首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The phytoextraction of the trace elements (TEs) As, Cd, Cu, Ni, Pb, and Zn by willow cultivars (Fish Creek, SV1 and SX67) was measured during a 3-year field trial in a mildly contaminated soil. Biomass ranged from 2.8 to 4.4 Mg/ha/year at 30,000 plants/ha. Shoots (62%) were the main component followed by leaves (23%) and roots (15%). Biomass was positively linked to soluble soil dissolved organic carbon, K, and Mg, while TEs, not Cd and Zn, had a negative effect. The TE concentration ranking was: Zn > Cu > Cd > Ni, Pb > As, and distribution patterns were: (i) minima in shoots (As, Ni), (ii) maxima in leaves (Cd, Zn), or (iii) maxima in roots (Cu, Pb). Correlations between soil and plant TE were significant for the six TEs in roots. The amounts extracted were at a maximum for Zn, whereas Fish Creek and SV1 extracted more TE than SX67. More than 60% (91–94% for Cd and Zn) of the total TE was in the aboveground parts. Uptake increased with time because of higher biomass. Fertilization, the selection of cultivars, and the use of complementary plants are required to improve productivity and Cd and Zn uptake.  相似文献   

2.
This study determined the changes in trace elements (TE) (As, Cd, Cu, Ni, Pb, Zn) chemistry in the soils of a willow (“Fish Creek” – Salix purpurea, SV1 – Salix x dasyclados and SX67 – Salix miyabeana) plantation growing under a cold climate during a three-year trial. The soil HNO3-extractable and H2O-soluble TE concentrations and pools significantly decreased under most cultivars (Fish, SX67). Yet, TE changes showed inconsistent patterns and localized soil TE increases (Ni, Pb) were measured. Temporal changes in soil TE were also detected in control plots and sometimes exceeded changes in planted plots. Discrepancies existed between the amount of soil TE change and the amount of TE uptake by willows, except for Cd and Zn. Phytoremediation with willows could reduce soil Cd and Zn within a decadal timeframe indicating that they can be remediated by willows in moderately contaminated soils. However, the time needed to reduce soil As, Cu, Ni and Pb was too long to be efficient. We submit that soil leaching contributed to the TE decrease in controls and the TE discrepancies, and that the plantation could have secondary effects such as the accelerated leaching of soil TE.  相似文献   

3.
This research aims to assess the effect of the application of biosolids compost and phytoremediation on the mobility of total and biodisponibles (DTPA) fractions of cadmium, copper, lead, and zinc from different horizons of a superficially contaminated soil. Leaching experiment in soil columns was proposed. Treatments contemplated application of compost biosolid and phytoremediation. Two destructive samplings were performed. Total and DTPA trace metals were identified in each horizon. The overall performance of the various elements in its total and DTPA forms show greater concentration in horizon A and fewer gradients between horizons Bt and BC, thus assuming that the high content of clay in horizon Bt (62.9%) limits its movement through the horizons. In the mobile nutrients, a greater mobility was evidenced in DTPA fractions if compared to Total fractions. In the horizon A, the more mobile metals, such as Zn and Cd, evidenced a greater percentage of DTPA/Total fractions in all treatments. The application of compost with or without plant diminished the mobilization of Zn, Cu, and Cd Total, thus limiting a potential leaching to inferior horizons. However, this effect was not observed in the DTPA fraction.  相似文献   

4.
王爱霞  方炎明 《广西植物》2017,37(4):470-477
该研究选取杭州市2个污染区常见的6种绿化树种叶片作为材料,以清洁区为对照,采用电感耦合等离子体发射光谱法,测定受试树种叶内及对应样点降尘、土壤中Pb、Cd、Cr、Cu、Ni和Zn的含量,分析叶片的吸污能力以及重金属含量与土壤、降尘的相关性。结果表明:(1)污染区树种重金属含量明显高于对照区,绿化树种对环境重金属污染物有一定的吸收能力,重金属含量在不同的树种中具有明显差异;所测树种叶内Zn含量最大,Pb次之,Cd最小,指示能力则以枸骨(Ilex cornuta)对Cd和Pb、圆柏(Juniperus chinensis)对Cu、茶花(Camellia japonica)对Ni、广玉兰(Magnolia grandiflora)对Zn为最强。(2)3个样点树种叶片与对应样点土壤、降尘中重金属元素含量的相关性分析和回归分析表明,叶片重金属含量与土壤重金属含量的相关性较小,而与降尘呈显著正相关。因此,绿化树种叶片作为空气重金属污染的累积器和监测器是科学合理的,且上述4种树种对杭州市空气中6种重金属污染的指示作用具有一定参考价值,可作为监测城市空气质量的特型树种。该研究结果为减少城市空气重金属污染提供了科学依据和理论支持。  相似文献   

5.
The input of heavy metals by atmospheric deposition to forested watersheds substantially decreased during the last decades in many areas. The goal of our study was to identify the present sinks and sources of metals and factors influencing metal mobility at the catchment and soil profile scale. We determined concentrations and fluxes of Cd, Zn, Cu, Cr and Ni in precipitation, litterfall, soil solutions (Oi, Oe, Oa horizon percolates, 20 and 90?cm soil depth) and runoff in a forest ecosystem in NE-Bavaria, Germany for 1?year. The metal concentrations in solutions were mostly <10???g?l?1 beside Zn (<1200???g?l?1). The present total deposition was estimated at 1.0, 560, 30, 1.2 and 10.4?g?ha?1?year?1 for Cd, Zn, Cu, Cr and Ni, respectively. The mass balance (total deposition minus runoff) at the catchment scale indicated actual retention of Zn, Cu and Ni, but an almost balanced budget for Cr and Cd. Considering the soil profile scale, the Oi horizon still acted as a sink, whereas the Oe and Oa horizons were presently sources for all metals. The solid?Csolution partitioning coefficients indicated higher mobility of Cd and Zn than of Cu, Cr and Ni in forest soils. In the mineral soil horizons, Kd values derived from field measurements were substantially larger than those predicted with empirical regression equations from Sauv?? et al. (Environ Sci Technol 34:1125?C1131, 2000; Environ Sci Technol 37:5191?C5196, 2003). The mineral soil acted as a sink for all metals beside Cd. Dissolved organic C and pH influenced the metal mobility, as indicated by significant correlations to metal concentrations in Oa percolates and runoff. The solid?Csolution partitioning coefficients indicated higher mobility of Cd and Zn than of Cu, Cr and Ni in forest soils. Overall, the decreased deposition rates have obviously induced a source function of the Oe and Oa horizon for metals. Consequently, mobilization of metals from forest floor during heavy rain events and near surface flow conditions may lead to elevated concentrations in runoff.  相似文献   

6.
The vertical niche differentiation of genera of ectomycorrhiza (ECM) was assessed in a 17-year-old Norway spruce (Picea abies [L.] Karst.) plantation on a mountainous dolomitic site (1,050 m above sea level) of the Bavarian Limestone Alps. We determined ECM anatomotypes, recorded the abundance of corresponding ECM root tips and classified them into groups of ECM exploration types, which refer to the organisation and the extent of their extramatrical mycelia. The abundance of ECM was highest in the organic soil layers, compared to the mineral soil horizon. The ordination of the ECM communities and of the exploration types revealed segregation related to soil horizon properties. While Cenococcum geophilum preferred the organic soil layers, Lactarius spp., Tomentella spp. and Craterellus tubaeformis were generally most abundant in the mineral soil horizons. Cenococcum geophilum was the predominant species, possibly based on enhanced competitiveness under the prevailing site conditions. The short-distance exploration types (e.g. C. geophilum) preferentially colonised the organic soil layer, whereas the contact types (e.g. most of the Tomentella spp., C. tubaeformis) together with medium-distance types (e.g. Amphinema byssoides) were primarily associated with the underlying A-horizons. Therefore, the soil horizons had an important effect on the distribution of ECM and on their community structure. The spatial niche differentiation of ECM genera and exploration types is discussed in regard to specific physico-chemical properties of soil horizon and the assumed ecophysiological strategies of ECM.  相似文献   

7.
Carl L. Strojan 《Oecologia》1978,32(2):203-212
Summary Concentrations of about 26,000 ppm Zn, 10,000 ppm Fe, 2,300 ppm Pb, 900 ppm Cd, 340 ppm Cu, and 0.40% S were measured in the O2 litter horizon about 1 km from a zinc smelter at Palmerton, Pennsylvania. Samples taken about 6 km east of the smelter had concentrations of about 15,000 ppm Zn, 6,500 ppm Fe, 970 ppm Pb, 250 ppm Cd, 170 ppm Cu, and 0.26% S. Samples from a control area about 40 km east of the smelter had concentrations of 2,800 ppm Fe, 650 ppm Zn, 260 ppm Pb, 50 ppm Cu, 9 ppm Cd, and 0.13% S.Litter bags were used to estimate first-year weight loss in sassafras leaves and a mixture of chestnut oak/red oak leaves in the three sites. At the end of one year, average weight loss for sassafras was 39.3% in the control site, 21.8% at 6 km, and 17.5% at the 1 km site. For the chestnut oak/red oak mixture, average weight loss was 36.8% (40 km), 25.7% (6 km), and 19.1% (1 km). Numbers and diversity of soil microarthropods inhabiting the litter bags showed a corresponding decline at sites near the smelter. Concentrations of Ca, Cd, Cr, Cu, Fe, Mg, Mn, N, Na, Ni, P, Pb, S and Zn in the decomposing litter were also measured.The average amount of organic matter on the forest floor was estimated to be 3.8 kg/m2 in the control site, about 3.8 kg/m2 at 6 km, and about 8.1 kg/m2 1 km from the smelter. Average thickness of the litter horizons in these three sites was 6.0 cm (40 km), 7.0 cm (6 km), and 12.4 cm (1 km), suggesting a long-term depression of decomposition and mineral cycling near the smelter.  相似文献   

8.
Concentration and distribution of cadmium (Cd), chromium (Cr), copper (Cu), nickel (Ni), lead (Pb), and zinc (Zn) were determined in 26 soil profiles (n = 78) of northern Kentucky in response to environmental concerns about increasing anthropogenic inputs in a fast-paced urbanizing area. The selected sites represent alluvial, glacial till or residual soils that have not received any biosolid- or industrial-waste applications. Mean concentrations of Zn (53.8 mg kg?1) and Ni (25.9 mg kg?1) were the highest in the soil profile, whereas Cd (0.21 mg kg?1) was present only in trace amounts. All metals were within the low to middle range of baseline concentrations reported for US soils, suggesting minimal anthropogenic inputs. The distribution of Cu, Cr, Ni, and Zn increased with soil depth, whereas Cd and Pb concentrations were unaffected throughout the soil profile. Alluvial soils had the highest overall metal accumulations, particularly in surface soil horizons, indicating potential metal enrichment through depositional processes. The presence of a fragipan horizon or depth to bedrock did not significantly affect metal retention. Single correlation and multiple regression analyses indicated OM and pH as the most influential soil parameters for metal retention, followed by cation exchange capacity (CEC) and CEC/clay. Single correlations among metals suggested strong covariance of Zn with most metals throughout the soil profile, but weaker for Pb and Ni.  相似文献   

9.
Phytostabilization aims to immobilize soil contaminants using higher plants. The accumulation of trace elements in Populus alba leaves was monitored for 12 years after a mine spill. Concentrations of As and Pb significantly decreased, while concentrations of Cd and Zn did not significantly over time. Soil concentrations extracted by CaCl2 were measured by ICP-OES and results of As and Pb were below the detection limit. Long-term biomonitoring of soil contamination using poplar leaves was proven to be better suited for the study of trace elements. Plants suitable for phytostabilization must also be able to survive and reproduce in contaminated soils. Concentrations of trace elements were also measured in P. alba fruiting catkins to determine the effect on its reproduction potential. Cadmium and Zn were found to accumulate in fruiting catkins, with the transfer coefficient for Cd significantly greater than Zn. It is possible for trace elements to translocate to seed, which presents a concern for seed germination, establishment and colonization. We conclude that white poplar is a suitable tree for long-term monitoring of soil contaminated with Cd and Zn, and for phytostabilization in riparian habitats, although some caution should be taken with the possible effects on the food web.

Supplemental materials are available for this article. Go to the publisher's online edition of International Journal of Phytoremediation to view the supplemental file.  相似文献   


10.
Summary This study examines the role of canopy trees in the formation and maintenance of different herb microhabitats in a mixed mesophytic forest stand. Herb abundance and reproductive success were recorded in 54 circular plots under seven species of canopy trees and in 15 circular control plots>2 m from any tree. Soil moisture, soil nutrient levels, litter depth, and light intensity were measured in a subset of these plots. Ordination of plots by both herb relative abundance and by reproductive success of common species indicated that herb assemblages under most canopy tree species were similar to those away from trees. However, herb assemblages under Fagus grandifolia trees differed moderately from the others while plots under Quercus alba trees supported significantly different herb assemblages. Analyses of variance revealed that several herb species occurred at significantly closer mean distance to the base of Q. alba or Fagus trees or at higher densities under these tree species. Soils around Q. alba trees had significantly higher concentrations of calcium and sulfate ions, and higher pH than plots under other tree species and control plots. This correlated closely with Q. alba stemflow which had higher concentrations of calcium and sulfate ions and lower concentrations of hydrogen ions than stemflow from other trees at this site. The slightly lower soil pH near the base of Fagus trees may have been related to the high volumes of stemflow produced by this species. Stepwise regression showed significant correlations between abundances of five common herb species and soil nutrient patterns. Maintenance of spatial heterogeneity in forest floor resources by the presence of different species of canopy trees may therefore be important in the maintenance of diversity in these understory herb communities.  相似文献   

11.
Peter Saetre 《Ecography》1999,22(2):183-192
Trees directly and indirectly influence the above- and below-ground environment, and can be expected to modify the spatial patterns of organisms associated with the forest floor. This study aimed to examine the effects of a coniferous (Picea abies) and a broad-leaved (Betula pubescens) tree species on the spatial pattern of ground vegetation and soil microbial properties in a mixed stand in central Sweden. I have characterised the species composition of ground vegetation, soil microbial biomass and activity, photosynthetic active radiation (PAR), soil water content and soil pH in the stand, and tested whether the spatial patterns of these variables were related to the positioning of trees. Geostatistics were used to describe the spatial variation in ground vegetation, soil mirobiological properties and the soil surface environment. PAR, soil water content and the cover of the moss Brachytecium reflexum and associated herb species decreased with the influence of spruce trees. Microbial biomass, measured as the amount of phospholipid fatty acids, decreased with spruce influence but increased with the influence of birch trees. Microbial respiration was not affected by spruce but increased with the influence of birch. Ground vegetation and microbial respiration, which were influenced by one tree species only, aggregate on a scale of 4-5 m, corresponding fairly well with patches of a single tree species. Soil microbial biomass, which was affected by both tree species, aggregated on a scale of 7-8 m. roughly corresponding to the distance between patches of spruce and birch trees respectively. I suggest that spruce trees influenced vegetation mainly through shading, and that a difference in the availability of organic matter under birch and spruce trees caused spatial variation in microbial biomass and activity. Thus, spatial patterns in ground vegetation and soil microbial properties may develop in a mixed forest of coniferous-broad leaved trees, as a result of the difference in influence of tree species and nested variation associated with the arrangement of the trees.  相似文献   

12.
Four-fold variation in leaf-litter Ca concentration among 14 tree species growing in a common garden in central Poland was linked to variation in soil pH, exchangeable Ca, soil base saturation, forest floor turnover rates, and earthworm abundance. Given the potential importance of tissue Ca to biogeochemical processes, in this study we investigated potential controls on leaf Ca concentrations using studies of both laboratory seedlings and 30-year-old trees in the field. We first assessed whether species differences in Ca concentration of green leaves and leaf litter were due to differences in Ca uptake, plant growth, or Ca translocation to different organs, by measuring seedlings of 6 of the 14 species grown under controlled conditions of varying Ca supply. We also investigated whether trees species with high Ca concentrations in green leaves and leaf litter access soil Ca to a greater extent than low-Ca species by growing more fine roots in high-Ca soil horizons. Root distribution in the field was determined in all 14 tree species by profile wall mapping and soil sampling of excavated pits. There was no correlation between horizon root count density (number of roots m−2) and exchangeable soil Ca, nor was there a correlation of stand-level leaf litter Ca with density of roots 45–100 cm deep in the soil, suggesting that a deeper root distribution does not result in greater Ca acquisition among these species. Variation among species in leaf Ca concentration of greenhouse seedlings was positively correlated with leaf Ca concentrations of mature trees, indicating that the same ranking in leaf Ca among species existed under controlled Ca supply. Species also differed in seedling growth response to Ca supply. Tilia, the species with the highest leaf Ca in the field, generated only 10% as much biomass and height at low relative to high Ca supply, whereas the other species exhibited no significant differences. Species exhibited differences in (i) partitioning of whole plant Ca and biomass to leaf, stem and root organs and (ii) the pattern of such partitioning between high and low Ca treatments. Our data support the hypothesis that although soil Ca supply can contribute to variation among trees in leaf and litter Ca concentration, innate physiological differences among species also can be a major cause for species variation.  相似文献   

13.

Soils represent important pools of soil organic carbon (SOC) that can be greatly influenced by labile C inputs, which are expected to increase in future due to CO2 enrichment of atmosphere and a concomitant rise in plant primary productivity. Studying effects of variable labile C inputs on SOC pool helps to understand how soils respond to global change. However, this knowledge is missing for coniferous forest soils despite being widespread throughout the northern temperate zone. We conducted a 7-month field manipulation experiment to study the effects of variable labile C inputs (simulated by additions of C4 sucrose) on the C content in soil fractions and on microbial abundance in the organic (O), surface mineral (A), and subsoil mineral (B) horizons of a temperate coniferous forest soil. SOC in less-protected soil fractions and total organic C were substantially decreased by labile C additions that simulated future increases in C inputs. The SOC losses were comparable between the A and B horizon (40% vs. 30%). However, because sucrose availability estimated from its incorporation into soil fractions and microbial biomass sharply decreased with soil depth, the loss of C was higher in the B than in the A horizon when related to the amount of sucrose added. Utilization of sucrose was highest by fungi in the O horizon and by bacteria in the mineral soil horizons. The results indicate that future increases in labile C inputs to coniferous forest soils will cause rapid and substantial losses of SOC in both the surface and subsoil mineral horizons.

  相似文献   

14.
Phytoextraction of Risk Elements by Willow and Poplar Trees   总被引:1,自引:0,他引:1  
To characterize the phytoextraction efficiency of two clones of willow trees (Salix x smithiana Willd., Salix rubens) and two clones of poplar trees (Populus nigra x maximowiczii, Populus nigra Wolterson) were planted in contaminated soil (0.4–2.0 mg Cd.kg?1, 78–313 mg Zn.kg?1, 21.3–118 mg Cu.kg?1). Field experiment was carried out in Czech Republic. The study investigated their ability to accumulate heavy metals (Cd, Zn, and Cu) in harvestable plant parts. The poplars produced higher amount of biomass than willows. Both Salix clones accumulated higher amount of Cd, Zn and Cu in their biomass (maximum 6.8 mg Cd.kg?1, 909 mg Zn.kg?1, and 17.7 mg Cu.kg?1) compared to Populus clones (maximum 2.06 mg Cd.kg?1, 463 mg Zn.kg?1, and 11.8 mg Cu.kg?1). There were no significant differences between clones of individual species. BCs for Cd and Zn were greater than 1 (the highest in willow leaves). BCs values of Cu were very low. These results indicate that Salix is more suitable plant for phytoextraction of Cd and Zn than Populus. The Cu phytoextraction potential of Salix and Populus trees was not confirmed in this experiment due to low soil availability of this element.  相似文献   

15.
Lawson  Dan  Inouye  Richard S.  Huntly  Nancy  Carson  Walter P. 《Plant Ecology》1999,145(2):267-279
We surveyed vegetation along forest margins in a 65-year chronosequence of old-fields at the Cedar Creek Natural History Area in east-central Minnesota, USA, to identify successional patterns of woody plants and to determine if these were correlated with soil nitrogen. We predicted that shrub and tree abundance, size, and distance of occurrence from the forest edge would be correlated with field age or soil nitrogen. Instead we did not find successional trends in the abundance or composition of woody species. Even in the oldest field the abundance of trees and shrubs was low and concentrated in areas close to the forest. Though trees were larger and present further from the forest edges in older fields, average tree height was less than 126 cm in all fields.Since we did not find successional trends we looked at various local factors (local seed sources, deer browsing, and forest edge aspect) and their relation to recruitment, mortality, or growth to explain variation among fields in abundance of trees or shrubs. The three most common tree species (Quercus rubra, Q. macrocarpa,and Populus tremuloides) all had a higher relative abundance of seedlings, and two (Q. rubra and Q. macrocarpa) had a higher relative abundance of large trees adjacent to forests with a high abundance of conspecific adults. Most trees taller than 20 cm were browsed by deer and were shorter in 1995 than they were in 1993. Mortality was higher for trees less than 30 cm indicating that mortality was size-dependent. Forest edge aspect did not significantly influence the abundance or demography of any species. Our results suggest that the patterns of seedling recruitment were largely determined by the proximity of seed sources and that these patterns may persist so that tree communities in old-fields resemble adjacent forests. Deer may be a significant factor in the suppression of tree populations in old-fields through repeated browsing which reduces tree growth and elevates tree mortality by prolonging the period of time trees remain susceptible to size-dependent mortality.  相似文献   

16.
Concentrations and total amounts of Cd and Zn in individual annual xylem increments of 5-year-old spruce trees (Picea abies) were investigated after one growing season in contaminated soils. The plants had been potted in soils amended with different concentrations of Cd and Zn and kept in open air conditions. In the outer xylem rings formed during the treatment period lowest concentrations of Cd and Zn were found. In inner rings concentrations of both elements increased and were highest at the pith. Total amounts of both elements showed reversed distribution patterns with highest values in the outermost rings. The observed increase of total dry matter of the rings from pith towards the outer rings was stronger than the parallel increase in total element amounts in the rings. Thus, concentrations dropped in younger rings. The time of the soil contamination event cannot be inferred from element concentrations in annual rings. The results challenge the concept of monitoring historical trends in trace element pollution using analytical data of tree rings of conifers.  相似文献   

17.
Vertical distribution of root density (length per unit soil volume) and abundance (length per unit ground surface area) to a depth of 1.5 m or to the depth of the water table and their relationships with soil properties and tree basal area were examined in 36 soil profiles of pine-oak and oak-pine forests of the New Jersey Pinelands. Soil morphology were almost uniform within the forest type and characterized by the presence of high coarse fragment contents in the C horizon in oak-pine uplands; by the spodic B horizon and water table in the C horizon in pine-oak lowlands; by the sandy soil throughout the profile in pine-oak uplands; and by the firm argillic B horizon in pine-oak plains. Root density decreased from ranges of 44423–133369 m m-3 in the 0–5 cm depth in all the forest types to 1900–5593 m m-3 in the 100–150 cm depth in all the forest types except in pine-oak lowlands. Total profile root density and abundance was in the order: oak-pine uplands>pine-oak lowlands>pine-oak uplands>pine-oak plains. Root density correlated positively with organic C, total N, water soluble P, exchangeable Ca, Mg, K, Al, Fe, and cation exchange capacity, and negatively with bulk density, coarse fraction content, and pH, whereas root abundance correlated positively with organic C, total N, water soluble P, exchangeable Ca, Mg, K, and Fe, and negatively with bulk density. No correlation existed between root density and abundance with tree basal area. Higher root density in the E horizon of oak-pine uplands as compared to the other forest types was associated with high nutrient content; higher root density in the C horizon of pine-oak lowlands was associated with a shallow water table beneath the horizon; and lower root densities in the B and C horizons of pine-oak plains were associated with the presence of a firm clay layer in the B horizon.  相似文献   

18.
Phytostabilization aims to reduce environmental and health risks arising from contaminated soil. To be economically attractive, plants used for phytostabilization should produce valuable biomass. This study investigated the biomass production and metal allocation to foliage and wood of willow (Salix viminalis L.), poplar (Populus monviso), birch (Betula pendula), and oak (Quercus robur) on five different soils contaminated with trace elements (TE), with varying high concentrations of Cu, Zn, Cd, and Pb as well as an uncontaminated control soil. In the treatment soils, the biomass was reduced in all species except oak. There was a significant negative correlation between biomass and foliar Cd and Zn concentrations, reaching up to 15 mg Cd kg?1 and 2000 mg Zn kg ?1 in willow leaves. Lead was the only TE with higher wood than foliage concentrations. The highest Pb accumulation occurred in birch with up to 135 mg kg ?1 in wood and 78 mg kg ?1 in foliage. Birch could be suitable for phytostabilization of soils with high Cd and Zn but low Pb concentrations, while poplars and willows could be used to stabilise soils with high Cu and Pb and low Zn and Cd concentrations.  相似文献   

19.
Abstract

This study was conducted to investigate the chemical speciation of yttrium and scandium in selected types of soils and also determined the total content and profile distribution of those elements. The research was performed on soil samples from forest areas in Puszcza Borecka (Poland) known as a non-contaminated site. Soil samples were collected from natural brown, lessive and rusty soil profiles.

The sequential extraction procedure was applied to separate fractions of scandium and yttrium according to the Tessier method. The range of total content of scandium and yttrium was respectively: 0.63-6.48 mg kg-1 and 2.25 to 27.93 mg kg-1. Scandium and yttrium occurred predominantly in residual fraction (F5) in each genetic horizon. Also both elements occurred mainly in fraction bound to organic matter (F4). The mean percentage content of scandium measured in mobile fractions (∑F1-F2) reached about 3% (in Bbr, Bt horizons) to 14% (in Bv horizons) in relation to the total content of the element in the analysed soils. The percentage content of yttrium measured in mobile fractions reached about 4% (in A, Bv horizons) to 28% in Bt horizons in relation to the total content of the element in forest soils of Puszcza Borecka.  相似文献   

20.
Phytostabilization of metals using trees is often promoted, although the influence of different tree species on the mobilization of metals is not yet clear. This study examined effects of six tree species on the soil characteristics pH, organic carbon (OC) content and cation exchange capacity (CEC) and on the redistribution of cadmium (Cd) and zinc (Zn) on a polluted sandy soil. Soil and biomass were sampled in 10-year-old stands growing on former agricultural land. The tree species included were silver birch (Betula pendula), oak (Quercus robur and Quercus petraea), black locust (Robinia pseudoacacia), aspen (Populus tremula), Scots pine (Pinus sylvestris) and Douglas fir (Pseudotsuga menziesii). In the short period of 10 years, only aspen caused significant changes in the soil characteristics. Due to accumulation of Cd and Zn in its leaf litter, aspen increased the total as well as the NH4OAc-EDTA-extractable Cd and Zn concentrations in the topsoil compared to deeper soil layers and to other tree species. Also, topsoil pH, OC content and CEC were significantly higher than under most of the other species. This caused rather low ‘bioavailable’ CaCl2-extractable concentrations under aspen. Nevertheless, given the risks of aboveground metal dispersion and topsoil accumulation, it is recommended that aspen should be avoided when afforesting Cd and Zn contaminated lands.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号