首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ultrafiltration and HPLC were employed to assess binding rates between rat plasma protein and two active compounds with lipid-regulating properties (alisol B 23-acetate and alisol A 24-acetate) from Alismaorientale rhizomes (Alismatis Rhizoma), a traditional Chinese medicine. SDS–PAGE was used for the evaluation of the binding between the alisol acetates and Hb in plasma. The fluorescence spectroscopy and circular dichroism spectroscopy were also combined with molecular modeling to explore binding mechanisms between Hb and the alisol acetates under imitative physiological condition. The ultrafiltration results show that alisol B 23-acetate bound more strongly than alisol A 24-acetate to plasma protein. SDS–PAGE results may suggest that alisols bind to Hb in plasma. The spectroscopy results are consisting with the molecular modeling results, and they indicate that the differences in plasma protein binding strength between the two compounds may be related to their side chains. A folded side chain/parent ring bound more strongly to Hb than an open side chain/parent ring.  相似文献   

2.
Abstract

We prepared extracts of Alisma orientalis from Sichuan and Fujian Province, China. Based on the ratio of alisol B 23-acetate (23B) to alisol A 24-acetate (24A) in two Alisma orientalis extracts, we prepared two mixtures of 24A and 23B (24A:23B?=?1:3 or 1:10). The antitumor molecular mechanism of the monomers 24A and 23B, the two mixtures and the effective components of Alisma orientalis from different habitats were studied. The MTT assay suggested that the difference in the antitumor activity of Alisma orientalis from different habitats was correlated to the ratio of 24A to 23B. The multi-spectroscopic analysis suggested that the effective components, the monomers and mixtures interacted with c-myc DNA in a partial intercalation manner. The binding strength of the alisol acetates to c-myc DNA was consistent with the anticancer activity, indicating that c-myc DNA was the anticancer target. The molecular simulation indicated that the mixtures were all directly bound to different base pairs of c-myc DNA for a superimposed effect, which led to the binding strength of the mixtures to c-myc DNA was stronger than that of the monomers. The molecules in the 1:3 mixture were all bound to different base pairs of c-myc DNA. However, for the 1:10 mixture, seven molecules of 23B bound to the side chain of 24A, resulting in the mixture with a long chain structure which increased the steric hindrance of 24A. As a result, affinity between 24A and c-myc DNA in the 1:10 mixture was weaker than that in the 1:3 mixture.

The antitumor molecular mechanism of the alisol monomers 24A and 23B, the mixtures with different proportions and the effective components of Alisma orientalis from different habitats were studied. The order of the antitumor activity was as follows: Sichuan?>?Fujian, 24A-23B (1:3) > 24A-23B (1:10) > 23B?>?24A. The antitumor activity of Alisma orientalis from different habitats was consistent with the mixtures which were designed according to the contents of the active ingredients of the medicinal materials, indicating that the antitumor activity of Alisma orientalis from Sichuan is better than that from Fujian which is related to the contents of 24A and 23B and the proportion of 1:3 is better than 1:10. The binding strength of the mixtures to c-myc DNA was consistent with the anticancer activity. The mixtures were all directly bound to different base pairs of c-myc DNA for a superimposed effect, which led to the strength of the interaction of the mixtures to c-myc DNA was stronger than that of the monomers. For the 24A-23B (1:3) mixture, the four small molecules bound to c-myc DNA directly and interacted with different base pairs of c-myc DNA. While for the 24A-23B (1:10) mixture, 24A and three 23B molecules interacted with c-myc DNA, the remaining seven 23B molecules bound to the side chain of 24A, which increased the steric hindrance. The binding of the mixture to c-myc DNA was decreased.

Communicated by Ramaswamy H. Sarma  相似文献   

3.
The methanolic extract from a Chinese herbal medicine, the rhizome of Alisma orientale, was found to exhibit inhibitory activity of nitric oxide (NO) production in lipopolysaccharide (LPS)activated macrophages. Novel triterpenes, alismaketones-B 23-acetate and -C 23-acetate, were isolated from the active extract together with eight sesquiterpenes and eighteen protostane-type triterpenes. The absolute stereostructures of new triterpenes were characterized on the basis of chemical and physicochemical evidence, which included the chemical correlations with known triterpenes. The guaiane-type sesquiterpenes (alismol, orientalols A and C) and protostane- and seco-protostane-types triterpenes (alisols C monoacetate, E-23-acetate, F, H, I, L-23-acetate, and M-23-acetate, alismaketones-B 23-acetate and -C 23-acetate, alismalactone 23-acetate, and 3-methylalismalactone 23-acetate) inhibited LPS-induced NO production (IC50 = 8.4-68 microM). Other triterpenes (alisols A, A monoacetate, B, B monoacetate, E, G, K-23-acetate, and N-23-acetate and 11-deoxyalisol B) also showed the potent inhibitory activity, but they showed cytotoxic effects more than 30 microM (MTT assay). In addition, alismol and alisol F were found to suppress iNOS induction.  相似文献   

4.
A series of 11-oxo-11H-indeno[1,2-b]quinolines bearing a carboxamide-linked cationic side chain at various positions on the chromophore was studied to determine structure-activity relationships between cytotoxicity and the position of the side chain. The compounds were prepared by Pfitzinger synthesis from an appropriate isatin and 1-indanone, followed by various oxidative steps, to generate the required carboxylic acids. The 4- and 6-carboxamides (with the side chain on a terminal ring, off the short axis of the chromophore) were effective cytotoxins. The dimeric 4- and 6-linked analogues were considerably more cytotoxic than the parent monomers, but had broadly similar activities. In contrast, analogues with side chains at the 8-position (on a terminal ring but off the long axis of the chromophore) or 10-position (off the short axis of the chromophore but in a central ring) were drastically less effective. The 4,10- and 6,10-biscarboxamides had activities between those of the corresponding parent monocarboxamides. The first of these showed good activity against advanced subcutaneous colon 38 tumours in mice.  相似文献   

5.
Chen CC  Herzberg O 《Biochemistry》2001,40(8):2351-2358
The serine-beta-lactamases hydrolyze beta-lactam antibiotics in a reaction that proceeds via an acyl-enzyme intermediate. The double mutation, E166D:N170Q, of the class A enzyme from Staphylococcus aureus results in a protein incapable of deacylation. The crystal structure of this beta-lactamase, determined at 2.3 A resolution, shows that except for the mutation sites, the structure is very similar to that of the native protein. The crystal structures of two acyl-enzyme adducts, one with benzylpenicillin and the other with cephaloridine, have been determined at 1.76 and 1.86 A resolution, respectively. Both acyl-enzymes show similar key features, with the carbonyl carbon atom of the cleaved beta-lactam bond covalently bound to the side chain of the active site Ser70, and the carbonyl oxygen atom in an oxyanion hole. The thiadolizine ring of the cleaved penicillin is located in a slightly different position than the dihydrothiazine ring of cephaloridine. Consequently, the carboxylate moieties attached to the rings form different sets of interactions. The carboxylate group of benzylpenicillin interacts with the side chain of Gln237. The carboxylate group of cephaloridine is located between Arg244 and Lys234 side chains and also interacts with Ser235 hydroxyl group. The interactions of the cephaloridine resemble those seen in the structure of the acyl-enzyme of beta-lactamase from Escherichia coli with benzylpenicillin. The side chains attached to the cleaved beta-lactam rings of benzylpenicillin and cephaloridine are located in a similar position, which is different than the position observed in the E. coli benzylpenicillin acyl-enzyme complex. The three modes of binding do not show a trend that explains the preference for benzylpenicillin over cephaloridine in the class A beta-lactamases. Rather, the conformational variation arises because cleavage of the beta-lactam bond provides additional flexibility not available when the fused rings are intact. The structural information suggests that specificity is determined prior to the cleavage of the beta-lactam ring, when the rigid fused rings of benzylpenicillin and cephaloridine each form different interactions with the active site.  相似文献   

6.
FabI, enoyl-ACP reductase (ENR), is the rate-limiting enzyme in the last step for fatty acids biosynthesis in many bacteria. Triclosan (TCL) is a commercial bactericide, and as a FabI inhibitor, it can depress the substrate (trans-2-enoyl-ACP) binding with FabI to hinder the fatty acid synthesis. The structure-activity relationship between TCL derivatives and FabI protein has already been acknowledged, however, their combination at the molecular level has never been investigated. This paper uses the computer-aided approaches, such as molecular docking, molecular dynamics simulation, and binding free energy calculation based on the molecular mechanics/Poisson-Bolzmann surface area (MM/PBSA) method to illustrate the interaction rules of TCL derivatives with FabI and guide the development of new derivatives. The consistent data of the experiment and corresponding activity demonstrates that electron-withdrawing groups on side chain are better than electron-donating groups. 2-Hydroxyl group on A ring, promoting the formation of hydrogen bond, is vital for bactericidal effect; and the substituents at 4-position of A ring, 2′-position and 4′-position of B ring benefit antibacterial activity due to forming a hydrogen bond or stabilizing the conformation of active pocket residues of receptor. While the substituents at 3′-position and 5′-position of B ring destroy the π-π stacking interaction of A ring and NAD+ which depresses the antibacterial activity. This study provides a new sight for designing novel TCL derivatives with superior antibacterial activity.  相似文献   

7.
Crystal structures of aconitase with isocitrate and nitroisocitrate bound.   总被引:7,自引:0,他引:7  
The crystal structures of mitochondrial aconitase with isocitrate and nitroisocitrate bound have been solved and refined to R factors of 0.179 and 0.161, respectively, for all observed data in the range 8.0-2.1 A. Porcine heart enzyme was used for determining the structure with isocitrate bound. The presence of isocitrate in the crystals was corroborated by M?ssbauer spectroscopy. Bovine heart enzyme was used for determining the structure with the reaction intermediate analogue nitroisocitrate bound. The inhibitor binds to the enzyme in a manner virtually identical to that of isocitrate. Both compounds bind to the unique Fe atom of the [4Fe-4S] cluster via a hydroxyl oxygen and one carboxyl oxygen. A H2O molecule is also bound, making Fe six-coordinate. The unique Fe is pulled away approximately 0.2 A from the corner of the cubane compared to the position it would occupy in a symmetrically ligated [4Fe-4S] cluster. At least 23 residues from all four domains of aconitase contribute to the active site. These residues participate in substrate recognition (Arg447, Arg452, Arg580, Arg644, Gln72, Ser166, Ser643), cluster ligation and interaction (Cys358, Cys421, Cys424, Asn258, Asn446), and hydrogen bonds supporting active site side chains (Ala74, Asp568, Ser571, Thr567). Residues implicated in catalysis are Ser642 and three histidine-carboxylate pairs (Asp100-His101, Asp165-His147, Glu262-His167). The base necessary for proton abstraction from C beta of isocitrate appears to be Ser642; the O gamma atom is proximal to the calculated hydrogen position, while the environment of O gamma suggests stabilization of an alkoxide (an oxyanion hole formed by the amide and side chain of Arg644). The histidine-carboxylate pairs appear to be required for proton transfer reactions involving two oxygens bound to Fe, one derived from solvent (bound H2O) and one derived from substrate hydroxyl. Each oxygen is in contact with a histidine, and both are in contact with the side chain of Asp165, which bridges the two sites on the six-coordinate Fe.  相似文献   

8.
Mutagenesis of the absolutely conserved residue Asp101 of the non-specific monoesterase alkaline phosphatase (E.C. 3.1.3.1) from E. coli has produced an enzyme with increased kcat. The carboxyl group of the Asp101 residue has been proposed to be involved in the positioning of Arg166 and the formation of the helix that contains the active site Ser102. The crystal structure of the Asp101-->Ser mutant has been refined at 2.5 A to a final crystallographic R-factor of 0.173. The altered active site structure of the mutant is compared with that of the wild-type as well as with the structures of the mutant enzyme soaked in two known alkaline phosphatase inhibitors (inorganic phosphate and arsenate). The changes affect primarily the side chain of Arg166 which, by losing the hydrogen bond interaction with the carboxyl side chain of Asp101, becomes more flexible. This analysis, in conjunction with product inhibition studies of the mutant enzyme, suggests that at high pH (> 7) the enzyme achieves a quicker catalytic turnover by allowing a faster release of the product.  相似文献   

9.
17-Cyclopropylmethyl-3,14β-dihydroxy-4,5α-epoxy-6α-(isoquinoline-3′-carboxamido)morphinan (NAQ) was previously designed following the ‘message-address’ concept and was identified as a potent and highly selective mu opioid receptor (MOR) ligand based on its pharmacological profile. We here report the preliminary structure activity relationship (SAR) studies of this novel lead compound. For the new ligands synthesized as NAQ analogues, their binding assay results showed that a longer spacer and a saturated ring system of the side chain were unfavorable for their MOR selectivity over the kappa and delta opioid receptors. In contrast, substitutions with different electronic properties at either 1′- or 4′-position of the isoquinoline ring of the side chain were generally acceptable for reasonable MOR selectivity. The majority of NAQ analogues retained low efficacy at the MOR compared to NAQ in the 35S-GTP[γS] binding assays while electron-withdrawing groups at 1′-position of the isoquinoline ring induced higher MOR stimulation than electron-donating groups did. In summary, the electronic characteristics of substituents at 1′- or 4′-position of the isoquinoline ring in NAQ seem to be critical and need to be further tuned up to achieve higher MOR selectivity and lower MOR stimulation.  相似文献   

10.
Tranquillizing drugs of the phenothiazine class form charge-transfer complexes with a ceruloplasmin-Cu(II) ion [De Mol NJ. 1985 Biochim Pharmacol 34, 2605–2609], the interaction resulting in a stimulatory effect on the ceruloplasmin catalyzed oxidation of catecholamines and NADH; the latter used as substrate in the present study. A good correlation between stability of the enzyme–drug complex and electron donor ability of the phenothiazine molecule was obtained for drugs with an aliphatic propyl side chain in 10-position (promazine > chlorpromazine > triflupromazine). The hydrofobic methyl group in the side chain of levomepromazine appeared to reduce the stability. A simple correlation between specific efficiency of the enzyme–drug complex and electron donor ability was not obtained (chlorpromazine > promazine = levomepromazine > triflupromazine). The Km-values, characterizing the reaction between NADH and the different enzyme–drug complexes, were estimated. The data suggest that the enzyme–chlorpromazine complex has the best affinity for NADH. The stimulatory effect of levomepromazine closely followed that of promazine.  相似文献   

11.
Arginine residues are commonly found in the active sites of enzymes catalyzing phosphoryl transfer reactions. Numerous site-directed mutagenesis experiments establish the importance of these residues for efficient catalysis, but their role in catalysis is not clear. To examine the role of arginine residues in the phosphoryl transfer reaction, we have measured the consequences of mutations to arginine 166 in Escherichia coli alkaline phosphatase on hydrolysis of ethyl phosphate, on individual reaction steps in the hydrolysis of the covalent enzyme-phosphoryl intermediate, and on thio substitution effects. The results show that the role of the arginine side chain extends beyond its positive charge, as the Arg166Lys mutant is as compromised in activity as Arg166Ser. Through measurement of individual reaction steps, we construct a free energy profile for the hydrolysis of the enzyme-phosphate intermediate. This analysis indicates that the arginine side chain strengthens binding by approximately 3 kcal/mol and provides an additional 1-2 kcal/mol stabilization of the chemical transition state. A 2.1 A X-ray diffraction structure of Arg166Ser AP is presented, which shows little difference in enzyme structure compared to the wild-type enzyme but shows a significant reorientation of the bound phosphate. Altogether, these results support a model in which the arginine contributes to catalysis through binding interactions and through additional transition state stabilization that may arise from complementarity of the guanidinum group to the geometry of the trigonal bipyramidal transition state.  相似文献   

12.
Feeding experiments with a mixture of [2-13C]- and [indole-3-13C]tryptophans, of [3-13C]- and [indole-3-13 C]tryptophans (1:1 molar ratio) and of others have proved that the 1,2-shift of the indole ring occurred via an intramolecular process for formation of the left part (5-hydroxyindole side) of the violacein skeleton and demonstrated that the C-C bond from C2 of the indole ring to C2 of the side chain was completely retained for formation of the right part (oxindole side) during the entire biosynthetic process. Due to the involvement of transaminase, it has remained unresolved whether indolylpyruvic acid is the biosynthetic intermediate and/or from where the nitrogen atom of the pyrrolidone ring originates. An incorporation experiment with a mixture of [2-13C]- and [alpha-15N]tryptophans (1:1 molar ratio) verified that the nitrogen atom in the central ring was exclusively derived from the right-side tryptophan. Thus, all the carbon and nitrogen atoms in the right part of the violacein skeleton were constructed by intact incorporation of the tryptophan molecule, with decarboxylation probably occurring at a later biosynthetic stage.  相似文献   

13.
The crystallographic structure of the class A beta-lactamase Toho-1, an extended-spectrum beta-lactamase with potent activity against expanded-spectrum cephems, has been determined at 1.65 A resolution. The result reveals that the Lys73 side chain can adopt two alternative conformations. The predominant conformation of Lys73 is different from that observed in the E166A mutant, indicating that removal of the Glu166 side chain changes the conformation of the Lys73 side chain and thus the interaction between Lys73 and Glu166. The Lys73 side chain would play an important role in proton relay, switching its conformation from one to the other depending on the circumstances. The electron density map also implies possible rotation of Ser237. Comparison of the Toho-1 structure with the structure of other class A beta-lactamases shows that the hydroxyl group of Ser237 is likely to rotate through interaction with the carboxyl group of the substrate. Another peculiarity is the existence of three sulfate ions positioned in or near the substrate-binding cavity. One of these sulfate ions is tightly bound to the active center, while the other two are held by a region of positive charge formed by two arginine residues, Arg274 and Arg276. This positively charged region is speculated to represent a pseudo-binding site of the beta-lactam antibiotics, presumably catching the methoxyimino group of the third-generation cephems prior to proper binding in the substrate-binding cleft for hydrolysis. This high-resolution structure, together with detailed kinetic analysis of Toho-1, provides a new hypothesis for the catalytic mechanism and substrate specificity of Toho-1.  相似文献   

14.
C A Yu  L Q Gu  Y Z Lin  L Yu 《Biochemistry》1985,24(15):3897-3902
The effect of the alkyl side chain of the ubiquinone molecule on the electron-transfer activity of ubiquinone in mitochondrial succinate-cytochrome c reductase is studied by using synthetic ubiquinone derivatives that possess the basic ubiquinone structure of 2,3-dimethoxy-5-methyl-1,4-benzoquinone with different alkyl side chains at the 6-position. The alkyl side chains vary in chain length, degree of saturation, and location of double bonds. When a ubiquinone derivative is used as an electron acceptor for succinate-ubiquinone reductase, an alkyl side chain of six carbons is needed to obtain the maximum activity. However, when it serves as an electron donor for ubiquinol-cytochrome c reductase or as a mediator in succinate-cytochrome c reductase, an alkyl side chain of 10 carbons gives maximal efficiency. Introduction of one or two isolated double bonds into the alkyl side chain of the ubiquinone molecule has little effect on electron-transfer activity. However, a conjugated double bond system in the alkyl side chain drastically reduces electron-transfer efficiency. The effect of the conjugated double bond system on the electron-transferring efficiency of ubiquinone depends on its location in the alkyl side chain. When location is far from the benzoquinone ring, the effect is minimal. These observations together with the results obtained from photoaffinity-labeling studies lead us to conclude that flexibility in the portion of the alkyl side chain immediately adjacent to the benzoquinone ring is required for the electron-transfer activity of ubiquinone.  相似文献   

15.
Sun T  Bethel CR  Bonomo RA  Knox JR 《Biochemistry》2004,43(44):14111-14117
A bacterial response to the clinical use of class A beta-lactamase inhibitors such as tazobactam and clavulanic acid is the expression of variant beta-lactamases with weaker binding affinities for these mechanism-based inhibitors. Some of these inhibitor-resistant variants contain a glycine mutation at Ser130, a conserved active site residue known to be adventitiously involved in the inhibition mechanism. The crystallographic structure of a complex of tazobactam with the Ser130Gly variant of the class A SHV-1 beta-lactamase has been determined to 1.8 A resolution. Two reaction intermediates are observed. The primary intermediate is an acyclic species bound to the reactive Ser70. It is poorly primed for catalytic hydrolysis because its ester carbonyl group is completely displaced from the enzyme's oxyanion hole. A smaller fraction of the enzyme contains a Ser70-bound aldehyde resulting from hydrolytic loss of the triazoyl-sulfinyl amino acid moiety from the primary species. This first structure of a class A beta-lactamase lacking Ser130, the side chain of which functions in beta-lactam binding and possibly in catalysis, gives crystallographic evidence that the acylation step of beta-lactam turnover can occur without Ser130. Unexpectedly, the crystal structure of the uncomplexed Ser130Gly enzyme, also determined to 1.8 A resolution, shows that a critical Glu166-activated water molecule is missing from the catalytic site. Comparison of this uncomplexed variant with the wild-type structure reveals that Ser130 is required for orienting the side chain of Ser70 and ensuring the hydrogen bonding of Ser70 to both Lys73 and the catalytic water molecule.  相似文献   

16.
A series of new polyoxygenated steroid derivatives with various steroid skeleton moieties were synthesized. Antitumor activity of the compounds against three tumor cell lines (Breast cancer MCF7, lung cancer NCI and oral cancer KB) were evaluated. Compounds with aromatic A ring of this series exhibited the most potent cytotoxicities in all tested cells. The absence of OH at C-16 or lack of cholesterol like side chain at C-20 in the steroid skeleton apparently result in decreased cytotoxicity. The compound became inactive when the side chain contains double bond at C-24-C-25. When hydroxyl group at C-3 was protected no cytotoxicities against MCF7 and NCI and considerable low cytotoxicity against KB cell lines were observed.  相似文献   

17.
The 2,4,5-substituted-1,3,4-thiadiazoline derivative 1a has been identified as a new class of mitotic kinesin Eg5 inhibitor. With the aim of enhancement of the mitotic phase accumulation activity, structure optimization of side chains at the 2-, 4-, and 5-positions of the 1,3,4-thiadiazoline ring of 1a was performed. The introduction of sulfonylamino group at the side chain at the 5-position and bulky acyl group at the 2- and 4-position contributed to a significant increase in the mitotic phase accumulation activity and Eg5 inhibitory activity. As a result, a series of optically active compounds exhibited an increased antitumor activity in a human ovarian cancer xenograft mouse model that was induced by oral administration.  相似文献   

18.
Pharmacophore mapping of the ligand binding domain of the beta-adrenergic receptor has revealed specific molecular interactions which are important for agonist and antagonist binding to the receptor. Previous site-directed mutagenesis experiments have demonstrated that the binding of amine agonists and antagonists to the receptor involves an interaction between the amine group of the ligand and the carboxylate side chain of Asp113 in the third hydrophobic domain of the receptor (Strader, C. D., Sigal, I. S., Candelore, M. R., Rands, E., Hill, W. S., and Dixon, R. A. F. (1988) J. Biol. Chem. 263, 10267-10271). We have now identified 2 serine residues, at positions 204 and 207 in the fifth hydrophobic domain of the beta-adrenergic receptor, which are critical for agonist binding and activation of the receptor. These serine residues are conserved with G-protein-coupled receptors which bind catecholamine agonists, but not with receptors whose endogenous ligands do not have the catechol moiety. Removal of the hydroxyl side chain from either Ser204 or Ser207 by substitution of the serine residue with an alanine attenuates the activity of catecholamine agonists at the receptor. The effects of these mutations on agonist activity are mimicked selectively by the removal of the catechol hydroxyl moieties from the aromatic ring of the agonist. The data suggest that the interaction of catecholamine agonists with the beta-adrenergic receptor involves two hydrogen bonds, one between the hydroxyl side chain of Ser204 and the meta-hydroxyl group of the ligand and a second between the hydroxyl side chain of Ser207 and the para-hydroxyl group of the ligand.  相似文献   

19.
The high-resolution 3D structure of the octapeptide hormone angiotensin II (AII) in aqueous solution has been obtained by simulated annealing calculations, using high-resolution NMR-derived restraints. After final refinement in explicit water, a family of 13 structures was obtained with a backbone RMSD of 0.73 +/- 0.23 A. AII adopts a fairly compact folded structure, with its C-terminus and N-terminus approaching to within approximately 7.2 A of each other. The side chains of Arg2, Tyr4, Ile5 and His6 are oriented on one side of a plane defined by the peptide backbone, and the Val3 and Pro7 are pointing in opposite directions. The stabilization of the folded conformation can be explained by the stacking of the Val3 side chain with the Pro7 ring and by a hydrophobic cluster formed by the Tyr4, Ile5 and His6 side chains. Comparison between the NMR-derived structure of AII in aqueous solution and the refined crystal structure of the complex of AII with a high-affinity mAb (Fab131) [Garcia, K.C., Ronco, P.M., Verroust, P.J., Brunger, A.T., Amzel, L.M. (1992) Science257, 502-507] provides important quantitative information on two common structural features: (a) a U-shaped structure of the Tyr4-Ile5-His6-Pro7 sequence, which is the most immunogenic epitope of the peptide, with the Asp1 side chain oriented towards the interior of the turn approaching the C-terminus; (b) an Asx-turn-like motif with the side chain aspartate carboxyl group hydrogen-bonded to the main chain NH group of Arg2. It can be concluded that small rearrangements of the epitope 4-7 in the solution structure of AII are required by a mean value of 0.76 +/- 0.03 A for structure alignment and approximately 1.27 +/- 0.02 A for sequence alignment with the X-ray structure of AII bound to the mAb Fab131. These data are interpreted in terms of a biological "nucleus" conformation of the hormone in solution, which requires a limited number of structural rearrangements for receptor-antigen recognition and binding.  相似文献   

20.
The functional centre of haemoproteins is generally formed by an iron porphyrin and amino acid residues of he protein component. Some haemoproteins are able to bind imidazole to the iron of the prosthetic group. The synthesis of imidazole containing matrices is described and the affinity of haemoglobin as a model compound to these matrices has been studied. It was found that the lenght and structure of spacers as well as substituents at the imidazole ring are of critical importance: the adsorption of methaemoglobin shows two different kinds of protein matrix interaction: in case of a space length < 5 Å no interaction occurs for steric reasons; at a length > 5 Å adsorption takes place via complex formation between imidazole and iron of a prosthetic group independent of the linkage in 1- or 4(5)-position of the imidazole ring to the mtrix: the complex formation between imidazole and iron is the decisive step but is not solely responsible for the stability of the ocmplex: a hydroxyl group at the side chain near the imidazole decreases the adsorption drastically: large substituents at the imidazole ring disturb complex formation with the iron, but not the adsorption of haemoglobin; in the presence of a long spacer (> 20 A), hydrophobic interactions are predominantly responsible for the adsorption process and imidazole does not play any role.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号