首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Fluid and electrolyte releasing from secretory epithelia are elaborately regulated by orchestrated activity of ion channels. The activity of chloride channel at the apical membrane decides on the direction and the rate of secretory fluid and electrolyte. Chloride-dependent secretion is conventionally associated with intracellular increases in two second messengers, cAMP and Ca2+, responding to luminal purinergic and basolateral adrenergic or cholinergic stimulation. While it is broadly regarded that cAMP-dependent Cl secretion is regulated by cystic fibrosis transmembrane conductance regulator (CFTR), Ca2+-activated Cl channel (CaCC) had been veiled for quite some time. Now, Anoctamin 1 (ANO1 or TMEM16A) confers Ca2+-activated Cl currents. Ano 1 and its paralogs have been actively investigated for multiple functions underlying Ca2+-activated Cl efflux and fluid secretion in a variety of secretory epithelial cells. In this review, we will discuss recent advances in the secretory function and signaling of ANO1 in the secretory epithelia, such as airways, intestines, and salivary glands.  相似文献   

3.
Airway epithelial cells express both Ca2+ activated TMEM16A/ANO1 and cAMP activated CFTR anion channels. Previous work suggested a significant crosstalk of intracellular Ca2+ and cAMP signaling pathways, leading to activation of both chloride channels. We demonstrate that in airway epithelial cells, stimulation of purinergic or muscarinic G-protein coupled receptors (GPCRs) activates TMEM16A and CFTR. Additional expression of Gq/11 and phospholipase C coupled GPCRs strongly enhanced the crosstalk between Ca2+- and cAMP-dependent signaling. Knockdown of endogenous GRCRs attenuated crosstalk and functional coupling between TMEM16A and CFTR. The number of receptors did not affect expression or membrane localization of TMEM16A or CFTR, but controlled assembly of the local signalosome. GPCRs translocate Ca2+-sensitive adenylate cyclase type 1 (ADCY1) and exchange protein directly activated by cAMP (EPAC1) to particular plasma membrane domains containing GPCRs, CFTR and TMEM16A, thereby producing compartmentalized Ca2+ and cAMP signals and significant crosstalk. While biosynthesis and membrane trafficking of CFTR requires a functional Golgi apparatus, maturation and membrane trafficking of TMEM16A may occur independent of the Golgi. Because Ca2+ activated TMEM16A currents are only transient, continuous Cl secretion by airway epithelial cells requires CFTR. The present data also explain why receptor-dependent activation of TMEM16A is more efficient than direct stimulation by Ca2+.  相似文献   

4.
Mutations in ANO5 (TMEM16E) cause limb-girdle muscular dystrophy R12. Defective plasma membrane repair is a likely mechanism. Using myofibers from Ano5 knockout mice, we show that trafficking of several annexin proteins, which together form a cap at the site of injury, is altered upon loss of ANO5. Annexin A2 accumulates at the wound to nearly twice the level observed in WT fibers, while annexin A6 accumulation is substantially inhibited in the absence of ANO5. Appearance of annexins A1 and A5 at the cap is likewise diminished in the Ano5 knockout. These changes are correlated with an alteration in annexin repair cap fine structure and shedding of annexin-positive vesicles. We conclude that loss of annexin coordination during repair is disrupted in Ano5 knockout mice and underlies the defective repair phenotype. Although ANO5 is a phospholipid scramblase, abnormal repair is rescued by overexpression of a scramblase-defective ANO5 mutant, suggesting a novel, scramblase-independent role of ANO5 in repair.  相似文献   

5.
In the past, a number of candidates have been proposed to form Ca2+ activated Cl currents, but it is only recently that two families of proteins, the bestrophins and the TMEM16-proteins, recapitulate reliably the properties of Ca2+ activated Cl currents. Bestrophin 1 is strongly expressed in the retinal pigment epithelium, but also at lower levels in other cell types. Bestrophin 1 may form Ca2+ activated chloride channels and, at the same time, affect intracellular Ca2+ signaling. In epithelial cells, bestrophin 1 probably controls receptor mediated Ca2+ signaling. It may do so by facilitating Ca2+ release from the endoplasmic reticulum, thereby indirectly activating membrane localized Ca2+-dependent Cl channels. In contrast to bestrophin 1, the Ca2+ activated Cl channel TMEM16A (anoctamin 1, ANO1) shows most of the biophysical and pharmacological properties that have been attributed to Ca2+-dependent Cl channels in various tissues. TMEM16A is broadly expressed in both mouse and human tissues and is of particular importance in epithelial cells. Thus exocrine gland secretion as well as electrolyte transport by both respiratory and intestinal epithelia requires TMEM16A. Because of its role for Ca2+-dependent Cl secretion in human airways, it is likely to become a prime target for the therapy of cystic fibrosis lung disease, caused by defective cAMP-dependent Cl secretion. It will be very exciting to learn, how TMEM16A and other TMEM16-proteins are activated upon increase in intracellular Ca2+, and whether the other nine members of the TMEM16 family also form Cl channels with properties similar to TMEM16A.  相似文献   

6.
7.
The calcium-activated chloride channel TMEM16A (ANO1) supports the passive movement of chloride ions across membranes and controls critical cell functions. Here we study the block of wild-type and mutant TMEM16A channels expressed in HEK293 cells by oleic acid, a monounsaturated omega-9 fatty acid beneficial for cardiovascular health. We found that oleic acid irreversibly blocks TMEM16A in a dose- and voltage-dependent manner at low intracellular Ca2+. We tested whether oleic acid interacted with the TMEM16A pore, varying the permeant anion concentration and mutating pore residues. Lowering the permeating anion concentration in the intracellular side did nothing but the blockade was intensified by increasing the anion concentration in the extracellular side. However, the blockade of the pore mutants E633A and I641A was voltage-independent, and the I641A IC50, a mutant with the inner hydrophobic gate in disarray, increased 16-fold. Furthermore, the uncharged methyl-oleate blocked 20–24% of the wild-type and I641A channels regardless of voltage. Our findings suggest that oleic acid inhibits TMEM16A by an allosteric mechanism after the electric field drives oleic acid's charged moiety inside the pore. Block of TMEM16A might be why oleic acid has a beneficial impact on the cardiovascular system.  相似文献   

8.
The calcium-activated chloride channel anoctamin1 (ANO1; TMEM16A) is fundamental for the function of epithelial organs. Mice lacking ANO1 expression exhibit transport defects and a pathology similar to cystic fibrosis. They also show a general defect of epithelial electrolyte transport. Here we analyzed expression of all ten members (ANO1–ANO10) in a broad range of murine tissues and detected predominant expression of ANO1, 6, 7, 8, 9, 10 in epithelial tissues, while ANO2, 3, 4, 5 are common in neuronal and muscle tissues. When expressed in Fisher Rat Thyroid (FTR) cells, all ANO proteins localized to the plasma membrane but only ANO1, 2, 6, and 7 produced Ca2+-activated Cl conductance, as analyzed by ATP-induced iodide quenching of YFP fluorescence. In contrast ANO9 and ANO10 suppressed baseline Cl conductance and coexpression of ANO9 with ANO1 inhibited ANO1 activity. Patch clamping of ANO-expressing FRT cells indicated that apart from ANO1 also ANO6 and 10 produced chloride currents, albeit with very different Ca2+ sensitivity and activation time. We conclude that each tissue expresses a set of anoctamins that form cell- and tissue-specific Ca2+-dependent Cl channels.  相似文献   

9.
TMEM16A (Transmembrane protein 16A or Anoctamin1) is a calcium-activated chloride channel.(CaCC),that exerts critical roles in epithelial secretion. However, its localization, function, and regulation in intestinal chloride (Cl?) secretion remain obscure. Here, we show that TMEM16A protein abundance correlates with Cl? secretion in different regions of native intestine activated by the Ca2+-elevating muscarinic agonist carbachol (CCH). Basal, as well as both cAMP- and CCH-stimulated Isc, was largely reduced in Ano1 ± mouse intestine. We found CCH was not able to increase Isc in the presence of apical to serosal Cl? gradient, strongly supporting TMEM16A as primarily a luminal Cl? channel. Immunostaining demonstrated apical localization of TMEM16A where it colocalized with NHERF1 in mouse colonic tissue. Cellular depletion of NHERF1 in human colonic T84 cells caused a significant reduction of both cAMP- and CCH-stimulated Isc. Immunoprecipitation experiments revealed that NHERF1 forms a complex with TMEM16A through a PDZ-based interaction. We conclude that TMEM16A is a luminal Cl? channel in the intestine that functionally interacts with CFTR via PDZ-based interaction of NHERF1 for efficient and specific cholinergic stimulation of intestinal Cl? secretion.  相似文献   

10.
Calcium-dependent chloride channels serve critical functions in diverse biological systems. Driven by cellular calcium signals, the channels codetermine excitatory processes and promote solute transport. The anoctamin (ANO) family of membrane proteins encodes three calcium-activated chloride channels, named ANO 1 (also TMEM16A), ANO 2 (also TMEM16B), and ANO 6 (also TMEM16F). Here we examined how ANO 1 and ANO 2 interact with Ca2+/calmodulin using nonstationary current analysis during channel activation. We identified a putative calmodulin-binding domain in the N-terminal region of the channel proteins that is involved in channel activation. Binding studies with peptides indicated that this domain, a regulatory calmodulin-binding motif (RCBM), provides two distinct modes of interaction with Ca2+/calmodulin, one at submicromolar Ca2+ concentrations and one in the micromolar Ca2+ range. Functional, structural, and pharmacological data support the concept that calmodulin serves as a calcium sensor that is stably associated with the RCBM domain and regulates the activation of ANO 1 and ANO 2 channels. Moreover, the predominant splice variant of ANO 2 in the brain exhibits Ca2+/calmodulin-dependent inactivation, a loss of channel activity within 30 s. This property may curtail ANO 2 activity during persistent Ca2+ signals in neurons. Mutagenesis data indicated that the RCBM domain is also involved in ANO 2 inactivation, and that inactivation is suppressed in the retinal ANO 2 splice variant. These results advance the understanding of Ca2+ regulation in anoctamin Cl channels and its significance for the physiological function that anoctamin channels subserve in neurons and other cell types.  相似文献   

11.
Two families of proteins, the bestrophins (Best) and the recently cloned TMEM16 proteins (anoctamin, Ano), recapitulate properties of Ca(2+)-activated Cl(-) currents. Best1 is strongly expressed in the retinal pigment epithelium and could have a function as a Ca(2+)-activated Cl(-) channel as well as a regulator of Ca(2+) signaling. It is also present at much lower levels in other cell types including epithelial cells, where it regulates plasma membrane localized Cl(-) channels by controlling intracellular Ca(2+) levels. Best1 interacts with important Ca(2+)-signaling proteins such as STIM1 and can interact directly with other Ca(2+)-activated Cl(-) channels such as TMEM16A. Best1 is detected in the endoplasmic reticulum (ER) where it shapes the dynamic ER structure and regulates cell proliferation, which could be important for renal cystogenesis. Ca(2+)-activated Cl(-) channels of the anoctamin family (TMEM16A) show biophysical and pharmacological properties that are typical for endogenous Ca(2+)-dependent Cl(-) channels. TMEM16 proteins are abundantly expressed and many reports demonstrate their physiological importance in epithelial as well as non-epithelial cells. These channels are also activated by cell swelling and can therefore control cell volume, proliferation and apoptosis. To fully understand the function and regulation of Ca(2+)-activated Cl(-) currents, it is necessary to appreciate that Best1 and TMEM16A are embedded in a protein network and that they probably operate in functional microdomains.  相似文献   

12.
Anoctamin-6 (Ano6, TMEM16F) belongs to a family of putative Ca2+-activated Cl channels and operates as membrane phospholipid scramblase. Deletion of Ano6 leads to reduced skeleton size, skeletal deformities, and mineralization defects in mice. However, it remains entirely unclear how a lack of Ano6 leads to a delay in bone mineralization by osteoblasts. The Na+/Ca2+ exchanger NCX1 was found to interact with Ano6 in a two-hybrid split-ubiquitin screen. Using human osteoblasts and osteoblasts from Ano6−/− and WT mice, we demonstrate that NCX1 requires Ano6 to efficiently translocate Ca2+ out of osteoblasts into the calcifying bone matrix. Ca2+-activated anion currents are missing in primary osteoblasts isolated from Ano6 null mice. Our findings demonstrate the importance of NCX1 for bone mineralization and explain why deletion of an ion channel leads to the observed mineralization defect: Ano6 Cl currents are probably required to operate as a Cl bypass channel, thereby compensating net Na+ charge movement by NCX1.  相似文献   

13.
Anoctamin-1 (ANO1), also known as transmembrane protein 16A (TMEM16A), is identified as a Ca2+-activated Cl channel that is expressed in many organs and tissues. It is involved in numerous major physiological functions and especially in tumor growth. By screening 530 natural compounds, we identified cepharanthine as a potent blocker of ANO1 channels with an IC50 of 11.2 ± 0.9 μM and Emax of 92.7 ± 1.7%. The Lys384, Arg535, Thr539, and Glu624 in ANO1 are critical for the inhibitory effect of cepharanthine. Similar to its effect on ANO1, cepharanthine inhibits ANO2, the closest analog of TMEM16A. In contrast, up to 30 μM of cepharanthine showed limited inhibitory effects on recombinant ANO6 and bestrophin-1-encoded Ca2+-activated Cl currents, but it showed no effects on endogenous volume-regulated anion currents (VRAC). Cepharanthine could also potently suppress endogenous ANO1 currents, significantly inhibit cell proliferation and migration, and induce apoptosis in LA795 lung adenocarcinoma cells. Moreover, animal experiments have shown that cepharanthine can dramatically inhibit the growth of xenograft tumors in mice. The high specificity provided by cepharanthine could be an important foundation for future studies of the physiological role of ANO1 channels, and these findings may reveal a new mechanism of its anticancer effect.  相似文献   

14.
Transmembrane protein 16A (TMEM16A), also called Ano1, is a Ca2+ activated Cl? channel expressed widely in mammalian epithelia, as well as in vascular smooth muscle and some tumors and electrically excitable cells. TMEM16A inhibitors have potential utility for treatment of disorders of epithelial fluid and mucus secretion, hypertension, some cancers and other diseases. 4-Aryl-2-amino thiazole T16Ainh-01 was previously identified by high-throughput screening. Here, a library of 47 compounds were prepared that explored the 5,6-disubstituted pyrimidine scaffold found in T16Ainh-01. TMEM16A inhibition activity was measured using fluorescence plate reader and short-circuit current assays. We found that very little structural variation of T16Ainh-01 was tolerated, with most compounds showing no activity at 10?μM. The most potent compound in the series, 9bo, which substitutes 4-methoxyphenyl in T16Ainh-01 with 2-thiophene, had IC50 ~1?μM for inhibition of TMEM16A chloride conductance.  相似文献   

15.
Pheromones are substances released from animals that, when detected by the vomeronasal organ of other individuals of the same species, affect their physiology and behavior. Pheromone binding to receptors on microvilli on the dendritic knobs of vomeronasal sensory neurons activates a second messenger cascade to produce an increase in intracellular Ca2+ concentration. Here, we used whole-cell and inside-out patch-clamp analysis to provide a functional characterization of currents activated by Ca2+ in isolated mouse vomeronasal sensory neurons in the absence of intracellular K+. In whole-cell recordings, the average current in 1.5 µM Ca2+ and symmetrical Cl was −382 pA at −100 mV. Ion substitution experiments and partial blockade by commonly used Cl channel blockers indicated that Ca2+ activates mainly anionic currents in these neurons. Recordings from inside-out patches from dendritic knobs of mouse vomeronasal sensory neurons confirmed the presence of Ca2+-activated Cl channels in the knobs and/or microvilli. We compared the electrophysiological properties of the native currents with those mediated by heterologously expressed TMEM16A/anoctamin1 or TMEM16B/anoctamin2 Ca2+-activated Cl channels, which are coexpressed in microvilli of mouse vomeronasal sensory neurons, and found a closer resemblance to those of TMEM16A. We used the Cre–loxP system to selectively knock out TMEM16A in cells expressing the olfactory marker protein, which is found in mature vomeronasal sensory neurons. Immunohistochemistry confirmed the specific ablation of TMEM16A in vomeronasal neurons. Ca2+-activated currents were abolished in vomeronasal sensory neurons of TMEM16A conditional knockout mice, demonstrating that TMEM16A is an essential component of Ca2+-activated Cl currents in mouse vomeronasal sensory neurons.  相似文献   

16.
Calcium-activated chloride channels (CaCC) encoded by family members of transmembrane proteins of unknown function 16 (TMEM16) have recently been intensely studied for functional properties as well as their physiological roles as chloride channels in various tissues. One technical hurdle in studying these channels is the well-known channel rundown that frequently impairs the precision of electrophysiological measurements for the channels. Using experimental protocols that employ fast-solution exchange, we circumvented the problem of channel rundown by normalizing the Ca2+-induced current to the maximally-activated current obtained within a time period in which the channel rundown was negligible. We characterized the activation of the TMEM16A-encoded CaCC (also called ANO1) by Ca2+, Sr2+, and Ba2+, and discovered that Mg2+ competes with Ca2+ in binding to the divalent-cation binding site without activating the channel. We also studied the permeability of the ANO1 pore for various anions and found that the anion occupancy in the pore–as revealed by the permeability ratios of these anions–appeared to be inversely correlated with the apparent affinity of the ANO1 inhibition by niflumic acid (NFA). On the other hand, the NFA inhibition was neither affected by the degree of the channel activation nor influenced by the types of divalent cations used for the channel activation. These results suggest that the NFA inhibition of ANO1 is likely mediated by altering the pore function but not through changing the channel gating. Our study provides a precise characterization of ANO1 and documents factors that can affect divalent cation activation and NFA inhibition of ANO1.  相似文献   

17.
Lung cancer or pulmonary carcinoma is primarily derived from epithelial cells that are thin and line on the alveolar surfaces of the lung for gas exchange. ANO1/TMEM16A, initially identified from airway epithelial cells, is a member of Ca2+-activated Cl- channels (CaCCs) that function to regulate epithelial secretion and cell volume for maintenance of ion and tissue homeostasis. ANO1/TMEM16A has recently been shown to be highly expressed in several epithelium originated carcinomas. However, the role of ANO1 in lung cancer remains unknown. In this study, we show that inhibition of calcium-activated chloride channel ANO1/TMEM16A suppresses tumor growth and invasion in human lung cancer. ANO1 is upregulated in different human lung cancer cell lines. Knocking-down ANO1 by small hairpin RNAs inhibited proliferation, migration and invasion of GLC82 and NCI-H520 cancel cells evaluated by CCK-8, would-healing, transwell and 3D soft agar assays. ANO1 protein is overexpressed in 77.3% cases of human lung adenocarcinoma tissues detected by immunohistochemistry. Furthermore, the tumor growth in nude mice implanted with GLC82 cells was significantly suppressed by ANO1 silencing. Taken together, our findings provide evidence that ANO1 overexpression contributes to tumor growth and invasion of lung cancer; and suppressing ANO1 overexpression may have therapeutic potential in lung cancer therapy.  相似文献   

18.
The Ca2+-activated Cl channel anoctamin-1 (Ano1; Tmem16A) plays a variety of physiological roles, including epithelial fluid secretion. Ano1 is activated by increases in intracellular Ca2+, but there is uncertainty whether Ca2+ binds directly to Ano1 or whether phosphorylation or additional Ca2+-binding subunits like calmodulin (CaM) are required. Here we show that CaM is not necessary for activation of Ano1 by Ca2+ for the following reasons. (a) Exogenous CaM has no effect on Ano1 currents in inside-out excised patches. (b) Overexpression of Ca2+-insensitive mutants of CaM have no effect on Ano1 currents, whereas they eliminate the current mediated by the small-conductance Ca2+-activated K+ (SK2) channel. (c) Ano1 does not coimmunoprecipitate with CaM, whereas SK2 does. Furthermore, Ano1 binds very weakly to CaM in pull-down assays. (d) Ano1 is activated in excised patches by low concentrations of Ba2+, which does not activate CaM. In addition, we conclude that reversible phosphorylation/dephosphorylation is not required for current activation by Ca2+ because the current can be repeatedly activated in excised patches in the absence of ATP or other high-energy compounds. Although Ano1 is blocked by the CaM inhibitor trifluoperazine (TFP), we propose that TFP inhibits the channel in a CaM-independent manner because TFP does not inhibit Ano1 when applied to the cytoplasmic side of excised patches. These experiments lead us to conclude that CaM is not required for activation of Ano1 by Ca2+. Although CaM is not required for channel opening by Ca2+, work of other investigators suggests that CaM may have effects in modulating the biophysical properties of the channel.  相似文献   

19.
Recent studies have shown that transmembrane protein 16 A (TMEM16A) is a subunit of calcium-activated chloride channels (CACCs). Pharmacological agents have been used to probe the functional role of CACCs, however their effect on TMEM16A currents has not been systematically investigated. In the present study, we characterized the voltage and concentration-dependent effects of 2 traditional CACC inhibitors (niflumic acid and anthracene-9-carboxcylic acid) and 2 novel CACC / TMEM16A inhibitors (CACCinhA01 and T16AinhA01) on TMEM16A currents. The whole cell patch clamp technique was used to record TMEM16A currents from HEK 293 cells that stably expressed human TMEM16A. Niflumic acid, A-9-C, CACCinhA01 and T16AinhA01 inhibited TMEM16A currents with IC50 values of 12, 58, 1.7 and 1.5 µM, respectively, however, A-9-C and niflumic acid were less efficacious at negative membrane potentials. A-9-C and niflumic acid reduced the rate of TMEM16A tail current deactivation at negative membrane potentials and A-9-C (1 mM) enhanced peak TMEM16A tail current amplitude. In contrast, the inhibitory effects of CACCinhA01 and T16AinhA01 were independent of voltage and they did not prolong the rate of TMEM16A tail current deactivation. The effects of niflumic acid and A-9-C on TMEM16A currents were similar to previous observations on CACCs in vascular smooth muscle, strengthening the hypothesis that they are encoded by TMEM16A. However, CACCinhA01 and T16AinhA01 were more potent inhibitors of TMEM16A channels and their effects were not diminished at negative membrane potentials making them attractive candidates to interrogate the functional role of TMEM16A channels in future studies.  相似文献   

20.
Ca2 +-activated Cl currents (CaCCs) play important roles in many physiological processes. Recent studies have shown that TMEM16A/anoctamin1 and TMEM16B/anoctamin2 constitute CaCCs in several cell types. Here we have investigated for the first time the extracellular effects of the Cl channel blocker anthracene-9-carboxylic acid (A9C) and of its non-charged analogue anthracene-9-methanol (A9M) on TMEM16B expressed in HEK 293T cells, using the whole-cell patch-clamp technique. A9C caused a voltage-dependent block of outward currents and inhibited a larger fraction of the current as depolarization increased, whereas the non-charged A9M produced a small, not voltage dependent block of outward currents. A similar voltage-dependent block by A9C was measured both when TMEM16B was activated by 1.5 and 13 μM Ca2 +. However, in the presence of 1.5 μM Ca2 + (but not in 13 μM Ca2 +), A9C also induced a strong potentiation of tail currents measured at − 100 mV after depolarizing voltages, as well as a prolongation of the deactivation kinetics. On the contrary, A9M did not produce potentiation of tail currents, showing that the negative charge is required for potentiation. Our results provide the first evidence that A9C has multiple effects on TMEM16B and that the negative charge of A9C is necessary both for voltage-dependent block and for potentiation. Future studies are required to identify the molecular mechanisms underlying these complex effects of A9C on TMEM16B. Understanding these mechanisms will contribute to the elucidation of the structure and functional properties of TMEM16B channels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号