首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Despite the importance of green-winged teal (Anas crecca) as a harvested species in North America, recent information on variation in vital rates among regions is lacking. We used band recovery data and hierarchical autoregressive models to examine temporal and age-sex-class variation in survival, hunting mortality, and nonhunting mortality probabilities of green-winged teal banded at Kgun Lake on the Yukon-Kuskokwim Delta, Alaska, USA, from 1997–2019. We used data from 10,554 adult and juvenile green-winged teal of known sex and age banded and released at Kgun Lake, and 1,245 hunter recoveries. Estimates of annual survival probability for adult females and males ranged from 0.44 (95% CI = 0.29–0.54) to 0.49 (95% CI = 0.37–0.68) and 0.56 (95% CI = 0.50–0.61) to 0.58 (95% CI = 0.50–0.64), respectively, during our study period. Estimates of annual survival probability for juvenile females and males ranged from 0.36 (95% CI = 0.18–0.56) to 0.46 (95% CI = 0.31–0.71) and 0.51 (95% CI = 0.38–0.61) to 0.56 (95% CI = 0.44–0.71), respectively. Hunting mortality probability was greatest for juvenile males and least for adult females. Hunting mortality probability of juvenile males increased from 0.09 (95% CI = 0.05–0.13) in 1997 to 0.14 (95% CI = 0.11–0.18) in 2015. Nonhunting mortality probability was greater and more variable than hunting mortality probability for all age-sex classes, indicating nonhunting mortality contributed most to total mortality of green-winged teal banded at Kgun Lake during our study. Additionally, survival probability of female green-winged teal banded at Kgun Lake is less than published estimates for green-winged teal banded in the boreal forest of Alaska. We recommend continuing consistent banding operations for green-winged teal on the Yukon-Kuskokwim Delta and other important breeding areas to further understand factors influencing nonhunting mortality and how they may vary seasonally and geographically.  相似文献   

2.
ABSTRACT Populations of Pacific common eiders (Somateria mollissima v-nigrum) breeding in Alaska, USA, have declined markedly over the past 40 years. We studied survival of adult female Pacific common eiders using capture—recapture of nesting hens at 3 sites on the Yukon-Kuskokwim Delta (YKD), Alaska from 1994 to 2004. We used data consisting of 268 recapture events from 361 uniquely marked individuals to investigate temporal, geographic, and environmental variation in adult female survival. Our results suggest apparent annual survival of adult eiders from the YKD was high (0.892, SE = 0.022) and spatially and temporally invariant (σ2 = 0.005), a pattern consistent with other long-lived marine birds. Moreover, our results suggest adult survival may be functionally fixed for Pacific common eiders, and at the present, adult survival may be relatively unresponsive to environmental or management perturbations. Our data did not support hypothesized variation in survival relative to mortality factors such as predation on breeding grounds, physiologic costs of reproduction, and wintering conditions. Although changes in adult survival likely have a large potential effect on prospective population growth, our results suggest viable management actions aimed at increasing survival may be extremely limited.  相似文献   

3.
Recent declines in black brant (Branta bernicla nigricans) are likely the result of low recruitment. In geese, recruitment is strongly affected by habitat conditions experienced by broods because gosling growth rates are indicative of forage conditions during brood rearing and strongly influence future survival and productivity. In 2006–2008, we studied gosling growth at 3 of the 4 major colonies on the Yukon-Kuskokwim Delta, Alaska. Estimates of age-adjusted gosling mass at the 2 southern colonies (approx. 30% of the world population of breeding black brant) was low (gosling mass at 30.5 days ranged 346.7 ± 42.5 g to 627.1 ± 15.9 g) in comparison to a third colony (gosling mass at 30.5 days ranged 640.0 ± 8.3 g to 821.6 ± 13.6 g) and to most previous estimates of age-adjusted mass of brant goslings. Thus, our results are consistent with the hypothesis that poor gosling growth is negatively influencing the brant population. There are 2 non-mutually exclusive explanations for the apparent growth rates we observed. First, the population decline may have been caused by density-independent factors and habitat capacity has declined along with the population as a consequence of the unique foraging feedback between brant and their grazing habitats. Alternatively, a reduction in habitat capacity, as a result of changes to the grazing system, may have negatively influenced gosling growth, which is contributing to the overall long-term population decline. We found support for both explanations. For colonies over habitat capacity we recommend management to enhance foraging habitat, whereas for colonies below habitat capacity we recommend management to increase nesting productivity. © 2010 The Wildlife Society.  相似文献   

4.
This paper presents evidence of emerging waterfowl conservation practices and attitudes among certain groups of contemporary Yup'ik subsistence hunters in the Yukon-Kuskokwim Delta, a remote, wetlands dominated region of western Alaska crucial to several species of Pacific migratory birds. By examining what factors motivate hunters to follow restraint practices and evaluating how federal goose management policies impact these factors, I argue that recent policy has succeeded not by enforcement of regulations but by providing minimum necessary conditions for voluntary conservation to emerge as a cultural practice. This example of cooperative management may serve as a model for future, sustainable wildlife policies that involve indigenous resource users.  相似文献   

5.
6.

Large uncertainties in estimates of methane (CH4) emissions from tropical inland waters reflect the paucity of information at appropriate temporal and spatial scales. CH4 concentrations, diffusive and ebullitive fluxes, and environmental parameters in contrasting aquatic habitats of Lake Janauacá, an Amazon floodplain lake, measured for two years revealed patterns in temporal and spatial variability related to different aquatic habitats and environmental conditions. CH4 concentrations ranged from below detection to 96 µM, CH4 diffusive fluxes from below detection to 2342 µmol m−2 h−1, and CH4 ebullitive fluxes from 0 to 190 mmol m−2 d−1. Vegetated aquatic habitats had higher surface CH4 concentrations than open water habitats, and no significant differences in diffusive CH4 fluxes, likely due to higher k values measured in open water habitats. CH4 emissions were enhanced after a prolonged low water period, when the exposed sediments were colonized by herbaceous plants that decomposed after water levels rose, possibly fueling CH4 production. Statistical models indicated the importance of variables related to CH4 production (temperature, dissolved organic carbon) and consumption (dissolved nitrogen, oxygenated water column), as well as maximum depth, in controlling surface water CH4 concentrations.

  相似文献   

7.
The effect of microrelief and vegetation on methane (CH4) emission was investigated in a wet polygonal tundra of the Lena Delta, Northern Siberia (72.37N, 126.47E). Total and plant-mediated CH4 fluxes were measured by closed-chamber techniques at two typical sites within a low-centred polygon. During the study period, total CH4 flux averaged 28.0±5.4mgm–2d–1 in the depressed polygon centre and only 4.3±0.8mgm–2d–1 at the elevated polygon rim. This substantial small-scale spatial variability of CH4 emission was caused by strong differences of hydrologic conditions within the microrelief of the polygon, which affected aeration status and organic matter content of the soils as well as the vegetation cover. Beside water table position, the vegetation cover was a major factor controlling CH4 emission from polygonal tundra. It was shown that the dominant vascular plant of the study area, Carex aquatilis, possesses large aerenchyma, which serve as pathways for substantial plant-mediated CH4 transport. The importance of plant-mediated CH4 flux was strongly influenced by the position of the water table relative to the main root horizon. Plant-mediated CH4 transport accounted for about two-thirds of the total flux in the wet polygon centre and for less than one-third of the total flux at the moist polygon rim. A clipping experiment and microscopic-anatomical studies suggested that plant-mediated CH4 transport via C. aquatilis plants is driven only by diffusion and is limited by the high diffusion resistance of the dense root exodermes.  相似文献   

8.
9.
The landscape surface of the Barrow Peninsula of Alaska is a mosaic of small ponds, thaw lakes, different aged vegetated drained thaw‐lake basins (VDTLBs), and interstitial tundra which have been dynamically formed by both short‐ and long‐term processes. We used a combination of tower‐ and aircraft‐based eddy covariance measurements to characterize the spatial and temporal patterns of CO2, latent, and sensible heat fluxes along with MODIS NDVI, and were able to scale the aircraft‐based CO2 fluxes to the 1802 km2 Barrow Peninsula region. During typical 2006 summer conditions, the midday hourly CO2 flux over the region was ?2.04 × 105 kg CO2 h?1. The CO2 fluxes among the interstitial tundra, Ancient, and Old VDTLBs, as well as between the Medium and Young VDTLBs were not significantly different. Combined, the interstitial tundra and Old and Ancient VDTLBs represent~67% of the Barrow Peninsula surface area, accounting for ~59% of the regional flux signal. Although the Medium and Young VDTLBs represent ~11% of the surface area, they account for a large portion, ~35%, of the total regional flux. The remaining ~22% of the surface area are lakes and contributed the remaining ~6% of the total regional flux. Previous studies treated vegetated areas of the region as a single surface type with measurements from a few study sites; doing so could underestimate the regional flux by ~22%. Here, we demonstrate that aircraft‐based systems have the ability to cover large spatial scales while measuring the turbulent fluxes across a number of surfaces and combined with ground‐ and satellite‐based measurements provide a valuable tool for both scaling and validation of regional‐scale fluxes.  相似文献   

10.
The direct discharge of groundwater into thecoastal zone has received increased attentionin the last few years as it is now recognizedthat this process represents an importantpathway for material transport. Assessingthese material fluxes is difficult, as there isno simple means to gauge the water flux. Weestimated the changing flux of groundwaterdischarge into a coastal area in the northeastGulf of Mexico (Florida) based on continuousmeasurements of radon concentrations over aseveral day period. Changing radon inventorieswere converted to fluxes after accounting forlosses due to atmospheric evasion and mixing. Radon fluxes are then converted to groundwaterinflow rates by estimating the radonconcentration of the fluids discharging intothe study domain. Groundwater flow was also assessed via seepagemeters, radium isotopes, and modeling duringthis period as part of an ``intercomparison''study. The radon results suggest that the flowis: (1) highly variable with flows ranging from~5 to 50 cm/day; and (2) strongly influenced bythe tides, with spikes in the flow every 12hours. The discharge estimates and pattern offlow derived from the radon model matches theautomated seepage meter records very closely.  相似文献   

11.
The organic carbon cycle of a shallow, tundra lake (mean depth 1.45 m) was followed for 5 weeks of the open water period by examining CO2 fluxes through benthic respiration and anaerobic decomposition, photosynthesis of benthic and phytoplankton communities and gas exchange at the air-water interface. Total photosynthesis (as consumption of carbon dioxide) was 37.5 mmole C m–2 d–1, 83% of which was benthic and macrophytic. By direct measurement benthic respiration exceeded benthic photosynthesis by 6.6 mmole C m–2 d–1. The lake lost 1.4 × 106 moles C in two weeks after ice melted by degassing C02, and 6.8 mmole C m–2 d–1 (1.5 × 106 moles) during the remainder of the open water period; 2.2 mmole C m2 d–1 of this was release Of CO2 stored in the sediments by cryoconcentration the previous winter. Anaerobic microbial decomposition was only 4% of the benthic aerobic respiration rate of 38 mmole C m–2 d–1. An annual budget estimate for the lake indicated that 50% of the carbon was produced by the benthic community, 20% by phytoplankton, and 30% was allochthonous material. The relative contribution of allochthonous input was in accordance with measurement of the 15N of sedimented organic matter.  相似文献   

12.
Lake Harutori is a brackish meromictic lake with a steep physicochemical gradient in shallow water. Anoxic water below the chemocline has been characterized by high concentrations of sulfide (>10 mM) and methane (>1.5 mM). Previously, we reported that uncultured bacteria in the SEEP-SRB1 group were major sulfate reducers in the lake [21], but knowledge of sulfur oxidation and methane metabolism was scarce. In this current study, the Lake Harutori microbial community structure in the mixolimnion (at depths of 1.5 m and 3.0 m), upper chemocline (3.5 m), and monimolimnion (4.5 m) was further investigated by 16S rRNA gene amplicon sequencing and catalyzed reporter deposition fluorescence in situ hybridization (CARD-FISH). Reads of type I and II methanotrophs were retrieved mainly from 3.5 m and above. Methanotrophic bacteria detected by CARD-FISH accounted for 3.1% of DAPI-stained cells at 3.5 m. Detection frequencies of reads affiliated with the genera Sulfurimonas and Thiomicrorhabdus, which are known to comprise sulfur oxidizers, were relatively high at 3.5 m. Methanogenic archaeal reads were retrieved from the monimolimnion and they affiliated with the genus Methanosaeta. CARD-FISH counts indicated that the cells of Methanosaeta/Methanosarcina/Methanomicrobiales accounted for up to 0.8% of the DAPI-stained cells in the monimolimnion. On the other hand, many of the reads retrieved primarily from the monimolimnion were affiliated with phylogenetically novel uncultured groups.  相似文献   

13.
1 We investigated the effects of grazing by black brant geese on Carex subspathacea lawns on the Yukon-Kuskokwim delta, Alaska.
2 We compared variation in growth and forage quality in both grazed and temporarily exclosed sites to determine responses of C. subspathacea to grazing at landscape scales within two nesting colonies that had experienced different population dynamics over recent decades.
3 Landscapes differed in forage quality, grazing patterns, and in the effect grazing had on C. subspathacea forage characteristics. We found no effect of grazing on net above-ground primary productivity ( NAPP ) over a wide range of natural grazing intensities at the landscape scale.
4 No differences in forage quality, NAPP , or response of C. subspathacea growth rates to grazing pressures could be detected between colonies. This suggests that goose grazing does not have deleterious effects on C. subspathacea in this ecosystem.
5 It has been suggested that gosling growth rates are sensitive to seasonal declines in forage availability and quality. Spatial variation in forage quality and availability per sampled area exceeded seasonal variation in these characteristics and is likely to have dramatic effects on gosling growth and recruitment rates.  相似文献   

14.
We report on temporal and spatial variability in net methane (CH4) fluxes measured during the thaw period of 1999 and 2000 at three study sites along a c. 8° latitudinal gradient in the Fennoscandian mountain range and across the mountain birch‐tundra ecotone. All of the sites studied here were underlain by well‐drained mesic soils. In addition, we conducted warming experiments in the field to simulate future climate change. Our results show significant CH4 uptake at mesic sites spanning the forest‐tundra ecotone: on average 0.031 and 0.0065 mg CH4 m?2 h?1 during the 1999 and 2000 thaw periods, respectively, in Abisko (Sweden), and 0.019 and 0.032 mg CH4 m?2 h?1 during 2000 in Dovrefjell and Joatka (Norway), respectively. These values were both temporally and spatially highly variable, and multiple regression analysis of data from Abisko showed no consistent relationship with soil‐moisture status and temperature. Also, there was no consistent difference in CH4 fluxes between forest and tundra plots; our data, therefore, provide no support for the hypothesis that conversion of tundra to mountain birch forest, or vice versa, would result in a systematic change in the magnitude or direction of net CH4 fluxes in this region. Experimental warming treatments were associated with a 2.4 °C increase in soil temperatures (5 cm depth) in 1999 in Abisko, but no consistent soil warming was noted at any of the three field locations during 2000. In spite of this, there were significant treatment effects, principally early during the thaw period, with increased CH4 uptake compared with control (ambient) plots. These results suggest that direct effects of air warming on vegetation processes (e.g. transpiration, root exudation and nutrient assimilation) can influence CH4 fluxes even in predominantly methanotrophic environments. We conclude that net CH4 oxidation is significant in these cold, mesic soils and could be strengthened in an environmental change scenario involving a combination of (i) an increase in the length of the thaw period and (ii) increased mean temperatures during this period in combination with decreased soil‐moisture content.  相似文献   

15.
16.
Response of a eutrophic, shallow subtropical lake to reduced nutrient loading   总被引:10,自引:1,他引:10  
1. Lake Apopka (FL, U.S.A.) was subjected to decades of high nutrient loading from farms developed in the 1940s on converted riparian wetlands. Consequences included perennially high densities of cyanobacteria, low water transparency, elimination of submerged vegetation, modified fish community, and deposition of nutrient‐rich, flocculent sediments. 2. Initial steps were taken to reduce phosphorus (P) loading. Through strengthened regulation and purchase of farms for restoration, external P loading was reduced on average from 0.56 to 0.25 g P m?2 year?1 (55%) starting in 1993. The P loading target for the lake is 0.13 g P m?2 year?1. 3. For the first 6 years of P loading reduction the annual sedimentation coefficient (σ) averaged 13% less than the prior long‐term value (0.97 versus 1.11 year?1). The sedimentation coefficient, σ, was lower in the last 3 years of the study, but this period included extreme low‐water conditions and may not be representative. Annual σ was negative (net P flux to the water column) only 1 year. 4. Wind velocity explained 43% of the variation in σ during the period before reductions in total phosphorus (TP) concentration of lake water, but this proportion dropped to 6% after TP reductions. 5. Annual mean TP concentrations differed considerably from values predicted from external loading and hydraulic retention time using the Vollenweider–Organization for Economic Co‐operation and Development relationship. Reductions in lake water TP concentration fit model predictions better when multiyear (3‐year) mean values were used. 6. Evidence available to date indicates that this shallow, eutrophic lake responded to the decrease in external P loading. Neither recycling of sediment P nor wind‐driven resuspension of sediments prevented improvements in water quality. Reductions in TP concentration were evident about two TP‐resident times (2 × 0.9 year) after programmes began to reduce P loading. Improvements in concentrations of chlorophyll a and total suspended solids as well as in Secchi transparency lagged changes in lake‐water TP concentration but reached similar magnitudes during the study.  相似文献   

17.
As surface temperatures are expected to rise in the future, ice‐rich permafrost may thaw, altering soil topography and hydrology and creating a mosaic of wet and dry soil surfaces in the Arctic. Arctic wetlands are large sources of CH4, and investigating effects of soil hydrology on CH4 fluxes is of great importance for predicting ecosystem feedback in response to climate change. In this study, we investigate how a decade‐long drying manipulation on an Arctic floodplain influences CH4‐associated microorganisms, soil thermal regimes, and plant communities. Moreover, we examine how these drainage‐induced changes may then modify CH4 fluxes in the growing and nongrowing seasons. This study shows that drainage substantially lowered the abundance of methanogens along with methanotrophic bacteria, which may have reduced CH4 cycling. Soil temperatures of the drained areas were lower in deep, anoxic soil layers (below 30 cm), but higher in oxic topsoil layers (0–15 cm) compared to the control wet areas. This pattern of soil temperatures may have reduced the rates of methanogenesis while elevating those of CH4 oxidation, thereby decreasing net CH4 fluxes. The abundance of Eriophorum angustifolium, an aerenchymatous plant species, diminished significantly in the drained areas. Due to this decrease, a higher fraction of CH4 was alternatively emitted to the atmosphere by diffusion, possibly increasing the potential for CH4 oxidation and leading to a decrease in net CH4 fluxes compared to a control site. Drainage lowered CH4 fluxes by a factor of 20 during the growing season, with postdrainage changes in microbial communities, soil temperatures, and plant communities also contributing to this reduction. In contrast, we observed CH4 emissions increased by 10% in the drained areas during the nongrowing season, although this difference was insignificant given the small magnitudes of fluxes. This study showed that long‐term drainage considerably reduced CH4 fluxes through modified ecosystem properties.  相似文献   

18.
《Aquatic Botany》2004,80(3):177-191
Lack of submerged vegetation was studied in a small, shallow, alkaline, clear-water lake with high nitrate concentration (mean 9 mg NO3–N L−1) and profuse filamentous green algae (FGA) (mainly Spirogyra sp.). A laboratory microcosm and two lake enclosure experiments were carried out using Elodea nuttallii (Planchon) St John. E. nuttallii grew about 1.7 times as well in sediment from its place of origin compared with sediment from the lake. Differential water quality had no effect, and neither sediment nor water prevented growth in the lake. Nutrient addition reduced plant growth by more than 55% because of shading from epiphytic filamentous green algae (shoot dry weight versus epiphytic algal dry weight, r = −0.491, P < 0.05). Transplanted Elodea plants grew better in enclosures in the lake than in laboratory conditions with lake water and sediment (P < 0.001, t-test). Rare Elodea individuals in the lake indicate the presence of plant propagules in the lake sediment, but excessive growth of filamentous green algae (summer mean 3.2 g dry weight m−2) significantly hamperd plant growth (shoot length reduced from 29 ± S.E.M. 1 to 25 ± 1 cm) and bird herbivory significantly reduced survival (from 82 ± 7 to 40 ± 6%) and shoot growth (from 78 ± 6 to 18 ± 5 cm) and thus eliminates establishment of even modest plant beds. Fish disturbance and sediment stability were not important. Restoration of submerged plants may require reduction of nitrate input, control of filamentous green algae and protection from birds.  相似文献   

19.
In arctic tundra, shrubs can significantly modify the distribution and physical characteristics of snow, influencing the exchanges of energy and moisture between terrestrial ecosystems and the atmosphere from winter into the growing season. These interactions were studied using a spatially distributed, physically based modelling system that represents key components of the land–atmosphere system. Simulations were run for 4 years, over a 4‐km2 tundra domain located in arctic Alaska. A shrub increase was simulated by replacing the observed moist‐tundra and wet‐tundra vegetation classes with shrub‐tundra; a procedure that modified 77% of the simulation domain. The remaining 23% of the domain, primarily ridge tops, was left as the observed dry‐tundra vegetation class. The shrub enhancement increased the averaged snow depth of the domain by 14%, decreased blowing‐snow sublimation fluxes by 68%, and increased the snowcover's thermal resistance by 15%. The shrub increase also caused significant changes in snow‐depth distribution patterns; the shrub‐enhanced areas had deeper snow, and the non‐modified areas had less snow. This snow‐distribution change influenced the timing and magnitude of all surface energy‐balance components during snowmelt. The modified snow distributions also affected meltwater fluxes, leading to greater meltwater production late in the melt season. For a region with an annual snow‐free period of approximately 90 days, the snow‐covered period decreased by 11 days on the ridges and increased by 5 days in the shrub‐enhanced areas. Arctic shrub increases impact the spatial coupling of climatically important snow, energy and moisture interactions by producing changes in both shrub‐enhanced and non‐modified areas. In addition, the temporal coupling of the climate system was modified when additional moisture held within the snowcover, because of less winter sublimation, was released as snowmelt in the spring.  相似文献   

20.
The validity of Connell's intermediate disturbance hypothesis in phytoplankton communities was tested on data from a hypertrophic, shallow lake, Hjarbæk Fjord, Denmark.The present data from Hjarbæk Fjord demonstrate the difficulties in distinguishing stress from disturbance in a phytoplankton community, and show that great changes in the phytoplankton community can take place within few days.A collapse of blue-green algae in late June 1986 caused remineralization of nutrients and resulted in a rapid increase of fast-growing small chlorococcal green algae and phytoplankton species diversity, without any external disturbances acting on the lake. External disturbances in the form of wind action and brackish water intrusion occurred several days after the onset of these events. Carbon depletion and pH 11.0 were severe stress factors on the phytoplankton community. They were induced by calm, warm weather, but eventually acted as a kind of disturbance to the normally well circulated lake.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号