首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
溶解有机质(DOM)作为土壤中最活跃的有机组分,在土壤生物地球化学过程中起着关键作用,探讨植被演替过程中DOM的来源、组成、环境响应与累积规律,对预测土壤碳循环过程具有重要意义。本研究从海螺沟冰川退缩区植被原生演替序列选取演替年龄分别为12、30、40、50、80、120年的样地采集表层和亚表层土壤样本,测定DOM浓度并进行紫外-可见光光谱和三维荧光光谱分析,研究原生演替过程中DOM含量和组成的变化特征及其影响因素。结果表明: 土壤DOM浓度随演替年龄的增加而显著增加。土壤DOM中类蛋白组分、荧光指数和生物指数随演替时间的增加而减小,类腐殖质组分和腐殖化程度随演替过程不断增加,土壤DOM芳香化程度先增加后减小。pH值、铵态氮含量解释了62.2%的表层土壤DOM组分变异,土壤含水率和pH值解释了64.3%的亚表层土壤DOM组分变异,说明环境因素是影响海螺沟冰川退缩区原生演替过程中土壤DOM数量和组成的重要因子。  相似文献   

2.
The composition and biodegradability of streamwater dissolved organic matter (DOM) varies with source material and degree of transformation. We combined PARAFAC modeling of fluorescence excitation–emission spectroscopy and biodegradable dissolved organic carbon (BDOC) incubations to investigate seasonal changes in the lability of DOM along a soil-stream continuum in three soil types: bog, forested wetland and upland forest. The percent BDOC ranged from 7 to 38% across all sites, and was significantly greater in soil compared to streamwater in the bog and forested wetland, but not in the upland forest. The percent BDOC also varied significantly over the entire sampling period in soil and streamwater for the bog and forested wetland, as BDOC peaked during the spring runoff and was lowest during the summer months. Moreover, the chemical quality of DOM in wetland soil and streamwater was similar during the spring runoff and fall wet season, as demonstrated by the similar contribution of protein-like fluorescence (sum of tyrosine and tryptophan fluorescence) in soil water and in streams. These findings suggest that the tight coupling between terrestrial and aquatic ecosystems is responsible for the delivery of labile DOM from wetland soils to streams. The contribution of protein-like fluorescence was significantly correlated with BDOC (p < 0.001) over the entire sampling period indicating DOM is an important source of C and N for heterotrophic microbes. Taken together, our findings suggest that the production of protein-rich, labile DOM and subsequent loss in stream runoff might be an important loss of labile C and N from coastal temperate watersheds.  相似文献   

3.
The impact of human activities on the concentrations and composition of dissolved organic matter (DOM) and particulate organic matter (POM) was investigated in the Walloon Region of the Meuse River basin (Belgium). Water samples were collected at different hydrological periods along a gradient of human disturbance (50 sampling sites ranging from 8.0 to 20,407 km2) and during a 1.5 year monitoring of the Meuse River at the city of Liège. This dataset was completed by the characterization of the DOM pool in groundwaters. The composition of DOM and POM was investigated through elemental (C:N ratios), isotopic (δ13C) and optical measurements including excitation emission matrix fluorescence with parallel factor analysis (EEM–PARAFAC). Land use was a major driver on fluvial OM composition at the regional scale of the Meuse Basin, the composition of both fluvial DOM and POM pools showing a shift toward a more microbial/algal and less plant/soil-derived character as human disturbance increased. The comparison of DOM composition between surface and groundwaters demonstrated that this pattern can be attributed in part to the transformation of terrestrial sources by agricultural practices that promote the decomposition of soil organic matter in agricultural lands and subsequent microbial inputs in terrestrial sources. In parallel, human land had contrasting effects on the autochthonous production of DOM and POM. While the in-stream generation of fresh DOM through biological activity was promoted in urban areas, summer autochthonous POM production was not influenced by land use. Finally, soil erosion by agricultural management practices favored the transfer of terrestrial organic matter via the particulate phase. Stable isotope data suggest that the hydrological transfer of terrestrial DOM and POM in human-impacted catchment are not subject to the same controls, and that physical exchange between these two pools of organic matter is limited.  相似文献   

4.
盛浩  宋迪思  周萍  夏燕维  张杨珠 《生态学报》2017,37(14):4676-4685
了解底土溶解性有机质(DOM)的数量和化学结构对土地利用变化的响应,对科学评价区域土壤有机质动态和碳库稳定性具有重要意义。通过选取花岗岩红壤丘陵区同一景观单元的天然林地(常绿阔叶林)以及由此转变而来的杉木人工林、板栗园和坡耕地,采用化学分析结合光谱扫描(紫外光谱、二维荧光光谱和傅里叶变换红外光谱)技术,研究底土(0.2—1 m)和表土(0—0.2 m)DOM数量和结构对土地利用变化的响应差异,结果表明:58%—87%的DOM贮存在底土中。天然林地土壤的DOM数量最为丰富,底土DOM的宏观化学结构比表土更为简单,以碳水化合物、类蛋白为主。天然林转变为其他利用方式后,底土DOM的损失量(26%—41%)超过表土(12%—49%),冬季比夏季更为凸显;这反映底土DOM数量对人为干扰和植被变化的高度敏感性。同时,底土DOM宏观化学结构趋于复杂化,芳香类、烷烃类和烯烃类的化学抗性物质出现积累的现象。DOM光谱曲线形状、特定峰值、特征值对土地利用的响应敏感,对人为干扰后植被、土壤有机质的变化具有生态指示意义。研究显示,天然林地转变为其他利用方式后,不仅导致底土DOM的损失,也显著降低土壤有机质品质,长期上削弱底土的碳库稳定性和碳吸存能力。  相似文献   

5.
中国亚热带是受氮沉降影响最严重的地区之一.土壤可溶性有机质(DOM)被认为是土壤有机质的重要指标,氮沉降可能通过改变微生物活性导致土壤DOM质量和数量的变化.本研究以亚热带毛竹林为研究对象,设置对照、低氮和高氮3个水平,进行为期3年的施氮处理,探究氮添加对土壤DOM含量、光谱学特征和微生物胞外酶活性的影响.结果表明: 与对照相比,施氮后土壤pH、可溶性有机碳、可溶性有机氮含量和芳香化指数无显著变化,而腐殖化指数随施氮量的增加显著增加,微生物酶活性也随着施氮量的增加呈现先升高后下降的趋势.傅里叶红外光谱结果显示,土壤DOM在7个区域的相似位置存在吸收峰,其中,1000~1260 cm-1的吸收峰最强,表明施氮处理后,土壤中多糖类、醇类、羧酸类及酯类物质增加.三维荧光光谱结果表明,施氮处理后,土壤DOM结构有显著改变,表现在低分子物质如类蛋白质物质和微生物代谢产物减少,而高分子物质如类腐殖质物质显著增加.总的来说,施氮使得土壤氮与微生物需求相适应,促进微生物分解DOM中易降解的物质,土壤DOM结构更加复杂,短期氮沉降可能有利于土壤肥力的改善.  相似文献   

6.
全球气候变化背景下区域降雨格局变化可能深刻影响土壤可溶性有机质(DOM)的数量和质量.为了解亚热带森林土壤DOM对降雨减少的响应,通过6年不同强度(对照、-30%、-60%)的隔离降雨模拟试验,采用光谱技术,研究了降雨减少对亚热带米槠天然林不同深度土壤DOM数量和结构的影响.结果表明: 与对照相比,隔离降雨使0~10 cm土层中可溶性有机碳(DOC)和可溶性有机氮(DON)含量显著降低,其中-30%处理DOC下降幅度小于DON, 而-60%处理DOC下降幅度大于DON,0~10 cm土层中DOC和DON含量都显著高于10~20 cm土层.-30%处理土壤DOM中源于微生物代谢的芳香类腐殖质和烷烃比例上升;-60%处理土壤DOM中微生物代谢产物的相对贡献率减少.除了隔离降雨后水分变化等直接影响外,微生物活性也是本试验区影响DOM数量和结构的重要因素.  相似文献   

7.
Dissolved organic matter (DOM) is a critical phase in terrestrial carbon and nutrient cycling forming the basis of many ecosystem functions, yet the primary drivers controlling its flux from organic horizons and resultant chemical composition remain only partially understood. We studied dissolved organic matter production and chemistry from organic soil horizons across a 4.1 My old well-constrained chronosequence in Hawaii. Controlled soil column irrigation and leaching experiments were conducted on field moist organic soil horizons to quantify microbial activity, DOM production and chemistry. Both microbial activity (defined as CO2 production per unit substrate C) and DOM production were found to be lowest in the youngest (0.3 ky) and oldest (4.1 My) sites of the chronosequence, where nutrients (N and P respectively) were most limiting. By contrast, DOM production and microbial activity was greatest at the intermediate-aged (20–350 ky) sites where nutrients were least limiting, unrelated to the mass of organic matter found in the organic horizons. While differences in production rates were found, 13C NMR spectroscopic results indicated that there was a convergence of chemistry from the solid to the dissolved phase at all sites. In particular, all DOM samples were found to have a high proportion of aromatic acids. With supporting data from a diverse range of ecosystems, we postulate that chemical homogenization of DOM relative to source material is a common feature of many ecosystems due to two microbially mediated processes: (1) similar extracellular enzymatic oxidation conferring solubility to a subset of degradation products; and (2) the rapid selective consumption of the more labile organic compounds in the soil solution.  相似文献   

8.
Understanding the quantity and quality of dissolved organic matter (DOM) in potential watershed sources is critical for explaining and quantifying the exports of DOM in stream runoff. Here, we examined the concentration and quality of DOM for ten watershed sources in a 12?ha forested catchment over a two-year period. DOM composition was evaluated for: throughfall, litter leachate, soil water (zero and tension), shallow and deep groundwater, stream water, hyporheic zone, and groundwater seeps. DOM quality was measured using a suite of optical indices including UV–visible absorbance and PARAFAC modeling of fluorescence excitation-emission matrices (EEMs). DOM concentrations and quality displayed a pronounced trend across watershed sources. Surficial watershed sources had higher DOM concentrations and more humic-like DOM with higher molecular weight whereas deeper groundwater sources were rich in % protein-like fluorescence. The greater % contribution of protein-like fluorescence in groundwater suggested that a larger fraction of groundwater DOM may be bioavailable. DOM for wetland groundwater was more aromatic and humic-like than that at the well-drained riparian location. Principal component analyses (PCA) revealed that the differences in surficial watershed compartments were dictated by humic-like components while groundwater sources separated out by % protein-like fluorescence. Observations from optical indices did not provide any conclusive evidence for preferential association of dissolved organic carbon (DOC) or dissolved organic nitrogen (DON) with any particular DOM quality pools.  相似文献   

9.
Headwater streams influence the biogeochemical characteristics of large rivers and play important roles in regional and global carbon budgets. The combined effects of seasonality and land use change on the biogeochemistry of headwater streams, however, are not well understood. In this study we assessed the influence of catchment land use and seasonality on the composition of dissolved organic matter (DOM) and ecosystem metabolism in headwater streams of a Kenyan river. Fifty sites in 34 streams draining a gradient of catchment land use from 100% natural forest to 100% agriculture were sampled to determine temporal and spatial variation in DOM composition. Gross primary production (GPP) and ecosystem respiration (ER) were determined in 10 streams draining primarily forest or agricultural catchments. Absorbance and fluorescence spectrophotometry of DOM reflected notable shifts in composition along the land use gradient and with season. During the dry season, forest streams contained higher molecular weight and terrestrially derived DOM, whereas agricultural streams were dominated by autochthonous production and low molecular weight DOM. During the rainy season, aromaticity and high molecular weight DOM increased in agricultural streams, coinciding with seasonal erosion of soils and inputs of organic matter from farmlands. Most of the streams were heterotrophic. However, GPP and ER were generally greater in agricultural streams, driven by higher dissolved nutrient (mainly TDN) concentrations, light availability (open canopy) and temperature compared with forest streams. There were correlations between freshly and autochthonously produced DOM, GPP and ER during both the dry and wet seasons. This is one of the few studies to link land-use with organic carbon dynamics and DOM composition. Measures of ecosystem metabolism in these streams help to affirm the role of tropical streams and rivers as important components of the global carbon cycle and demonstrate that even semi-intensive, smallholder agriculture can have measurable effects on riverine ecosystem functioning.  相似文献   

10.
为探究氮沉降对亚热带杉木人工幼林土壤溶液可溶性有机物质(DOM)浓度及光谱学特征的影响,采用负压法,对0~15和15~30 cm土层土壤溶液DOM进行了2年的动态监测及光谱学特征研究.结果表明:氮沉降显著减少了各土层土壤溶液可溶性有机碳(DOC)浓度,增加了芳香化指数(AI)及腐殖化指数(HIX),但对可溶性有机氮(DON)无显著影响.土壤溶液DOM浓度存在明显的季节变动,夏秋季显著高于春冬季.傅里叶红外光谱结果表明,森林土壤溶液DOM在6个区域的相似位置存在吸收峰,其中1145~1149 cm-1的吸收峰最强.三维荧光光谱表明,DOM主要以类蛋白质物质(Ex/Em=230 nm/300 nm)和微生物降解产物(Ex/Em=275 nm/300 nm)为主,施氮使0~15 cm土层类蛋白质物质减少.氮沉降可能主要是通过降低土壤pH、抑制土壤碳矿化和刺激植物生长等途径显著抑制土壤溶液DOC浓度,而表层被抑制的DOC成分以类蛋白质物质和羧酸盐物质为主.氮沉降短期可能有利于土壤肥力的储存,但随着氮沉降量的积累,土壤中营养物质将难以得到有效利用.  相似文献   

11.
Some bacteria can degrade organic micropollutants (OMPs) as primary carbon sources. Due to typically low OMP concentrations, these bacteria may benefit from supplemental assimilation of natural substrates present in the pool of dissolved organic matter (DOM). The biodegradability of such auxiliary substrates and the impacts on OMP removal are tightly linked to biotransformation pathways. Here, we aimed to elucidate the biodegradability and effect of different DOM constituents for the carbofuran degrader Novosphingobium sp. KN65.2, using a novel approach that combines pathway prediction, laboratory experiments, and fluorescence spectroscopy. Pathway prediction suggested that ring hydroxylation reactions catalysed by Rieske-type dioxygenases and flavin-dependent monooxygenases determine the transformability of the 11 aromatic compounds used as model DOM constituents. Our approach further identified two groups with distinct transformation mechanisms amongst the four growth-supporting compounds selected for mixed substrate biodegradation experiments with the pesticide carbofuran (Group 1: 4-hydroxybenzoic acid, 4-hydroxybenzaldehyde; Group 2: p-coumaric acid, ferulic acid). Carbofuran biodegradation kinetics were stable in the presence of both Group 1 and Group 2 auxiliary substrates. However, Group 2 substrates would be preferable for bioremediation processes, as they showed constant biodegradation kinetics under different experimental conditions (pre-growing KN65.2 on carbofuran vs. DOM constituent). Furthermore, Group 2 substrates were utilisable by KN65.2 in the presence of a competitor (Pseudomonas fluorescens sp. P17). Our study thus presents a simple and cost-efficient approach that reveals mechanistic insights into OMP-DOM biodegradation.  相似文献   

12.
Stream and river ecosystems are dependent on energetic inputs from their watersheds and thus shifts in land use from forest cover to agriculture will affect stream community composition and function. The disruption of forest-aquatic linkages alters the organic matter resources in agricultural streams. Dissolved organic matter (DOM) is the dominant form of organic matter in aquatic ecosystems, and a microbial energy source that is important for stream respiration. The concentrations and characteristics of DOM are regulated by both terrestrial (for example, terrestrial organic matter supply) and in-stream processes (for example, microbial respiration and periphyton production) that are influenced by land management. The effects of watershed land use and topographic, soil and climatic variables on DOM quantity (dissolved organic carbon concentration and load), source (terrestrial or in-stream) and quality (composition and lability) were measured in 14 streams across an agricultural land-use gradient. DOC concentration was positively correlated with watershed pasture cover and negatively correlated with watershed relief. No watershed variables were important correlates of DOC load. Stream DOM was primarily of terrestrial origin, but DOM in agricultural streams had a greater proportion of sources from in-stream sources. This may be due to reduced connection with riparian vegetation and increased in-stream primary production. We suggest that maintaining watershed tree cover greater than 52% and ensuring less than 10% of the length of riparian corridor is cleared for pasture could minimize changes to DOM composition. This is important to avoid flow-on effects for stream ecosystem processes that are mediated by DOM. Long-term DOM monitoring will be valuable for assessing the functional impacts of land-use change.  相似文献   

13.
Dissolved organic matter (DOM) composition in freshwater ecosystems is influenced by the interactions among physical, chemical, and biological processes that are controlled, at one level, by watershed landscape, hydrology, and their connections. Against this environmental template, humans may strongly influence DOM composition. Yet, we lack a comprehensive understanding of DOM composition variation across freshwater ecosystems differentially affected by human activity. Using optical properties, we described DOM variation across five ecosystem groups of the Laurentian Great Lakes region: large lakes, Kawartha Lakes, Experimental Lakes Area, urban stormwater ponds, and rivers (n = 184 sites). We determined how between ecosystem variation in DOM composition related to watershed size, land use and cover, water quality measures (conductivity, dissolved organic carbon (DOC), nutrient concentration, chlorophyll a), and human population density. The five freshwater ecosystem groups had distinctive DOM composition from each other. These significant differences were not explained completely through differences in watershed size nor spatial autocorrelation. Instead, multivariate partial least squares regression showed that DOM composition was related to differences in human impact across freshwater ecosystems. In particular, urban/developed watersheds with higher human population densities had a unique DOM composition with a clear anthropogenic influence that was distinct from DOM composition in natural land cover and/or agricultural watersheds. This nonagricultural, human developed impact on aquatic DOM was most evident through increased levels of a microbial, humic‐like parallel factor analysis component (C6). Lotic and lentic ecosystems with low human population densities had DOM compositions more typical of clear water to humic‐rich freshwater ecosystems but C6 was only present at trace to background levels. Consequently, humans are strongly altering the quality of DOM in waters nearby or flowing through highly populated areas, which may alter carbon cycles in anthropogenically disturbed ecosystems at broad scales.  相似文献   

14.
15.
In the context of land use change, the dynamics of the water extractable organic carbon (WEOC) pool and CO2 production were studied in soil from a native oak-beech forest and a Douglas fir plantation during a 98-day incubation at a range of temperatures from 8°C to 28°C. The soil organic carbon, water contents and mineralisation rates of soil samples from the 0–5 cm layer were higher in the native forest than in the Douglas fir plantation. During incubation, a temperature-dependent shift in the δ13C of respired CO2 was observed, suggesting that different carbon compounds were mineralised at different temperatures. The initial size of the WEOC pool was not affected by forest type. The WEOC pool size of samples from the native forest did not change consistently over time whereas it decreased significantly in samples from the Douglas plantation, irrespective of soil temperature. No clear changes in the δ13C values of the WEOC were observed, irrespective of soil origin. The fate of the WEOC, independent of soil organic carbon content or mineralisation rates, appeared to relate to forest types. Replacement of native oak-beech forest with Douglas fir plantation impacts carbon input to the soil, mineralisation rates and production of dissolved organic carbon.  相似文献   

16.
Environmental conditions in the western Arctic Ocean range from constant light and nutrient depletion in summer to complete darkness and sea ice cover in winter. This seasonal environmental variation is likely to have an effect on the use of dissolved organic matter (DOM) by heterotrophic bacteria in surface water. However, this effect is not well studied and we know little about the activity of specific bacterial clades in the surface oceans. The use of DOM by three bacterial subgroups in both winter and summer was examined by microautoradiography combined with fluorescence in situ hybridization. We found selective use of substrates by these groups, although the abundances of Ant4D3 (Antarctic Gammaproteobacteria), Polaribacter (Bacteroidetes), and SAR11 (Alphaproteobacteria) were not different between summer and winter in the Beaufort and Chukchi Seas. The number of cells taking up glucose within all three bacterial groups decreased significantly from summer to winter, while the percentage of cells using leucine did not show a clear pattern between seasons. The uptake of the amino acid mix increased substantially from summer to winter by the Ant4D3 group, although such a large increase in uptake was not seen for the other two groups. Use of glucose by bacteria, but not use of leucine or the amino acid mix, related strongly to inorganic nutrients, chlorophyll a, and other environmental factors. Our results suggest a switch in use of dissolved organic substrates from summer to winter and that the three phylogenetic subgroups examined fill different niches in DOM use in the two seasons.  相似文献   

17.
刘翥  杨玉盛  朱锦懋  谢锦升  司友涛 《生态学报》2015,35(19):6288-6297
选取中亚热带福建三明格氏栲天然林及其转换而成的木荷、锥栗及福建柏等3种人工林表层土壤(0—10 cm)可溶性有机质(DOM)为对象,对其数量和光谱学特征进行了研究,以探讨森林转换对土壤DOM的影响。结果表明,天然林转换成上述3种人工林后,0—5 cm土壤可溶性有机碳(DOC)浓度显著降低(P0.05),降低程度分别为66.1%,69.9%及29.4%,可溶性有机氮(DON)浓度也有所下降;除福建柏外,其余两种人工林5—10 cm土壤DOC及DON浓度均低于天然林。各林分0—5 cm土壤DOC及DON浓度均高于5—10 cm土层。两个土层中,天然林土壤DOM的芳香化及腐殖化程度均显著高于人工林(P0.05),但荧光效率值低于人工林;荧光光谱图显示,天然林土壤DOM在芳香性脂肪族及木质素类复杂结构荧光基团处的吸收大于人工林;各林分土壤DOM傅里叶红外光谱出现吸收谱带的位置相似,其中吸收强度最大的为形成氢键的—OH的伸缩振动,此外还有芳香性CC伸缩振动、有机羧酸盐COO-反对称伸缩振动、碳水化合物中烷氧基C—O的振动等,人工林土壤DOM中碳水化合物的比例增加是其结构简单的主要原因。土壤DOM中结构复杂、分子量大的组分不易向下迁移;天然林与人工林间土壤DOM数量及光谱学特征的差异主要与凋落物输入及营林措施的干扰有关;本研究所涉及的3种人工林中,福建柏更有利于土壤养分的累积。  相似文献   

18.
19.
土壤微生物生物量在森林生态系统中充当具有生物活性的养分积累和储存库。土壤微生物转化有机质为植物提供可利用养分, 与植物的相互作用维系着陆地生态系统的生态功能。同时, 土壤微生物也与植物争夺营养元素, 在季节交替过程和植物的生长周期中呈现出复杂的互利-竞争关系。综合全球数据对温带、亚热带和热带森林土壤微生物生物量碳(C)、氮(N)、磷(P)含量及其化学计量比值的季节动态进行分析, 发现温带和亚热带森林的土壤微生物生物量C、N、P含量均呈现夏季低、冬季高的格局。热带森林四季的土壤微生物生物量C、N、P含量都低于温带和亚热带森林, 且热带森林土壤微生物生物量C含量、N含量在秋季相对最低, 土壤微生物生物量P含量四季都相对恒定。温带森林的土壤微生物生物量C:N在春季显著高于其他两个森林类型; 热带森林的土壤微生物生物量C:N在秋季显著高于其他2个森林类型。温带森林土壤微生物生物量N:P和C:P在四季都保持相对恒定, 而热带森林土壤微生物生物量N:P和C:P在夏季高于其他3个季节。阔叶树的土壤微生物生物量C含量、N含量、N:P、C:P在四季都显著高于针叶树; 而针叶树的土壤微生物生物量P含量在四季都显著高于阔叶树。在春季和冬季时, 土壤微生物生物量C:N在阔叶树和针叶树之间都没有显著差异; 但是在夏季和秋季, 针叶树的土壤微生物生物量C:N显著高于阔叶树。对于土壤微生物生物量的变化来说, 森林类型是主要的显著影响因子, 季节不是显著影响因子, 暗示土壤微生物生物量的季节波动是随着植物其内在固有的周期变化而变化。植物和土壤微生物密切作用表现出来的对养分的不同步吸收是保留养分和维持生态功能的一种权衡机制。  相似文献   

20.
为探究宁波东钱湖表层水体中异养细菌丰度的时空分布特征及其环境影响因素对可溶性有机质转化的影响, 实验采用主成分分析及多元逐步回归分析方法研究了三者之间的关系, 结果表明: 调查期间东钱湖表层水体中异养细菌丰度的季节分布特征为夏季>春季>冬季, 支流汇入口、码头或水上乐园区域水体中异养细菌丰度较高, 近岸人类活动带来的陆源污染是造成此分布特征的主要原因; 多元统计分析结果表明ST、DO、COD、Chla、DOM是制约宁波东钱湖表层水体中异养细菌分布的主要环境因素, 且ST、Chla、COD、DOM中的类芳香族蛋白质Ⅰ及类溶解性微生物代谢产物IV与异养细菌丰度呈显著正相关(p<0.05), DO与异养细菌丰度呈极显著负相关(p<0.01); 异养细菌等微生物的代谢转化活动和陆源输入共同决定DOM的来源和转化, 但异养细菌对DOM具体的驱动转化机制有待于进一步的研究。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号