首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
摘要 目的:探讨双歧杆菌MIMBb75通过调节血管活性肠肽(VIP)/环磷酸腺苷(cAMP)/蛋白激酶A(PKA)和哺乳动物雷帕霉素靶蛋白(mTOR)通路对溃疡性结肠炎(UC)小鼠的影响。方法:BALB/c小鼠随机分为正常对照(NC)组、结肠炎模型(UC)组、Mesalazine组和MIMBb75低、高剂量组、MIMBb75高剂量+VIP antagonist组、MIMBb75高剂量+MHY1485组(每组10只),除NC组外均采用5%葡聚糖硫酸钠(DSS)诱导UC模型。治疗结束后,观察小鼠的一般情况及UC疾病活动指数(DAI),检测小鼠肠道组织病理损伤、结肠组织中髓过氧化物酶(MPO)活性、肠道菌群多样性(Chao指数、Shannon指数和Simpson指数)及结肠组织VIP、cAMP、PKA、水通道蛋白3(AQP3)、mTOR、核糖体蛋白S6激酶(S6K1)的mRNA和蛋白水平。结果:与UC组相比,MIMBb75低、高剂量组和Mesalazine组小鼠的体重升高、DAI评分降低,组织病理损伤得到改善,结肠长度增加,MPO活性降低,Chao指数、Shannon指数和Simpson指数升高;VIP、cAMP、PKA、AQP3的mRNA水平和VIP、cAMP、AQP3蛋白的表达及PKA的磷酸化水平升高,mTOR和S6K1 mRNA及其蛋白的磷酸化水平降低(P<0.05)。与MIMBb75高剂量组相比,MIMBb75高剂量+VIP antagonist组VIP、cAMP、PKA、AQP3的mRNA水平和VIP、cAMP、AQP3蛋白的表达及PKA的磷酸化水平降低(P<0.05);MIMBb75高剂量+MHY1485组mTOR和S6K1 mRNA及其蛋白的磷酸化水平升高(P<0.05)。VIP antagonist和MHY1485均能逆转MIMBb75对UC小鼠的保护作用,使其结肠损伤加重,MPO活性增高(P<0.05)。结论:双歧杆菌可改善UC小鼠的结肠损伤,增加肠道菌群的多样性,这可能与激活VIP/cAMP/PKA通路、抑制mTOR通路有关。  相似文献   

5.
Fibronectin (Fn) enhances human sperm capacitation via the cAMP/PKA pathway, and the endocannabinoid system participates in this process. Moreover, Fn has been linked to endocannabinoid system components in different cellular models, even though no evidence of such interactions in human sperm is available. Normal semen samples were evaluated over a 4‐year period. Our findings suggest that (a) the capacitating effects of Fn were reversed by preincubating the sperm with a cannabinoid receptor 1 (CB1) or transient receptor potential cation channel subfamily V member 1 (TRPV1) antagonist ( p < 0.001 and p < 0.05, respectively); (b) cooperation between CB1 and TRPV1 may exist ( p < 0.01); (c) the activity of specific fatty acid amide hydroxylase (FAAH) decreased after 1 min ( p < 0.01) and increased after 60 min ( p < 0.01) of capacitation in the presence of Fn; (d) the effects of Fn on FAAH activity were prevented by preincubating spermatozoa with a protein kinase A (PKA) inhibitor ( p < 0.01); (e) Fn modulated both the cyclic adenosine monophosphate concentration and PKA activity ( p < 0.05) during early capacitation; and (f) FAAH was a PKA substrate modulated by phosphorylation. These findings indicate that Fn stimulates human sperm capacitation via the cAMP/PKA pathway through modulation of the endocannabinoid system. Understanding the functional competence of human spermatozoa is essential for facilitating clinical advances in infertility treatment and for developing novel contraceptive strategies.  相似文献   

6.
Cardiac oxidative ATP generation is finely tuned to match several-fold increases in energy demand. Calcium has been proposed to play a role in the activation of ATP production via PKA phosphorylation in response to intramitochondrial cAMP generation. We evaluated the effect of cAMP, its membrane permeable analogs (dibutyryl-cAMP, 8-bromo-cAMP), and the PKA inhibitor H89 on respiration of isolated pig heart mitochondria. cAMP analogs did not stimulate State 3 respiration of Ca2 +-depleted mitochondria (82.2 ± 3.6% of control), in contrast to the 2-fold activation induced by 0.95 μM free Ca2 +, which was unaffected by H89. Using fluorescence and integrating sphere spectroscopy, we determined that Ca2 + increased the reduction of NADH (8%), and of cytochromes bH (3%), c1 (3%), c (4%), and a (2%), together with a doubling of conductances for Complex I + III and Complex IV. None of these changes were induced by cAMP analogs nor abolished by H89. In Ca2 +-undepleted mitochondria, we observed only slight changes in State 3 respiration rates upon addition of 50 μM cAMP (85 ± 9.9%), dibutyryl-cAMP (80.1 ± 5.2%), 8-bromo-cAMP (88.6 ± 3.3%), or 1 μM H89 (89.7 ± 19.9%) with respect to controls. Similar results were obtained when measuring respiration in heart homogenates. Addition of exogenous PKA with dibutyryl-cAMP or the constitutively active catalytic subunit of PKA to isolated mitochondria decreased State 3 respiration by only 5–15%. These functional studies suggest that alterations in mitochondrial cAMP and PKA activity do not contribute significantly to the acute Ca2 + stimulation of oxidative phosphorylation.  相似文献   

7.
Actin cytoskeletal damage induces inactivation of the oncoprotein YAP (Yes‐associated protein). It is known that the serine/threonine kinase LATS (large tumour suppressor) inactivates YAP by phosphorylating its Ser127 and Ser381 residues. However, the events downstream of actin cytoskeletal changes that are involved in the regulation of the LATS–YAP pathway and the mechanism by which LATS differentially phosphorylates YAP on Ser127 and Ser381 in vivo have remained elusive. Here, we show that cyclic AMP (cAMP)‐dependent protein kinase (PKA) phosphorylates LATS and thereby enhances its activity sufficiently to phosphorylate YAP on Ser381. We also found that PKA activity is involved in all contexts previously reported to trigger the LATS–YAP pathway, including actin cytoskeletal damage, G‐protein‐coupled receptor activation, and engagement of the Hippo pathway. Inhibition of PKA and overexpression of YAP cooperate to transform normal cells and amplify neural progenitor pools in developing chick embryos. We also implicate neurofibromin 2 as an AKAP (A‐kinase‐anchoring protein) scaffold protein that facilitates the function of the cAMP/PKA–LATS–YAP pathway. Our study thus incorporates PKA as novel component of the Hippo pathway.  相似文献   

8.
9.
Epac and PKA: a tale of two intracellular cAMP receptors   总被引:1,自引:0,他引:1  
cAMP-mediated signaling pathways regulate a multitude of important biological processes under both physiological and pathological conditions, including diabetes, heart failure and cancer. In eukaryotic cells, the effects of cAMP are mediated by two ubiquitously expressed intracellular cAMP receptors, the classic protein kinase A (PKA)/cAMP-dependent protein kinase and the recently discovered exchange protein directly activated by cAMP (Epac)/cAMP-regulated guanine nucleotide exchange factors. Like PKA, Epac contains an evolutionally conserved cAMP binding domain that acts as a molecular switch for sensing intracellular second messenger cAMP levels to control diverse biological functions. The existence of two families of cAMP effectors provides a mechanism for a more precise and integrated control of the cAMP signaling pathways in a spatial and temporal manner. Depending upon the specific cellular environments as well as their relative abundance, distribution and localization, Epac and PKA may act independently, converge synergistically or oppose each other in regulating a specific cellular function.  相似文献   

10.
The effects and mechanisms of aging on corticosterone secretion in zona fasciculata-reticularis (ZFR) cells of ovariectomized (Ovx) rats were studied. Young (3-month) and old (24-month) female rats were Ovx for 4 days before decapitation. ZFR cells were isolated and incubated with different hormones or reagents at 37 degrees C for 30 min. Aging increased the basal secretion of corticosterone both in vivo and in vitro. The adrenocorticotropin (ACTH)-, forskolin-, 3-isobutyl-l-methylxanthine (IBMX)-, 8-bromo-adenosine 3',5'-cyclic monophosphate (8-Br-cAMP)-, and ovine prolactin (oPRL)-stimulated release of corticosterone by ZFR cells was greater in old than in young Ovx rats. H89, an inhibitor of protein kinase A (PKA), decreased the production of corticosterone in ZFR cells from young but not old Ovx rats. Forskolin-, or IBMX-induced production of cAMP was greater in old than in young Ovx animals, which correlated with the increase of corticosterone production by aging. The activity of 11 beta-hydroxylase that converts deoxycorticosterone (DOC, 10(-9) or 10(-8) M) to corticosterone in rat ZFR cells was decreased by age. However, the corticosterone production in response to high dose of DOC (10(-7) M) was indifferent between young and old groups. These results suggest that aging increases corticosterone production in Ovx rats via a mechanism in part associated with an increase of adenylyl cyclase activity and a decrease of phosphodiesterase activity, and then an increase of the generation of cAMP, but not related to either PKA activity or 11 beta-hydroxylase.  相似文献   

11.
Cholesterol is a major component of membrane lipid rafts. It is more abundant in the brain than in other tissues and plays a critical role in maintaining brain function. We report here that a significant enhancement in apoptosis in rat cerebellar granule neurons (CGNs) was observed upon incubation with 5mM K(+) /serum free (LK-S) medium. Cholesterol enrichment further potentiated CGN apoptosis incubated under LK-S medium. On the contrary, cholesterol depletion using methyl-beta-cyclodextrin protected the CGNs from apoptosis induced by LK-S treatment. Cholesterol enrichment, however, did not induce apoptosis in CGNs that have been incubated with 25mM K(+) /serum medium. Mechanistically, increased I(K) currents and DNA fragmentation were found in CGNs incubated in LK-S, which was further potentiated in the presence of cholesterol. Cholesterol-treated CGNs also exhibited increased cAMP levels and up-regulation of Kv2.1 expression. Increased levels of activated form of PKA and phospho-CREB further supported activation of the cAMP/PKA pathway upon treatment of CGNs with cholesterol-containing LK-S medium. Conversely, inhibition of PKA or small G protein Gs abolished the increase in I(K) current and the potentiation of Kv2.1 expression, leading to reduced susceptibility of CGNs to LK-S and cholesterol-induced apoptosis. Our results demonstrate that the elevation of membrane cholesterol enhances CGN susceptibility to apoptotic stimuli via cAMP/PKA/CREB-dependent up-regulation of Kv2.1. Our data provide new evidence for the role of cholesterol in eliciting neuronal cell death.  相似文献   

12.
大豆异黄酮对大鼠乳腺癌细胞内cAMP/PKA信号途径的影响   总被引:3,自引:0,他引:3  
Lin CZ  Ma HT  Zou SX  Wang GJ  Chen WH  Han ZK 《生理学报》2005,57(4):517-522
本实验研究了大豆异黄酮对SHZ-88大鼠乳腺癌细胞内cAMP/PKA信号途径的影响。实验设3组:空白对照组、50μg/ml大豆黄酮及15μg/ml染料木素组。采用放射免疫测定法(RIA)检测了胞内cAMP的浓度、腺苷酸环化酶(adenylate cyclase,AC)和磷酸二酯酶(phosphodiesterase,PDE)的活性,用(γ-^32P)ATP掺入法测定cAMP依赖性PKA的活性,半定量RT-PCR法分析cAMP反应元件结合蛋白(cAMP response element binding protein,CREB)mRNA表达的变化。结果表明:在处理后5min,大豆黄酮组和染料木素组细胞的cAMP浓度分别比对照组升高了9.5%和11.0%(P〈0.05):10min时,分别比对照组升高31.0%和40.3%(P〈0.01)。3组细胞的AC活性在处理时间内没有明显变化。但在处理后5min,大豆黄酮组和染料木素组细胞的PDE活性分别降至对照组的71.8%和71.6%(P〈0.05)。处理后20min,大豆黄酮组和染料木素组细胞PKA活性分别上升到对照组的125.8%和122.3%(P〈0.05);到40min时仍维持在高水平。大豆黄酮组和染料木素组细胞CREB mRNA的表达量在处理后3h分别比对照组增加31.6%和51.1%(P〈0.05);6h后开始下降。这些结果提示,大豆异黄酮能够激活大鼠乳腺癌细胞内cAMP/PKA信号途径;而且是通过抑制磷酸二酯酶的活性,导致胞内cAMP浓度升高而实现的。  相似文献   

13.
Recently there has been a flurry of interest in the regulation of the homo-dimeric calcium-activated chloride channel ANO1 (also known as TMEM16A) by phosphatidylinositol (4,5)-bisphosphate (PI(4,5)P2). These recent studies show that upon Ca2+ binding, PI(4,5)P2 cooperates to maintain the conductive state of ANO1. PI(4,5)P2 does so by binding to sites or modules on the protein’s cytosolic side. These findings add a new function to the PI(4,5)P2 repertoire and a new dimension to ANO1 gating.  相似文献   

14.
In this study we examined the role of the cAMP/protein kinase A (PKA) pathway in affecting IOUD2 ES cell self-renewal and differentiation, Oct4 expression, and cell proliferation. Forskolin, the adenylate cyclase agonist, alone had no effect on ES cell self-renewal. However, when cells were treated with the differentiation-inducing agent retinoic acid, forskolin significantly promoted ES cell self-renewal. Effectively, forskolin rescued cells from a pathway of differentiation. Culturing ES cells in the presence of the phosphodiesterase inhibitor IBMX had no effect on ES cell self-renewal but did increase cell proliferation. In the presence of 100 μM IBMX without LIF, 10 μM forskolin significantly increased ES cell self-renewal. The cell permeable cAMP analog 8-Br-cAMP (1 and 5 mM) promoted ES cell differentiation in the presence of LIF, while in the absence of LIF, it promoted ES cell self-renewal. The effect of the PKA specific inhibitors H89 and KT5720 on Oct4 expression was, again, LIF-dependent. In the presence of LIF, these inhibitors decreased Oct4 expression, while they increased Oct4 expression in the absence of LIF. In general, ES cells maintained on a self-renewal pathway through the presence of LIF show little effect from altered cAMP signaling except at higher levels. However, in strict contrast, when ES cell are on a differentiation pathway through exposure to retinoic acid or the removal of LIF, altering cAMP levels can rescue the self-renewal process promoting Oct4 expression. This study clearly shows that the cAMP/PKA pathway plays a role in ES cell self-renewal pathways. This work was partly funded by the Millennium Research Fund National University of Ireland Galway.  相似文献   

15.
Li T  ter Veld F  Nürnberger HR  Wehner F 《FEBS letters》2005,579(10):2087-2091
In whole-cell recordings on primary cultures of human hepatocytes, we observe the hypertonic activation of a novel type of cation channel with a permeability ratio for Na(+):Li(+):K(+):Cs(+):NMDG(+) of 1:1.2:1.3:1.2:0.6. With a P(Ca)/P(Na) of 0.7 the channel is also clearly permeable to Ca(++). Most likely, the channel is Cl(-) impermeable but its activity critically depends on the extracellular Cl(-) concentration (with the half maximal effect at 88 mmol/l). With a 64% inhibition by amiloride and a complete block by flufenamate and Gd(3+) (at 100 micromol/l each), the channel may represent a molecular link between the amiloride-sensitive and insensitive channels reported so far.  相似文献   

16.
The present study was designed to investigate the role of endogenous sulfur dioxide (SO2) in vascular smooth muscle cell (VSMC) proliferation, and explore the possible role of cross-talk between cyclic adenosine monophosphate (cAMP)/protein kinase A (PKA) and extracellular signal-regulated kinase (Erk)/mitogen-activated protein kinase (MAPK) pathways in this action. By cell counting, growth curve depict, flow cytometry and bromodeoxyuridine (BrdU) labeling assays, we found that SO2 inhibited VSMC proliferation by preventing cell cycle progression from G1 to S phase and by reducing DNA synthesis. SO2 synthase aspartate aminotransferase (AAT1 and AAT2) overexpression significantly inhibited serum-induced proliferating cell nuclear antigen (PCNA) protein expression in VSMCs, demonstrated by western blot analysis. Moreover, overexpression of AAT1 or AAT2 markedly reduced incorporation of BrdU in serum-treated VSMCs. By contrast, either AAT1 or AAT2 knockdown significantly exacerbated serum-stimulated VSMC proliferation. Thus, both exogenous- and endogenous-derived SO2 suppressed serum-induced VSMC proliferation. However, annexin V-propidium iodide (PI) staining and cell cycle analysis demonstrated that SO2 did not influence VSMC apoptosis in the serum-induced proliferation model. In a platelet-derived growth factor (PDGF)-BB-stimulated VSMC proliferation model, SO2 dephosphorylated the active sites of Erk1/2, MAPK kinase 1/2 and RAF proto-oncogene serine/threonine-protein kinase (c-Raf) induced by PDGF-BB. However, the inactivation of the three kinases of the Erk/MAPK pathway was not due to the separate interferences on them by SO2 simultaneously, but a consequence of the influence on the upstream activity of the c-Raf molecule. Hence, we examined the cAMP/PKA pathway, which could inhibit Erk/MAPK transduction in VSMCs. The results showed that SO2 could stimulate the cAMP/PKA pathway to block c-Raf activation, whereas the Ser259 site on c-Raf had an important role in SO2-induced suppression of Erk/MAPK pathway. The present study firstly demonstrated that SO2 exerted a negative regulation of VSMC proliferation via suppressing the Erk/MAPK pathway mediated by cAMP/PKA signaling.  相似文献   

17.
Mutations and/or deletions of Pkd1 in mouse models resulted in attenuation of osteoblast function and defective bone formation; however, the function of PKD1 in human osteoblast and bone remains uncertain. In the current study, we used lentivirus-mediated shRNA technology to stably knock down PKD1 in the human osteoblastic MG-63 cell line and to investigate the role of PKD1 on human osteoblast function and molecular mechanisms. We found that a 53% reduction of PKD1 by PKD1 shRNA in stable, transfected MG-63 cells resulted in increased cell proliferation and impaired osteoblastic differentiation as reflected by increased BrdU incorporation, decreased alkaline phosphatase activity, and calcium deposition and by decreased expression of RUNX2 and OSTERIX compared to control shRNA MG-63 cells. In addition, knockdown of PKD1 mRNA caused enhanced adipogenesis in stable PKD1 shRNA MG-63 cells as evidenced by elevated lipid accumulation and increased expression of adipocyte-related markers such as PPARγ and aP2. The stable PKD1 shRNA MG-63 cells exhibited lower basal intracellular calcium, which led to attenuated cytosolic calcium signaling in response to fluid flow shear stress, as well as increased intracellular cAMP messages in response to forskolin (10 μM) stimulation. Moreover, increased cell proliferation, inhibited osteoblastic differentiation, and osteogenic and adipogenic gene markers were significantly reversed in stable PKD1 shRNA MG-63 cells when treated with H89 (1 μM), an inhibitor of PKA. These findings suggest that downregulation of PKD1 in human MG-63 cells resulted in defective osteoblast function via intracellular calcium-cAMP/PKA signaling pathway.  相似文献   

18.
Serpinb6b is a novel member of Serpinb family and found in germ and somatic cells of mouse gonads, but its physiological function in uterine decidualization remains unclear. The present study revealed that abundant Serpinb6b was noted in decidual cells, and advanced the proliferation and differentiation of stromal cells, indicating a creative role of Serpinb6b in uterine decidualization. Further analysis found that Serpinb6b modulated the expression of Mmp2 and Mmp9. Meanwhile, Serpinb6b was identified as a target of Bmp2 regulation in stromal differentiation. Treatment with rBmp2 resulted in an accumulation of intracellular cAMP level whose function in this differentiation program was mediated by Serpinb6b. Addition of PKA inhibitor H89 impeded the Bmp2 induction of Serpinb6b, whereas 8‐Br‐cAMP rescued the defect of Serpinb6b expression elicited by Bmp2 knock‐down. Attenuation of Serpinb6b greatly reduced the induction of constitutive Wnt4 activation on stromal cell differentiation. By contrast, overexpression of Serpinb6b prevented this inhibition of differentiation process by Wnt4 siRNA. Moreover, blockage of Wnt4 abrogated the up‐regulation of cAMP on Serpinb6b. Collectively, Serpinb6b mediates uterine decidualization via Mmp2/9 in response to Bmp2/cAMP/PKA/Wnt4 pathway.  相似文献   

19.
In guinea pig gallbladder epithelial cells, an increase in intracellular cAMP levels elicits the rise of anion channel activity. We investigated by patch-clamp techniques whether K(+) channels were also activated. In a cell-attached configuration and in the presence of theophylline and forskolin or 8-Br-cAMP in the cellular incubation bath, an increase of the open probability (P(o)) values for Ca(2+)-activated K(+) channels with a single-channel conductance of about 160 pS, for inward current, was observed. The increase in P(o) of these channels was also seen in an inside-out configuration and in the presence of PKA, ATP, and cAMP, but not with cAMP alone; phosphorylation did not influence single-channel conductance. In the inside-out configuration, the opioid loperamide (10(-5) M) was able to reduce P(o) when it was present either in the microelectrode filling solution or on the cytoplasmic side. Detection in the epithelial cells by RT-PCR of the mRNA corresponding to the alpha subunit of large-conductance Ca(2+)-activated K(+) channels (BK(Ca)) indicates that this gallbladder channel could belong to the BK family. Immunohistochemistry experiments confirm that these cells express the BK alpha subunit, which is located on the apical membrane. Other K(+) channels with lower conductance (40 pS) were not activated either by 8-Br-cAMP (cell-attached) or by PKA + ATP + cAMP (inside-out). These channels were insensitive to TEA(+) and loperamide. The data demonstrate that under conditions that induce secretion, phosphorylation activates anion channels as well as Ca(2+)-dependent, loperamide-sensitive K(+) channels present on the apical membrane.  相似文献   

20.
cAMP is an ubiquitous second messenger. Localized areas with high cAMP concentration, i.e. cAMP microdomains, provide an elegant mechanism to generate signaling specificity and transduction efficiency. However, the mechanisms underlying cAMP effector targeting into these compartments is still unclear. Here we report the identification of radixin as a scaffolding unit for both cAMP effectors, Epac and PKA. This complex localizes in a submembrane compartment where cAMP synthesis occurs. Compartment disruption by shRNA and dominant negative approaches negatively affects cAMP action. Inhibition can be rescued by expression of Rap1b, a substrate for both Epac1 and PKA, but only in its GTP-bound and phosphorylated state. We propose that radixin scaffolds both cAMP effectors in a functional cAMP-sensing compartment for efficient signal transduction, using Rap1 as a downstream signal integrator.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号