首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The current study deals with the synthesis of urea and thiourea derivatives 137 which were characterized by various spectroscopic techniques including FAB-MS, 1H-, and 13C NMR. The synthetic compounds were subjected to urease inhibitory activity and compounds exhibited good to moderate urease inhibitory activity having IC50 values in range of 10.11–69.80 µM. Compound 1 (IC50 = 10.11 ± 0.11 µM) was found to be most active and even better as compared to the standard acetohydroxamic acid (IC50 = 27.0 ± 0.5 µM). A limited structure–activity relationship (SAR) was established and the compounds were also subjected to docking studies to confirm the binding interactions of ligands (compounds) with the active site of enzyme.  相似文献   

2.
Hybrid bis-coumarin derivatives 118 were synthesized and evaluated for their in vitro urease inhibitory potential. All compounds showed outstanding urease inhibitory potential with IC50 value (The half maximal inhibitory concentration) ranging in between 0.12 SD 0.01 and 38.04 SD 0.63 µM (SD standard deviation). When compared with the standard thiourea (IC50 = 21.40 ± 0.21 µM). Among these derivatives, compounds 7 (IC50 = 0.29 ± 0.01), 9 (IC50 = 2.4 ± 0.05), 10 (IC50 = 2.25 ± 0.05) and 16 (IC50 = 0.12 ± 0.01) are better inhibitors of the urease compared with thiourea (IC50 = 21.40 ± 0.21 µM). To find structure–activity relationship molecular docking as well as absorption, distribution, metabolism, and excretion (ADME) studies were also performed. Various spectroscopic techniques like 1H NMR, 13C NMR, and EI-MS were used for characterization of all synthesized analogs. All compounds were tested for cytotoxicity and found non-toxic.  相似文献   

3.
A novel series of 5,6-dichloro-2-methyl-1H-benzimidazole derivatives was synthesized and then screened for their urease inhibitory activity. All compounds showed more potent inhibitory activity in the range of IC50 = 0.0294 ± 0.0015–0.1494 ± 0.0041 µM than thiourea (IC50 = 0.5117 ± 0.0159 µM), as a reference inhibitor. Among all the tested compounds, the compound 15 (IC50 = 0.0294 ± 0.0015 µM) having strong electron-withdrawing nitro group on the phenyl ring was recorded as the most potent inhibitor of urease. All compounds were docked at the active sites of the Jack bean urease enzyme to investigate the reason of the inhibitory activity and the possible binding interactions of enzyme-ligand complexes.  相似文献   

4.
Novel derivatives of flurbiprofen 118 including flurbiprofen hydrazide 1, substituted aroyl hydrazides 29, 2-mercapto oxadiazole derivative 10, phenacyl substituted 2-mercapto oxadiazole derivatives 1115, and benzyl substituted 2-mercapto oxadiazole derivatives 1618 were synthesized and characterized by EI-MS, 1H and 13C NMR spectroscopic techniques. All derivatives 118 were screened for α-amylase inhibitory activity and demonstrated a varying degree of potential ranging from IC50 = 1.04 ± 0.3 to 2.41 ± 0.09 µM as compared to the standard acarbose (IC50 = 0.9 ± 0.04 µM). Out of eighteen compounds, derivatives 2 (IC50 = 1.69 ± 0.1 µM), 3 (IC50 = 1.04 ± 0.3 µM), 9 (IC50 = 1.25 ± 1.05 µM), and 13 (IC50 = 1.6 ± 0.18 µM) found to be excellent inhibitors while rest of the compounds demonstrated comparable inhibition potential. A limited structure-activity relationship (SAR) was established by looking at the varying structural features of the library. In addition to that, in silico study was conducted to understand the binding interactions of the compounds (ligands) with the active site of α-amylase enzyme.  相似文献   

5.
Benzohydrazide derivatives 143 were synthesized via “one-pot” reaction and structural characterization of these synthetic derivatives was carried out by different spectroscopic techniques such as 1H NMR and EI-MS. The synthetic molecules were evaluated for their in vitro urease inhibitory activity. All synthetic derivatives showed good inhibitory activities in the range of (IC50 = 0.87 ± 0.31–19.0 ± 0.25 µM) as compared to the standard thiourea (IC50 = 21.25 ± 0.15 µM), except seven compounds 17, 18, 23, 24, 29, 30, and 41 which were found to be inactive. The most active compound of the series was compound 36 (IC50 = 0.87 ± 0.31 μM) having two chloro groups at meta positions of ring A and methoxy group at para position of ring B. The structure–activity relationship (SAR) of the active compounds was established on the basis of different substituents and their positions in the molecules. Kinetic studies of the active compounds revealed that compounds can inhibit enzyme via competitive and noncompetitive modes. In silico study was also performed to understand the binding interactions of the molecules (ligand) with the active site of enzyme.  相似文献   

6.
A series of 1-[(4′-chlorophenyl)carbonyl-4-(aryl)thiosemicarbazide derivatives 125 was synthesized and characterized by spectroscopic techniques such as EI-MS and 1H NMR. All compounds were screened for urease inhibitory activity in vitro and demonstrated excellent inhibitory activity in the range of IC50 = 0.32 ± 0.01–25.13 ± 0.13 μM as compared to the standard thiourea (IC50 = 21.25 ± 0.13 μM). Amongst the potent analogs, compounds 3 (IC50 = 2.31 ± 0.01 μM), 6 (IC50 = 2.14 ± 0.04 μM), 10 (IC50 = 1.14 ± 0.06 μM), 20 (IC50 = 2.15 ± 0.05 μM), and 25 (IC50 = 0.32 ± 0.01 μM) are many folds more active than the standard. Structure-activity relationship (SAR) was rationalized by looking at the effect of diversely substituted aryl ring on inhibitory potential which predicted that regardless of the nature of substituents, their positions on aryl ring is worth important for the potent activity. Furthermore, to verify these interpretations, in silico study was performed on all compounds and a good correlation was perceived between the biological evaluation and docking study of compounds.  相似文献   

7.
3,4-Dimethoxybenzohydrazide derivatives (1–25) have been synthesized and evaluated for their urease inhibitory potential. Among the series, compounds 2, 3, 4 and 5 with IC50 values 12.61 ± 0.07, 18.24 ± 0.14, 19.22 ± 0.21, and 8.40 ± 0.05 µM, respectively, showed excellent urease inhibitory potentials when compared with standard thiourea (IC50 value 21.40 ± 0.21 µM). Compounds 1, 6, 8, 18, 19 and 20 also showed good to moderate inhibition, while the remaining compounds were found to be completely inactive. The structures of compounds 6 and 25 were confirmed through X-ray crystallography while the structures of remaining compounds were confirmed through ESI-MS and 1H NMR. Molecular docking studies were performed understand the binding interactions with enzyme active site. The synthesized compounds were evaluated for cytotoxicity and found to be nontoxic.  相似文献   

8.
Alpha-amylase and urease enzyme over expression endorses various complications like rheumatoid arthritis, urinary tract infection, colon cancer, metabolic disorder, cardiovascular risk, and chronic kidney disease. To overcome these complications, we have synthesized new arylhydrazide bearing Schiff bases/thiazolidinone analogues as α-amylase and urease inhibitors. The analogues 1a-r were evaluated for α-amylase inhibitory potential. All analogues were found active and show IC50 value ranging between 0.8 ± 0.05 and 12.50 ± 0.5 μM as compare to standard acarbose (IC50 = 1.70 ± 0.10 μM). Among the synthesized analogs, compound 1j, 1r, 1k, 1e, 1b and 1f having IC50 values 0.8 ± 0.05, 0.9 ± 0.05, 1.00 ± 0.05, 1.10 ± 0.10, 1.20 ± 0.10 and 1.30 ± 0.10 μM respectively showed an excellent inhibitory potential. Analogs 2a-o were evaluated against urease activity. All analogues were found active and show IC50 value ranging between 4.10 ± 0.02 and 38.20 ± 1.10 μM as compare to standard thiourea (IC50 = 21.40 ± 0.21 μM). Among the synthesized analogs, compound 2k, 2a, 2h, 2j, 2f, 2e, 2g, 2b and 2l having IC50 values 4.10 ± 0.02, 4.60 ± 0.02, 4.70 ± 0.03, 5.40 ± 0.02, 6.70 ± 0.05, 8.30 ± 0.3, 11.20 ± 0.04, 16.90 ± 0.8 and 19.80 ± 0.60 μM respectively showed an excellent inhibitory potential. All compounds were characterized through 1H, 13C NMR and HR-EIMS analysis. Structure activity relationship of the synthesized analogs were recognized and confirmed through molecular docking studies.  相似文献   

9.
Urease is known to be one of the major causes of diseases induced by Helicobacter pylori, thus allow them to survive at low pH inside the stomach and thereby, play an important role in the pathogenesis of gastric and peptic ulcer, apart from cancer as well. Keeping in view the great importance of urease inhibitors, here in this study we have synthesized piperazine derivatives (115) and evaluated for their urease inhibitory activity. All analogs showed excellent inhibitory potential with IC50 values ranging between 1.1 ± 0.01 and 33.40 ± 1.50 µM when compared with the standard inhibitor thiourea (IC50 = 21.30 ± 1.10 µM). Structure activity relationship has been established for all compounds which are mainly based upon the substitution on phenyl ring. Molecular docking study was performed in order to understand the binding interaction of the compounds in the active site of enzyme.  相似文献   

10.
Current study is based on the biology-oriented drug synthesis (BIODS) of S-naproxen (NSAID) derivatives and the evaluation of their urease inhibitory potential. In this regard, a variety of S-naproxen derivatives 239 including hydrazide 1, Schiff bases 221, aroyl substituted hydrazides 2224, sulfohydrazides 2534, 2-mercapto oxadiazole 35, phenacyl substituted 2-mercapto oxadiazoles 3639 were synthesized under the umbrella of BIODS by simple chemical transformation of its pharmacophoric carboxylic group. Compounds 139 were evaluated for in vitro urease inhibitory activity and most of them showed good to moderate inhibitory potential in the range of IC50 = 14.01 ± 0.23–76.43 ± 0.8 µM as compared to standard acetohydroxamic acid (IC50 = 27.0 ± 0.5 µM). Limited structure-activity relationship (SAR) was established in order to rationalize the participation of varying groups (R) in the inhibitory potential of compounds. Molecular docking study on all active compounds was also carried out to decipher the interactions detail of the ligand with the receptors of active site of enzyme.  相似文献   

11.
A new series of 2,3-disubstituted quinazolin-4(3H)-one compounds including oxadiazole and furan rings was synthesized. Their inhibitory activities on urease were assessed in vitro. All newly synthesized compounds exhibited potent urease inhibitory activity in the range of IC50 = 1.55 ± 0.07–2.65 ± 0.08 µg/mL, when compared with the standard urease inhibitors such as thiourea (IC50 = 15.08 ± 0.71 µg/mL) and acetohydroxamic acid (IC50 = 21.05 ± 0.96 µg/mL). 2,3-Disubstituted quinazolin-4(3H)-one derivatives containing furan ring (3a-e) were found to be the most active inhibitors when compared with the compounds 2a-e bearing oxadiazole ring. Compound 3a, bearing 4-chloro group on phenyl ring, was found as the most effective inhibitor of urease with the IC50 value of 1.55 ± 0.11 µg/mL. The molecular docking studies of the newly synthesized compounds were performed to identify the probable binding modes in the active site of the Jack bean urease (JBU) enzymes.  相似文献   

12.
Urease is an enzyme of amidohydrolase family and is responsible for the different pathological conditions in the human body including peptic ulcers, catheter encrustation, kidney stone formation, hepatic coma, encephalopathy, and many others. Therefore, the search for potent urease inhibitors has attracted major scientific attention in recent years. Urea and thiourea derivatives of tryptamine (125) were synthesized via reaction of tryptamine with different substituted phenyl isocyanates/isothiocyanates. The synthetic compounds were evaluated for their urease enzyme inhibitory activity and they exhibited good inhibitory potential against urease enzyme in the range of (IC50 = 11.4 ± 0.4–24.2 ± 1.5 μM) as compared to the standard thiourea (IC50 = 21.2 ± 1.3 μM). Out of twenty-five compounds, fourteen were found to be more active than the standard. Limited structure-activity relationship suggested that the compounds with CH3, and OCH3 substituents at aryl part were the most potent derivatives. Compound 14 (IC50 = 11.4 ± 0.4 μM) with a methyl substituent at ortho position was found to be the most active member of the series. Whereas, among halogen substituted derivatives, para substituted chloro compound 16 (IC50 = 13.7 ± 0.9 μM) showed good urease inhibitory activity. These synthetic derivatives were found to be non-cytotoxic in cellular assay. Kinetic studies revealed that the compounds 11, 12, 14, 17, 21, 22, and 24 showed a non-competitive type of inhibition. In silico study identified the possible bindings interactions of potential inhibitors with the active site of enzyme. These newly identified inhibitors of urease enzyme can serve as leads for further research and development.  相似文献   

13.
A new series of quinazolinone derivatives containing triazole, thiadiazole, thiosemicarbazide functionalities was synthesized and then screened for their in vitro urease inhibition properties. Most of the compounds showed excellent activity with IC50 values ranging between 1.88 ± 0.17 and 6.42 ± 0.23 µg/mL, compared to that of thiourea (IC50 = 15.06 ± 0.68) and acetohydroxamic acid (IC50 = 21.03 ± 0.94), as reference inhibitors. Among the synthesized molecules, compounds 5c, 5e and 5a showed the best inhibitory effect against urease enzyme with IC50 values of 1.88 ± 0.17 µg/mL, 1.90 ± 0.10 and 1.96 ± 0.07 µg/mL, respectively. Moreover in order to give better understanding of the inhibitory activity of synthesized compounds, molecular docking studies were applied at the target sites of jack bean urease enzyme (JBU). Their binding poses and energy calculations were analyzed using induced fit docking (IFD) and prime-MMGBSA tool. Binding poses of studied compounds were determined using induced fit docking (IFD) algorithms.  相似文献   

14.
A novel series of biscoumarin-1,2,3-triazole hybrids 6a-n was prepared and evaluated for α-glucosidase inhibitory potential. All fourteen derivatives exhibited excellent α-glucosidase inhibitory activity with IC50 values ranging between 13.0 ± 1.5 and 75.5 ± 7.0 µM when compared with the acarbose as standard inhibitor (IC50 = 750.0 ± 12.0 µM). Among the synthesized compounds, compounds 6c (IC50 = 13.0 ± 1.5 µM) and 6g (IC50 = 16.4 ± 1.7 µM) exhibited the highest inhibitory activity against α-glucosidase and were non-cytotoxic towards normal fibroblast cells. Kinetic study revealed that compound 6c inhibits the α-glucosidase in a competitive mode. Furthermore, molecular docking investigation was performed to find interaction modes of the biscoumarin-1,2,3-triazole derivatives.  相似文献   

15.
Anticancer therapeutics with profiles of high potency, low toxicity, and low resistance is of considerable interest. A new series of functionalized spirooxindole linked with 3-acylindole scaffold is reported, starting from chalcones derived from 3-acetyl indole with isatin, and l-4-thiazolidinecarboxylic acid. The reactions proceeded regioselectivity, stereoselectivity, without side products in high yield (71–89%). The new spirooxindole hybrids have been evaluated in vitro for their antiproliferative effects against colon cancer (HCT-116), hepatocellular carcinoma (HepG2) and prostate cancer (PC-3). The selectivity of their activity was evaluated. Some of the synthesized compounds showed considerable anticancer activities. Compound 4k proved to retain a high cytotoxic activity and selectivity against colon cancer cells HCT-116 (IC50 = 7 ± 0.27 µM, SI: 3.7), and HepG2 (IC50 = 5.5 ± 0.2 µM, SI: 4.7) in comparison to (IC50 = 12.6 ± 0.5, SI: 0.4 and 5.5 ± 0.3 µM, SI: 0.9, respectively). Compound 4k was less active (IC50 = 6 ± 0.3 µM, SI: 4.3) than cisplatin (IC50 = 5 ± 0.56 µM, SI: 1.0) but showed greater selectivity towards prostate cancer cells PC-3 in comparison to cisplatin. The details of the binding mode of the active compounds were clarified by molecular docking. Ligand Efficiency (LE) and Ligand Lipophilic Efficiency (LLE) were evaluated and revealed that compound 4k had acceptable value.  相似文献   

16.
Despite of a diverse range of biological activities associated with chalcones and bis-chalcones, they are still neglected by the medicinal chemist for their possible α-amylase inhibitory activity. So, the current study is based on the evaluation of this class for the identification of new leads as α-amylase inhibitors. For that purpose, a library of substituted chalcones 113 and bis-chalcones 1418 were synthesized and characterized by spectroscopic techniques EI-MS and 1H NMR. CHN analysis was carried out and found in agreement with the calculated values. All compounds were evaluated for in vitro α-amylase inhibitory activity and demonstrated good activities in the range of IC50 = 1.25 ± 1.05–2.40 ± 0.09 µM as compared to the standard acarbose (IC50 = 1.04 ± 0.3 µM). Limited structure–activity relationship (SAR) was established by considering the effect of different groups attached to aryl rings on varying inhibitory activity. SMe group in chalcones and OMe group in bis-chalcones were found more influential on the activity than other groups. However, in order to predict the involvement of different groups in the binding interactions with the active site of α-amylase enzyme, in silico studies were also conducted.  相似文献   

17.
Bio-assay guided fractionation of the methanolic extract of Aloe vera resin and Lycium shawii stem successively afforded twenty three compounds; fourteen (114) from A. vera and nine (1523) from L. shawii. All these compounds were characterized by 1D and 2D NMR spectroscopic techniques viz., 1H, 13C, DEPT, HSQC, HMBC, and COSY, and NEOSY, ESI-MS and compared with the reported literature. These compounds were assessed for their potential as urease inhibitors targeted in peptic ulcer. Among crude extracts and fractions of A. vera resin, n-butanol fraction (23.5 ± 1.7 μg·mL−1) showed the most potent urease inhibition followed by methanol (30.9 ± 0.3 μg/mL) and ethyl acetate (31.7 ± 0.5 μg·mL−1). In case of L. shawii, ethyl acetate fraction exhibited the highest urease activity (41.0 ± 1.4 μg/mL) trailed by dichloromethane (55.2 ± 1.5 μg/mL) fraction. Among the isolates, compounds 7, 11 and 23 were found to be excellent urease inhibitors with IC50 values of 14.5 ± 0.90 µM, (16.7 ± 0.16 µM) and 14.0 ± 0.8 µM, respectively. To the best of our knowledge, this is the first report on the urease enzyme inhibitory activity of the said compounds excluding compound 18. In addition, the urease activity of different fractions of L. shawii stem was also reported for the first time. The molecular docking studies showed that all the active compounds well accommodate in the active site of the urease enzyme by interacting with key amino acids.  相似文献   

18.
Despite of many diverse biological activities exhibited by benzimidazole scaffold, it is rarely explored for the urease inhibitory potential. For that purpose, benzimidazole analogues 1–19 were synthesized and screened for in vitro urease inhibitory potential. Structures of all synthetic analogues were deduced by different spectroscopic techniques. All analogues revealed inhibition potential with IC50 values of 0.90 ± 0.01 to 35.20 ± 1.10 μM, when compared with the standard thiourea (IC50 = 21.40 ± 0.21 μM). Limited SAR suggested that the variations in the inhibitory potentials of the analogues are the result of different substitutions on phenyl ring. In order to rationalize the binding interactions of most active compounds with the active site of urease enzyme, molecular docking study was conducted.  相似文献   

19.
A series of benzamide derivatives 112 with various functional groups (–H, –Br, –F, –OCH3, –OC2H5, and –NO2) was synthesized using an economic, and facile Microwave-Assisted Organic Synthesis, and evaluated for acetylcholinesterase (ACHE) and butyrylcholinesterase (BCHE) activity in vitro. Structure–activity relationship showed that the substitution of –Br group influenced the inhibitory activity against BCHE enzyme. Synthesized compounds were found to be selective inhibitors of BCHE. In addition, all compounds 112 were found to be non-cytotoxic, as compared to the standard cycloheximide (IC50 = 0.8 ± 0.2 µM). Among them, compound 3 revealed the most potent BCHE inhibitory activity (IC50 = 0.8 ± 0.6 µM) when compared with the standard galantamine hydrobromide (IC50 = 40.83 ± 0.37 µM). Enzyme kinetic studies indicated that compounds 1, 34, and 78 showed a mixed mode of inhibition against BCHE, while compounds 2, 56 and 9 exhibited an uncompetitive pattern of inhibition. Molecular docking studies further highlighted the interaction of these inhibitors with catalytically important amino acid residues, such as Glu197, Hip438, Phe329, and many others.  相似文献   

20.
A novel series of acridine linked to thioacetamides 9a–o were synthesized and evaluated for their α-glucosidase inhibitory and cytotoxic activities. All the synthesized compounds exhibited excellent α-glucosidase inhibitory activity in the range of IC50 = 80.0 ± 2.0–383.1 ± 2.0 µM against yeast α-glucosidase, when compared to the standard drug acarbose (IC50 = 750.0 ± 1.5 µM). Among the synthesized compounds, 2-((6-chloro-2-methoxyacridin-9-yl)thio)-N-(p-tolyl) acetamide 9b displayed the highest α-glucosidase inhibitory activity (IC50 = 80.0 ± 2.0 μM). The in vitro cytotoxic assay of compounds 9a–o against MCF-7 cell line revealed that only the compounds 9d, 9c, and 9n exhibited cytotoxic activity. Cytotoxic compounds 9d, 9c, and 9n did not show cytotoxic activity against the normal human cell lines HDF. Kinetic study revealed that the most potent compound 9b is a competitive inhibitor with a Ki of 85 μM. Furthermore, the interaction modes of the most potent compounds 9b and 9f with α-glucosidase were evaluated through the molecular docking studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号