首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Dissolved organic carbon (DOC) dynamics in streams is important, yet few studies focus on DOC dynamics in Midwestern streams during storms. In this study, stream DOC dynamics during storms in two Midwestern watersheds with contrasting land uses, the change in character of stream DOC during storms, and the usability of DOC as a hydrologic tracer in artificially drained landscapes of the Midwest are investigated. Major cation/DOC concentrations, and DOC specific UV absorbance (SUVA) and fluorescence index (FI) were monitored at 2–4 h intervals during three spring storms. Although DOC is less aromatic in the mixed land use watershed than in the agricultural watershed, land use has little impact on stream DOC concentration during storms. For both watersheds, DOC concentration follows discharge, and SUVA and FI values indicate an increase in stream DOC aromaticity and lignin content during storms. The comparison of DOC/major cation flushing dynamics indicates that DOC is mainly exported via overland flow/macropore flow. In both watersheds, the increase in DOC concentration in the streams during storms corresponds to a shift in the source of DOC from DOC originating from mineral soil layers of the soil profile at baseflow, to DOC originating from surficial soil layers richer in aromatic substances and lignin during storms. Results also suggest that DOC, SUVA and FI could be used as hydrologic tracers in artificially drained landscapes of the Midwest. These results underscore the importance of sampling streams for DOC during high flow periods in order to understand the fate of DOC in streams.  相似文献   

2.
Patterns of dissolved organic carbon (DOC) and nitrogen (DON) delivery were compared between times of stormflow and baseflow in Paine Run, an Appalachian stream draining a 12.4 km2 forested catchment in the Shenandoah National Park (SNP), Virginia. The potential in-stream ecological impact of altered concentrations and/or chemical composition of DOM during storms also was examined, using standardized bacterial bioassays. DOC and DON concentrations in Paine Run were consistently low during baseflow and did not show a seasonal pattern. During storms however, mean DOC and DON concentrations approximately doubled, with maximum concentrations occurring on the rising limb of storm hydrographs. The rapid response of DOM concentration to changes in flow suggests a near-stream or in-stream source of DOM during storms. Stormflow (4% of the time, 36% of the annual discharge) contributed >50% of DOC, DON and NO3 flux in Paine Run during 1997. In laboratory bacterial bioassays, growth rate constants were higher on Paine Run stormflow water than on baseflow water, but the fraction of total DOM which was bioavailable was not significantly different. The fraction of the total stream DOC pool taken up by water column bacteria was estimated to increase from 0.03 ± 0.02% h–1 during baseflow, to 0.15 ± 0.04% h–1 during storms. This uptake rate would have a minimal effect on bulk DOM concentrations in Paine Run, but storms may still have considerable impact on the bacterial stream communities by mobilizing them into the water column and by supplying a pulse of DOM.  相似文献   

3.
Wetlands are known to be important sources of dissolved organic matter (DOM) to rivers and coastal environments. However, the environmental dynamics of DOM within wetlands have not been well documented on large spatial scales. To better assess DOM dynamics within large wetlands, we determined high resolution spatial distributions of dissolved organic carbon (DOC) concentrations and DOM quality by excitation–emission matrix spectroscopy combined with parallel factor analysis (EEM–PARAFAC) in a subtropical freshwater wetland, the Everglades, Florida, USA. DOC concentrations decreased from north to south along the general water flow path and were linearly correlated with chloride concentration, a tracer of water derived from the Everglades Agricultural Area (EAA), suggesting that agricultural activities are directly or indirectly a major source of DOM in the Everglades. The optical properties of DOM, however, also changed successively along the water flow path from high molecular weight, peat-soil and highly oxidized agricultural soil-derived DOM to the north, to lower molecular weight, biologically produced DOM to the south. These results suggest that even though DOC concentration seems to be distributed conservatively, DOM sources and diagenetic processing can be dynamic throughout wetland landscapes. As such, EEM–PARAFAC clearly revealed that humic-enriched DOM from the EAA is gradually replaced by microbial- and plant-derived DOM along the general water flow path, while additional humic-like contributions are added from marsh soils. Results presented here indicate that both hydrology and primary productivity are important drivers controlling DOM dynamics in large wetlands. The biogeochemical processes controlling the DOM composition are complex and merit further investigation.  相似文献   

4.
Headwater streams influence the biogeochemical characteristics of large rivers and play important roles in regional and global carbon budgets. The combined effects of seasonality and land use change on the biogeochemistry of headwater streams, however, are not well understood. In this study we assessed the influence of catchment land use and seasonality on the composition of dissolved organic matter (DOM) and ecosystem metabolism in headwater streams of a Kenyan river. Fifty sites in 34 streams draining a gradient of catchment land use from 100% natural forest to 100% agriculture were sampled to determine temporal and spatial variation in DOM composition. Gross primary production (GPP) and ecosystem respiration (ER) were determined in 10 streams draining primarily forest or agricultural catchments. Absorbance and fluorescence spectrophotometry of DOM reflected notable shifts in composition along the land use gradient and with season. During the dry season, forest streams contained higher molecular weight and terrestrially derived DOM, whereas agricultural streams were dominated by autochthonous production and low molecular weight DOM. During the rainy season, aromaticity and high molecular weight DOM increased in agricultural streams, coinciding with seasonal erosion of soils and inputs of organic matter from farmlands. Most of the streams were heterotrophic. However, GPP and ER were generally greater in agricultural streams, driven by higher dissolved nutrient (mainly TDN) concentrations, light availability (open canopy) and temperature compared with forest streams. There were correlations between freshly and autochthonously produced DOM, GPP and ER during both the dry and wet seasons. This is one of the few studies to link land-use with organic carbon dynamics and DOM composition. Measures of ecosystem metabolism in these streams help to affirm the role of tropical streams and rivers as important components of the global carbon cycle and demonstrate that even semi-intensive, smallholder agriculture can have measurable effects on riverine ecosystem functioning.  相似文献   

5.
Dissolved organic carbon (DOC) concentration and dissolved organic matter (DOM) character were investigated in soil water (15 and 40 cm) and streams at eleven sites in Olympic National Park. In addition, the effect of added nitrogen on soil water DOM concentration and composition was tested. Forested plots covering a gradient of precipitation, climate, slope, and aspect in Olympic National Park were fertilized with the addition of 20, 10 and zero (control) kg urea-N ha–1 y–1. Seven sites had the two different fertilizer treatments and control plots, while the additional four sites had no fertilizer treatments. Soil water DOC concentrations ranged from 0.5 mg C/L to 54.1 mg C/L, with an average value of 14.1 mg C/L. Streams had low DOC concentrations ranging from 0.2 mg C/L to 4.4 mg C/L, with an average value of 1.2 mg C/L. DOM composition was examined with regard to molar ratios, H:C, O:C and N:C, index of unsaturation, average carbon oxidation state, and specific absorbance. Fertilizer had no consistent effect on either DOM concentration or composition across the study sites. Soil depth influenced both DOM concentration and composition. Shallow soil water DOM had greater concentrations, higher specific absorbance, a higher degree of unsaturation, and had lower molar ratios compared to deep soil water samples. Overall, changes in DOM stoichiometry and specific absorbance as a function of soil depth were consistent despite the diversity of the forested study sites sampled.  相似文献   

6.
We are studying the chemical quality of dissolved organic nitrogen (DON) in a high-elevation watershed in the Colorado Front Range. Samples were collected over the 2000 snowmelt runoff season at two sites across an alpine/subalpine ecotone to understand how the transition between the lightly vegetated alpine and forested reaches of the catchment influences the chemical character of DON. Samples were analyzed approximately weekly for dissolved organic material (DOM) content and chemical character. A subset of samples was analyzed for the elemental content of fulvic and hydrophilic acids. Concentrations of DON at both sites were highest in the spring at the initiation of snowmelt, decreased during snowmelt, and increased again during the late summer and fall. In contrast, concentrations of dissolved organic carbon (DOC) peaked on the ascending limb of the hydrograph and declined to seasonal minima on the descending limb of the hydrograph. The ratio of DOC:DON showed a seasonal shift at both sites with high values (40 to 55) during peak runoff in early summer and lower values (15 to 25) during low flows late in the runoff season. These results indicate that there was a seasonal change in the relative N content of DOM at both sites. Chemical fractionation of DOC showed that there were temporal and longitudinal changes in the chemical character of DOC. At the alpine site, the fulvic acid content of DOC decreased from 57% in June to 35% in September. The change in fulvic acid was less pronounced at the forested site, from 66% in June to 54% in September. Elemental analysis of fulvic and hydrophilic acids indicated that hydrophilic acids were N rich compared to fulvic acids. Additionally, fulvic and hydrophilic acids isolated at the alpine site had a lower C:N ratio than those isolated at the forested site. Similarly, the C:N ratio of organic acids at both sites was lower in September than in June during peak runoff. These differences appear to be a result of changes in both DOM precursor material and hydrologic flowpaths. Using C:N ratios of fulvic and hydrophilic acids, we estimate that nonhumic material carried between 54 to 73% of the organic N in surface water at the alpine site and 44 to 58% of the organic N in surface water at the subalpine site.  相似文献   

7.
8.
Peatlands are important contributors of dissolved organic matter (DOM) to downstream aquatic systems. We investigated the effects of storm events on dissolved organic carbon (DOC) concentrations and DOM quality in a stream draining a Welsh peatland catchment. Intensive stream samples were collected and analysed for pH, DOC, dissolved organic nitrogen (DON), absorbance and fluorescence. Soil water samples and samples of sphagnum pore water were also collected, and a simple end-member mixing model was applied to account for changes occurring during the events. Fluorescence data were interpreted using parallel factor analysis (PARAFAC). DOC concentrations increased and pH decreased during the storm events. The soil water data and the mixing model indicated that this was due to a change of flow paths and draining of the DOC-rich acrotelm. Absorbance indices and the DOC/DON ratio suggested that the DOM released during events was less degraded. There was a striking, inversely related diurnal pattern in absorbance and fluorescence after the discharge peak. The diurnal pattern and a lack of fit with the mixing model suggested that fluorescing DOM was mainly produced in-stream. Fluorescence has been found to peak in the morning and decline during day-time due to photo-bleaching. We hypothesise that the input of additional DOM during events causes a change in the diurnal pattern, giving a peak at mid-day, when the processing of the additional DOM is highest.  相似文献   

9.
We examined patterns of dissolved organic carbon (DOC) and total dissolved nitrogen (TDN) loading to a small urban stream during baseflow and stormflow. We hypothesized that lower DOC and TDN contributions from impervious surfaces would dilute natural hydrologic flowpath (i.e., riparian) contributions during storm events in an urban watershed, resulting in lower concentrations of DOC and TDN during storms. We tested these hypotheses in a small urban watershed in Portland, Oregon, over a 3-month period during the spring of 2003. We compared baseflow and stormflow chemistry using Mann–Whitney tests (significant at p<0.05). We also applied a mass balance to the stream to compare the relative significance of impervious surface contributions versus riparian contributions of DOC and TDN. Results showed a significant increase in stream DOC concentrations during stormflows (median baseflow DOC = 2.00 mg l−1 vs. median stormflow DOC = 3.46 mg l−1). TDN streamwater concentrations, however, significantly decreased with stormflow (median baseflow TDN = 0.75 mg l−1 vs. median stormflow TDN = 0.56 mg l−1). During storms, remnant riparian areas contributed 70–74% of DOC export and 38–35% of TDN export to the stream. The observed pattern of increased DOC concentrations during stormflows in this urban watershed was similar to patterns found in previous studies of forested watersheds. Results for TDN indicated that there were relatively high baseflow nitrogen concentrations in the lower watershed that may have partially masked the remnant riparian signal during stormflows. Remnant riparian areas were a major source of DOC and TDN to the stream during storms. These results suggest the importance of preserving near-stream riparian areas in cities to maintain ambient carbon and nitrogen source contributions to urban streams.  相似文献   

10.
Past studies have suggested that the concentration and quality of dissolved organic matter (DOM) may influence microbial community structure. In this study, we cross-inoculated the bacterial communities from two streams and a dystrophic lake that varied in DOM concentration and chemistry, to yield nine fully crossed treatments. We measured dissolved organic carbon (DOC) concentration and heterotrophic microbial community productivity throughout a 72-h incubation period, characterized DOM quality by molecular weight, and determined microbial community structure at the initial and final time points. Our results indicate that all bacterial inoculate sources had similar effects upon DOC concentration and DOM quality, regardless of the DOM source. These effects included an overall decrease in DOM M W and an initial period of DOC concentration variability between 0-24h. In contrast, microbial communities and their metabolic rates converged to profiles that reflected the DOM source upon which they were growing, regardless of the initial bacterial inoculation. The one exception was that the bacterial community from the low-concentration and low-molecular-weight DOM source exhibited a greater denaturing gradient gel electrophoresis (DGGE) band richness when grown in its own DOM source than when grown in the highest concentration and molecular weight DOM source. This treatment also exhibited a higher rate of productivity. In general, our data suggest that microbial communities are selected by the DOM sources to which they are exposed. A microbial community will utilize the low-molecular-weight (or labile) DOM sources as well as parts of the high-molecular-weight (refractory) DOM, until a community develops that can efficiently metabolize the more abundant high-molecular-weight source. This experiment examines some of the complex interactions between microbial community selection and the combined factors of DOM quality and concentration. Our data suggest that the roles of aerobic aquatic heterotrophic bacteria in carbon cycling, as well as the importance of high-molecular-weight DOM as a carbon source, may be more complex than is conventionally recognized.  相似文献   

11.
Here we review research on the links between hydrological processes and the biogeochemical environment controlling the dynamics of dissolved organic carbon (DOC) and dissolved inorganic carbon (DIC) in temperate forested catchments. In addition, we present the results of original experiments. The spatial and temporal changes in DIC and DOC concentrations were investigated in tandem with observations of elementary belowground hydrological processes for a forested headwater catchment in central Japan. The soil CO2 gas concentration, which is the source of DIC, increased with depth. The hydrological characteristics of groundwater also affected the spatial variation of partial pressure of dissolved CO2 (pCO2) in groundwater. The temporal variations in the soil CO2 gas concentration and the pCO2 values of groundwater suggested that the dynamics of DIC were strongly affected by biological activity. However, the geographical differences in DIC leaching were affected not only by the link between climatological conditions and biological activity, but also by other factors such as geomorphologic conditions. The DOC concentrations decreased with selective removal of hydrophobic acid during vertical infiltration. The major DOC-removal mechanisms were retention of metal-organic complexes to soil solids in the upper mineral soil layer and decomposition of DOC in the lower mineral soil layer. The responses of the DIC and DOC concentrations to changes in discharge during storm events were explained by the spatial variation in the DIC and DOC concentrations. Seasonal variation, which represents a long-term change, in stream water DOC concentrations was affected not only by the temporal variation in DOC concentrations in the topsoil, which may be affected by biological activity, but also by water movement, which transports DOC from the topsoil to stream water. These results indicate that both a biogeochemical approach and a method for evaluating the hydrological effects on carbon dynamics are critical for clarifying the carbon accumulation-and-release processes in forested ecosystems.  相似文献   

12.
13.
1. Chronic nitrogen (N) deposition may alter the bioavailability of dissolved organic matter (DOM) in streams by multiple pathways. Elevated N deposition may alter the nutrient stoichiometry of DOM as well as nutrient availability in stream water. 2. We evaluated the influence of a decadal‐scale experimental N enrichment on the relative importance of DOM nutrient content and inorganic nutrient availability on the bioavailability of DOM. We measured the consumption of dissolved organic carbon (DOC) and changes in nutrient concentration, DOM components and enzyme activity in a bottle incubation assay with different DOM and nutrient treatments. To evaluate the effect of DOM stoichiometry, we used leaf leachates of different carbon/N/phosphorus (C : N :P) ratio, made from leaf litter sourced in the reference and N‐enriched catchments at the Bear Brook Watershed in Maine (BBWM). We also manipulated the concentration of inorganic N and P to compare the effect of nutrient enrichment with DOM stoichiometry. 3. DOC from the N‐enriched catchment was consumed 14% faster than that from the reference catchment. However, mean DOC consumption for both leachates was more than doubled by the simultaneous addition of N and P, compared to controls, while the addition of N or P alone increased consumption by 42 and 23%, respectively. The effect of N and/or P enrichment consistently had a greater effect than DOM source for all response variables considered. 4. We subsequently conducted DOC uptake measurements using leaf leachate addition under ambient and elevated N and P in the streams draining the reference and N‐enriched catchments at BBWM. In both streams, DOC uptake lengths were shorter when N and P were elevated. 5. Although both DOM stoichiometry and inorganic nutrient availability affect DOM bioavailability, N and P co‐limitation appears to be the dominant driver of reach‐scale processing of DOM.  相似文献   

14.
Dissolved organic carbon (DOC) and nitrogen (DON) are important energy and nutrient sources for aquatic ecosystems. In many northern temperate, freshwater systems DOC has increased in the past 50 years. Less is known about how changes in DOC may vary across latitudes, and whether changes in DON track those of DOC. Here, we present long-term DOC and DON data from 74 streams distributed across seven sites in biomes ranging from the tropics to northern boreal forests with varying histories of atmospheric acid deposition. For each stream, we examined the temporal trends of DOC and DON concentrations and DOC:DON molar ratios. While some sites displayed consistent positive or negative trends in stream DOC and DON concentrations, changes in direction or magnitude were inconsistent at regional or local scales. DON trends did not always track those of DOC, though DOC:DON ratios increased over time for ~30% of streams. Our results indicate that the dissolved organic matter (DOM) pool is experiencing fundamental changes due to the recovery from atmospheric acid deposition. Changes in DOC:DON stoichiometry point to a shifting energy-nutrient balance in many aquatic ecosystems. Sustained changes in the character of DOM can have major implications for stream metabolism, biogeochemical processes, food webs, and drinking water quality (including disinfection by-products). Understanding regional and global variation in DOC and DON concentrations is important for developing realistic models and watershed management protocols to effectively target mitigation efforts aimed at bringing DOM flux and nutrient enrichment under control.  相似文献   

15.
Dissolved organic carbon (DOC) concentrations and export were studied in two small catchments in central Ontario to examine DOC sources and to assess the hypothesis that organic matter adjacent to the stream is a significant contributor of DOC during storms. Different DOC dynamics and exports were observed according to the depth of the riparian water table. In Harp 4-21, riparian flowpaths were predominantly through A and upper B soil horizons and riparian soils contributed between 73 and 84% of the stream DOC export during an autumn storm. In Harp 3A, riparian flowpaths were predominantly through lower B horizons. Consequently, riparian soils were less important and hillslopes contributed more than 50% of the stream DOC export in subcatchments without wetlands during storms. Wetlands and adjacent soils contributed significantly to DOC export in Harp 3A; 8% of the total catchment area exported 32 to 46% of the storm runoff DOC. DOC export dynamics in wetlands and riparian soils were distinctly different. In wetlands, transport was affected by leaching and flushing of DOC at the wetland surface leading to lower DOC concentrations with successive storms. In riparian soils, groundwater flowpaths were more important and stronger positive relationships between discharge and DOC concentration were observed. Precipitation, throughfall and stemflow were minor sources of stream DOC during storms and contributed less than 20% of the total export.  相似文献   

16.
Stream and river ecosystems are dependent on energetic inputs from their watersheds and thus shifts in land use from forest cover to agriculture will affect stream community composition and function. The disruption of forest-aquatic linkages alters the organic matter resources in agricultural streams. Dissolved organic matter (DOM) is the dominant form of organic matter in aquatic ecosystems, and a microbial energy source that is important for stream respiration. The concentrations and characteristics of DOM are regulated by both terrestrial (for example, terrestrial organic matter supply) and in-stream processes (for example, microbial respiration and periphyton production) that are influenced by land management. The effects of watershed land use and topographic, soil and climatic variables on DOM quantity (dissolved organic carbon concentration and load), source (terrestrial or in-stream) and quality (composition and lability) were measured in 14 streams across an agricultural land-use gradient. DOC concentration was positively correlated with watershed pasture cover and negatively correlated with watershed relief. No watershed variables were important correlates of DOC load. Stream DOM was primarily of terrestrial origin, but DOM in agricultural streams had a greater proportion of sources from in-stream sources. This may be due to reduced connection with riparian vegetation and increased in-stream primary production. We suggest that maintaining watershed tree cover greater than 52% and ensuring less than 10% of the length of riparian corridor is cleared for pasture could minimize changes to DOM composition. This is important to avoid flow-on effects for stream ecosystem processes that are mediated by DOM. Long-term DOM monitoring will be valuable for assessing the functional impacts of land-use change.  相似文献   

17.
The Yenisei river passes every type of permafrost regime, from south to north, being characterized by increasing continuity of the permafrost and by decreasing thickness of the active layer. We used that situation to test the hypothesis that amounts and properties of dissolved organic matter (DOM) in small streams draining forested catchments respond to different permafrost regimes. Water samples were taken from eight tributaries along the Yenisei between 67°30′N and 65°49′N latitude. The samples were analysed for dissolved organic carbon (DOC) and nitrogen (DON) and DOM was characterized by its chemical composition (XAD‐8 fractionation, sugars, lignin phenols, amino acids, protein, UV and fluorescence spectroscopy), and its biodegradability. Most properties of the tributary waters varied depending on latitude. The higher the latitude, the higher were DOC, DON and the proportion of the hydrophobic fraction of DOC. The contribution of hexoses and pentoses to DOC were higher in southern tributaries; on the other hand, phenolic compounds were more abundant in northern tributaries. Mineralizable DOC ranged between 4% and 28% of total DOC. DOM in northern tributaries was significantly (P<0.05) less biodegradable than that in southern tributaries reflecting the differences in the chemical properties of DOM. Our results suggest that the differences in DOM properties are mainly attributed to differences of permafrost regime, affecting depth of active layer, soil organic matter accumulation and vegetation. Soil organic matter and vegetation determine the amount and composition of DOM produced in the catchments while the depth of the active layer likely controls the quantity and quality of DOM exported to streams. Sorptive interactions of DOM with the soil mineral phase typically increase with depth. The results imply that a northern shift of discontinuous permafrost likely will change in the long term the input of DOM into the Yenisei and thus probably into the Kara Sea.  相似文献   

18.
We generated a detailed time series of total dissolved hydrolyzable amino acids (DHAA) in a watershed dominated by irrigated agriculture in northern California, USA to investigate the roles of hydrologic and seasonal changes on the composition of dissolved organic matter (DOM). DHAA are sensitive indicators of the degradation state and reactivity of DOM. DHAA concentrations ranged from 0.55 to 9.96 μM (median 3.51 ± 1.80 μM), with expected peaks during high-discharge storms and unexpected high values throughout the low-discharge irrigation season. Overall, summer irrigation was a critical hydrologic regime for DOM cycling since it mobilized DOM similar in concentration and reactivity to DOM released during storms. Together, irrigation and storm flows exported DOM with (1) the largest DHAA contributions to the dissolved organic carbon and the dissolved organic nitrogen pools, (2) the largest proportion of basic amino acids, and (3) the lowest degradation extent based on multiple indices. In this highly disturbed terrestrial system, UV–vis absorbance did not correlate with DHAA concentrations, while classic interpretations of common amino acid indicators (e.g., proportion of basic amino acids, degradation index, percent of non-protein amino acids) were prone to conflicting characterizations of DOM reactivity. Therefore, a new parameter (processing ratio, PR) derived from individual amino acid concentrations was developed that demonstrated a strong potential for mechanistic-driven characterization of the extent of DOM diagenesis in freshwaters. Irrigated agriculture altered stream biogeochemistry by releasing a continuous supply of reactive DOM (lowest PR values), thereby providing an additional energy source to downstream ecosystems.  相似文献   

19.
Monthly (or bi-weekly) water samples were collected from the Yukon River, one of the largest rivers in North America, at a station near the US Geological Survey Stevens Village hydrological station, Alaska from May to September 2002, to examine the quantity and quality of dissolved organic matter (DOM) and its seasonal variations. DOM was further size fractionated into high molecular weight (HMW or colloidal, 1 kDa–0.45 μm) and low molecular weight (LMW, <1 kDa) fractions. Dissolved organic carbon (DOC), colored dissolved organic matter (C-DOM) and total dissolved carbohydrate (TCHO) species were measured in the size fractionated DOM samples. Concentrations of DOC were as high as 2830 μmol-C l−1 during the spring breakup in May and decreased significantly to 508–558 μmol-C l−1 during open-water season (June–September). Within the DOC pool, up to 85% was in the colloidal fraction (1 kDa–0.45 μm) in early May. As DOC concentration decreased, this colloidal portion remained high (70–85% of the bulk DOC) throughout the sampling season. Concentrations of TCHO, including monosaccharides (MCHO) and polysaccharides (PCHO), varied from 722 μmol-C l−1 in May to 129 μmol-C l−1 in September, which comprised a fairly constant portion of bulk DOC (24±2%). Within the TCHO pool, the MCHO/TCHO ratio consistently increased from May to September. The C-DOM/DOM ratio and the size fractionated DOM increased from May to September, indicating that DOM draining into the Yukon River contained increased amounts of humified materials, likely related to a greater soil leaching efficiency in summer. The average composition of DOM was 76% pedogenic humic matter and 24% aquagenic CHO. Characteristics of soil-derived humic substances and low chlorophyll-a concentrations support a dominance of terrestrial DOM in Yukon River waters.  相似文献   

20.
Dissolved organic carbon (DOC) in streams draining hydrologically modified and intensively farmed watersheds has not been well examined, despite the importance of these watersheds to water quality issues and the potential of agricultural soils to sequester carbon. We investigated the dynamics of DOC for 14 months during 2006 and 2007 in 6 headwater streams in a heavily agricultural and tile-drained landscape in the midwestern US. We also monitored total dissolved nitrogen (TDN) in the streams and tile drains. The concentrations of DOC in the streams and tile drains ranged from approximately 1–6 mg L?1, while concentrations of TDN, the composition of which averaged >94% nitrate, ranged from <1 to >10 mg L?1. Tile drains transported both DOC and TDN to the streams, but tile inputs of dissolved N were diluted by stream water, whereas DOC concentrations were generally greater in the streams than in tile drains. Filamentous algae were dense during summer base flow periods, but did not appear to contribute to the bulk DOC pool in the streams, based on diel monitoring. Short-term laboratory assays indicated that DOC in the streams was of low bioavailability, although DOC from tile drains in summer had bioavailability of 27%. We suggest that these nutrient-rich agricultural streams are well-suited for examining how increased inputs of DOC, a potential result of carbon sequestration in agricultural soils, could influence ecosystem processes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号