptor tyrosine kinases of the Eph family play multiple roles in the physiological regulation of tissue homeostasis and in the pathogenesis of various diseases, including cancer. The EphA2 receptor is highly expressed in most cancer cell types, where it has disparate activities that are not well understood. It has been reported that interplay of EphA2 with oncogenic signaling pathways promotes cancer cell malignancy independently of ephrin ligand binding and receptor kinase activity. In contrast, stimulation of EphA2 signaling with ephrin-A ligands can suppress malignancy by inhibiting the Ras-MAP kinase pathway, integrin-mediated adhesion, and epithelial to mesenchymal transition. Here we show that ephrin-A1 ligand-dependent activation of EphA2 decreases the growth of PC3 prostate cancer cells and profoundly inhibits the Akt-mTORC1 pathway, which is hyperactivated due to loss of the PTEN tumor suppressor. Our results do not implicate changes in the activity of Akt upstream regulators (such as Ras family GTPases, PI3 kinase, integrins, or the Ship2 lipid phosphatase) in the observed loss of Akt T308 and S473 phosphorylation downstream of EphA2. Indeed, EphA2 can inhibit Akt phosphorylation induced by oncogenic mutations of not only PTEN but also PI3 kinase. Furthermore, it can decrease the hyperphosphorylation induced by constitutive membrane-targeting of Akt. Our data suggest a novel signaling mechanism whereby EphA2 inactivates the Akt-mTORC1 oncogenic pathway through Akt dephosphorylation mediated by a serine/threonine phosphatase. Ephrin-A1-induced Akt dephosphorylation was observed not only in PC3 prostate cancer cells but also in other cancer cell types. Thus, activation of EphA2 signaling represents a possible new avenue for anti-cancer therapies that exploit the remarkable ability of this receptor to counteract multiple oncogenic signaling pathways.  相似文献   

15.
16.
The Eph receptor tyrosine kinases regulate a variety of physiological and pathological processes not only during development but also in adult organs, and therefore they represent a promising class of drug targets. The EphA4 receptor plays important roles in the inhibition of the regeneration of injured axons, synaptic plasticity, platelet aggregation, and likely in certain types of cancer. Here we report the first crystal structure of the EphA4 ligand-binding domain, which adopts the same jellyroll beta-sandwich architecture as shown previously for EphB2 and EphB4. The similarity with EphB receptors is high in the core beta-stranded regions, whereas large variations exist in the loops, particularly the D-E and J-K loops, which form the high affinity ephrin binding channel. We also used isothermal titration calorimetry, NMR spectroscopy, and computational docking to characterize the binding to EphA4 of two small molecules, 4- and 5-(2,5 dimethyl-pyrrol-1-yl)-2-hydroxybenzoic acid which antagonize ephrin-induced effects in EphA4-expressing cells. We show that the two molecules bind to the EphA4 ligand-binding domain with K(d) values of 20.4 and 26.4 microm, respectively. NMR heteronuclear single quantum coherence titrations revealed that upon binding, both molecules significantly perturb EphA4 residues Ile(31)-Met(32) in the D-E loop, Gln(43) in the E beta-strand, and Ile(131)-Gly(132) in the J-K loop. Molecular docking shows that they can occupy a cavity in the high affinity ephrin binding channel of EphA4 in a similar manner, by interacting mainly with the EphA4 residues in the E strand and D-E and J-K loops. However, many of the interactions observed in Eph receptor-ephrin complexes are absent, which is consistent with the small size of the two molecules and may account for their relatively weak binding affinity. Thus, our studies provide the first published structure of the ligand-binding domain of an EphA receptor of the A subclass. Furthermore, the results demonstrate that the high affinity ephrin binding channel of the Eph receptors is amenable to targeting with small molecule antagonists and suggest avenues for further optimization.  相似文献   

17.
Sam68 is a member of a growing family of proteins that contain a single KH domain embedded in a larger conserved domain of approximately 170 amino acids. Loops 1 and 4 of this KH domain family are longer than the corresponding loops in other KH domains and contain conserved residues. KH domains are protein motifs that are involved in RNA binding and are often present in multiple copies. Here we demonstrate by coimmunoprecipitation studies that Sam68 self-associated and that cellular RNA was required for the association. Deletion studies demonstrated that the Sam68 KH domain loops 1 and 4 were required for self-association. The Sam68 interaction was also observed in Saccharomyces cerevisiae by the two-hybrid system. In situ chemical cross-linking studies in mammalian cells demonstrated that Sam68 oligomerized in vivo. These Sam68 complexes bound homopolymeric RNA and the SH3 domains of p59fyn and phospholipase Cgamma1 in vitro, demonstrating that Sam68 associates with RNA and signaling molecules as a multimer. The formation of the Sam68 complex was inhibited by p59fyn, suggesting that tyrosine phosphorylation regulates Sam68 oligomerization. Other Sam68 family members including Artemia salina GRP33, Caenorhabditis elegans GLD-1, and mouse Qk1 also oligomerized. In addition, Sam68, GRP33, GLD-1, and Qk1 associated with other KH domain proteins such as Bicaudal C. These observations indicate that the single KH domain found in the Sam68 family, in addition to mediating protein-RNA interactions, mediates protein-protein interactions.  相似文献   

18.
19.
20.
Sam68 is an RNA-binding protein that contains a heterogeneous nuclear ribonucleoprotein K homology domain embedded in a larger RNA binding domain called the GSG (GRP33, Sam68, GLD-1) domain. This family of proteins is often referred to as the STAR (signal transduction and activators of RNA metabolism) proteins. It is not known whether Sam68 is a general nonspecific RNA-binding protein or whether it recognizes specific response elements in mRNAs with high affinity. Sam68 has been shown to bind homopolymeric RNA and a synthetic RNA sequence called G8-5 that has a core UAAA motif. Here we performed a structure function analysis of Sam68 and identified two arginine glycine (RG)-rich regions that confer nonspecific RNA binding to the Sam68 GSG domain. In addition, by using chimeric proteins between Sam68 and QKI-7, we demonstrated that one of the Sam68 RG-rich sequences of 26 amino acids was sufficient to confer homopolymeric RNA binding to the GSG domain of QKI-7, another STAR protein. Furthermore, that minimal sequence can also give QKI-7 the ability (as Sam68) to functionally substitute for HIV-1 REV to facilitate the nuclear export of RNAs. Our studies suggest that neighboring RG-rich sequences may impose nonspecific RNA binding to GSG domains. Because the Sam68 RNA binding activity is negatively regulated by tyrosine phosphorylation, our data lead us to propose that Sam68 might be a specific RNA-binding protein when tyrosine phosphorylated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号