首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A direct correlation between cathepsin expression–cancer progression and elevated levels of cathepsins due to an imbalance in cellular inhibitors-cathepsins ratio in inflammatory diseases necessitates the work on the identification of potential inhibitors to cathepsins. In the present work we report the synthesis of some 2,3-dihydroquinazolin-4(1H)-ones followed by their evaluation as cysteine protease inhibitors in general and cathepsin B and cathepsin H inhibitors in particular. 2,3-Dihydroquinazolin-4(1H)-ones, synthesized by the condensation of anthranilamide and carbonyl compound in presence of PPA-SiO2 catalyst, were characterized by spectral analysis. The designed compounds were screened as inhibitors to proteolysis on endogenous protein substrates. Further, a distinct differential pattern of inhibition was obtained for cathepsins B and H. The inhibition was more to cathepsin B with Ki values in nanomolar range. However, cathepsin H was inhibited at micromolar concentration. Maximum inhibition was shown by compounds, 1e and 1f for cathepsin B and compounds 1c and 1f for cathepsin H. The synthesized compounds were established as reversible inhibitors of cathepsins B and H. The results were also compared with the energy of interaction between enzyme active site and compounds using iGemdock software.  相似文献   

2.
To design and discover a new compound can used as a COX with TNF-α and IL-6 inhibitors is highly challenge. A series of spiroindolone-bearing benzofuran moieties were resynthesized from the chalcone-based benzo[b]furan with substituted isatin, and amino acids. The requisite spiroindolone analogues were tested for their potential inhibitory activities against lipid metabolizing enzymes such as cyclooxygenase COX-1, COX-2, and the release of pro-inflammatory cytokines interleukin IL-6, and tumor necrosis factor TNF-α. Among the tested compounds, 5a, 5c, 5h, 5i, 5l, and 5p exhibited COX-1 inhibitor selectively with percent of inhibition 40.81–83.4% and IC50 values ranging from 20.42 µM to 38.24 µM. In addition, all the synthesized target compounds possessed lipopolysaccharide-induced TNF-α, and IL-6 expression with a varying degree of COX-1 inhibition. Compounds 5d, 5e, 5f, 5g, and 5k markedly inhibited TNF-α, and IL-6 release in WI-38 fibroblast cells. Molecular docking of the most effective and highly selective compounds were investigated and shown important binding mechanisms which could affect pro-inflammatory enzymes and cytokines via the inhibition of COX-1, COX-2, IL-6, and TNF-α.  相似文献   

3.
A number of 1,2-benzisothiazol-3-one derivatives were prepared through structural modification of the original compound from high-throughput screening. Some analogues (e.g., 6b, 6r, 6s and 6w) were identified as novel and potent caspase inhibitors with IC50 of nanomolar. Structure–activity relationship (SAR) studies for caspase-3 inhibition were evaluated in vitro. Molecular modeling studies provided further insight into the interaction of this class of compounds with activated caspase-3. The present small molecule caspase-3 inhibitor with novel structures different from structures of known caspase inhibitors revealed a new direction for therapeutic strategies directed against diseases involving abnormally up-regulated apoptosis.  相似文献   

4.
Janus kinases (JAKs) regulate various inflammatory and immune responses and are targets for the treatment of inflammatory and immune diseases. Here we report the discovery and optimization of 1H-pyrazolo[3,4-d]pyrimidin-4-amino as covalent JAK3 inhibitors that exploit a unique cysteine (Cys909) residue in JAK3. Our optimization study gave compound 12a, which exhibited potent JAK3 inhibitory activity (IC50 of 6.2?nM) as well as excellent JAK kinase selectivity (>60-fold). In cellular assay, 12a exhibited potent immunomodulating effect on IL-2-stimulated T cell proliferation (IC50 of 9.4?μM). Further, compound 12a showed efficacy in delayed hypersensitivity assay. The data supports the further investigation of these compounds as novel JAKs inhibitors.  相似文献   

5.
Sanguisorba officinalis L. was well known as a traditional herbal medicine to treat inflammation and allergic skin diseases. The aim of this research was to indentify compounds with anti-allergic inflammatory property. Twenty-five compounds (125) were isolated from S. officinalis including two new compounds (1 and 8), and their chemical structures were identified by NMR and ESIMS analysis. Consequently, the anti-allergic inflammatory activities of these isolates were investigated by inhibiting β-hexosaminidase and IL-4 production in PMA/A23187-stimulated RBL-2H3 cells. Compounds 6, 8, 13, 1718 and 25 significantly inhibited β-hexosaminidase release and IL-4 production. Additionally, compounds 8, 17 and 25 effectively suppressed the activation of NF-κB and NF-κB p65 translocation into the nucleus. Anti-inflammatory effects of isolated compounds were evaluated in LPS-stimulated RAW264.7 macrophages, and they showed dramatic inhibition on LPS-induced overproduction of nitric oxide (NO) and TNF-α. Consistently, the protein levels of iNOS and COX-2 were remarkably decreased by the single compounds 8, 13 and 25. These results showed that compounds 8, 13 and 25 from S. officinalis may have a therapeutic potential for allergic inflammatory diseases.  相似文献   

6.
Aiming to develop potent JAK inhibitors, two series of 4-(1H-pyrazol-4-yl)-7H-pyrrolo[2,3-d]pyrimidine derivatives (8a–8p and 11a–11i) were designed and synthesized by coalescing various N-acylpiperidine motifs with baricitinib. The pharmacological results based on enzymatic and cellular assays identified the optimized compound 11e, which exerted over 90% inhibition rates against JAK1 and JAK2, and displayed the most compelling anti-inflammatory efficacy superior to baricitinib by inhibiting NO generation from LPS-induced RAW264.7 macrophages. Importantly, low cytotoxity of 11e was revealed by the IC50 value of 88.2 μM against normal RAW264.7 cells. The binding mode of 11e with JAK1 and JAK2 identified the essential structural bases in accord with SARs analysis. Furthermore, cellular morphology observation and western blot analysis disclosed the ability of 11e to relieve cells inflammatory damage by significantly down-regulating LPS-induced high expression of JAK1, JAK2, as well as pro cytokine IL-1β. Together, 11e was verified as a promising lead for JAK inhibitors for the treatment of inflammatory diseases.  相似文献   

7.
Bitter melon (Momordica charantia) has been used to manage diabetes and related conditions in various parts of the world. In the present study, ten compounds were isolated from acetone and methanol extracts of bitter melon. The chemical structures of compounds were unambiguously elucidated by 1D, 2D NMR, and high-resolution mass spectra. Identified compounds 17 exhibited significant inhibition of α-amylase and moderate inhibition of α-glucosidase activities. Momordicoside G and gentisic acid 5-O-β-d-xyloside showed the highest inhibition of α-amylase (70.5%), and α-glucosidase (56.4%), respectively. Furthermore, molecular docking studies of isolated compounds 17 were able to bind to the active sites of both enzymes. Additionally, the isolated compounds 17 significantly attenuated lipopolysaccharide (LPS)-induced inflammation, downregulating the expression of pro-inflammatory markers NF-κB, INOS, IL-6, IL-1β, TNF-α, and Cox-2 in murine macrophage RAW 264.7 cells. One phenolic derivative, gentisic acid 5-O-β-d-xyloside, was isolated and identified for the first time from bitter melon, and significantly suppressed the expression of Cox-2 and IL-6 compared to the LPS-treated group. α-Amylase and α-glucosidase are targets of anti-diabetes drugs, our findings suggest that compounds purified from bitter melon may have potential to use as functional food ingredients for the prevention of type 2 diabetes and related inflammatory conditions.  相似文献   

8.
Multi-target-directed ligands (MTDLs) centered on β-secretase 1 (BACE-1) inhibition are emerging as innovative therapeutics in addressing the complexity of neurodegenerative diseases. A new series of donepezil analogues was designed, synthesized and evaluated as MTDLs against neurodegenerative diseases. Profiling of donepezil, a potent acetylcholinesterase (hAChE) inhibitor, into BACE-1 inhibition was achieved through introduction of backbone amide linkers to the designed compounds which are capable of hydrogen-bonding with BACE-1 catalytic site. In vitro assays and molecular modeling studies revealed the dual mode of action of compounds 46 against hAChE and BACE-1. Notably, compound 4 displayed potent hAChE inhibition (IC50 value of 4.11 nM) and BACE-1 inhibition (IC50 value of 18.3 nM) in comparison to donepezil (IC50 values of 6.21 and 194 nM against hAChE and BACE-1, respectively). Moreover, 4 revealed potential metal chelating property, low toxicity on SH-SY5Y neuroblastoma cells and ability to cross the blood–brain barrier (BBB) in PAMPA-BBB assay which renders 4 a potential lead for further optimization of novel small ligands for the treatment of Alzheimer's disease.  相似文献   

9.
Arginase performs the first enzymatic step in polyamine biosynthesis in Leishmania and represents a promising target for drug development. Polyamines in Leishmania are involved in trypanothione synthesis, which neutralize the oxidative burst of reactive oxygen species (ROS) and nitric oxide (NO) that are produced by host macrophages to kill the parasite. In an attempt to synthesize arginase inhibitors, six 1-phenyl-1H-pyrazolo[3,4-d]pyrimidine derivatives with different substituents at the 4-position of the phenyl group were synthesized. All compounds were initially tested at 100 µM concentration against Leishmania amazonensis ARG (LaARG), showing inhibitory activity ranging from 36 to 74%. Two compounds, 1 (R=H) and 6 (R=CF3), showed arginase inhibition >70% and IC50 values of 12 µM and 47 µM, respectively. Thus, the kinetics of LaARG inhibition were analyzed for compounds 1 and 6 and revealed that these compounds inhibit the enzyme by an uncompetitive mechanism, showing Kis values, and dissociation constants for ternary complex enzyme-substrate-inhibitor, of 8.5 ± 0.9 µM and 29 ± 5 µM, respectively. Additionally, the molecular docking studies proposed that these two uncompetitive inhibitors interact with different LaARG binding sites, where compound 1 forms more H-bond interactions with the enzyme than compound 6. These compounds showed low activity against L. amazonensis free amastigotes obtained from mice lesions when assayed with as much as 30 µM. The maximum growth inhibition reached was between 20 and 30% after 48 h of incubation. These results suggest that this system can be promising for the design of potential antileishmanial compounds.  相似文献   

10.
A series of α,β-unsaturated hydroxamic acid derivatives as novel HDAC inhibitors (HDACi) with structural modifications of the connecting unit and the CAP group was synthesized. The in vitro evaluation against the human cancer cell lines A2780 and Cal27 identified 6e and 7j as the most potent compounds regarding HDAC inhibitory activity and inhibition of proliferation. Isoform profiling against HDAC2, 4, 6 and 8 revealed a preference for HDAC2 and 6 for both compounds in contrast to the pan HDACi panobinostat. 6e and 7j enhanced significantly cisplatin-induced cytotoxicity in a combination treatment mediated by increased apoptosis induction and caspase-3/7 activation. The interaction between 6e or 7j and cisplatin was highly synergistic and more pronounced for the cisplatin resistant subline Cal27CisR. IC50 values of cisplatin were even lower in Cal27CisR pretreated with 6e or 7j than for the parental cell line Cal27. Based on our findings, the novel dual class I/HDAC6 inhibitors could serve as an option to overcome cisplatin resistance with fewer side effects in comparison to panobinostat.  相似文献   

11.
To develop more effective inhibitors than fosmidomycin, a natural compound which inhibits the deoxyxylulose 5-phosphate reductoisomerase (DXR), the second enzyme of the MEP pathway, we designed molecules possessing on the one hand a catechol that is able to chelate the magnesium dication and on the other hand a group able to occupy the NADPH recognition site. Catechol–rhodanine derivatives (16) were synthesized and their potential inhibition was tested on the DXR of Escherichia coli. For the inhibitors 1 and 2, the presence of detergent in the enzymatic assays led to a dramatic decrease of the inhibition suggesting, that these compounds are rather promiscuous inhibitors. The compounds 4 and 5 kept their inhibition capacity in the presence of Triton X100 and could be considered as specific inhibitors of DXR. Compound 4 showed antimicrobial activity against Escherichia coli. The only partial protection of NADPH against the inhibition suggested that the catechol–rhodanine derivatives did not settle in the coenzyme binding site. This paper points out the necessity to include a detergent in the DXR enzymatic assays to avoid false positive when putative hydrophobic inhibitors are tested and especially when the IC50, are in the micromolar range.  相似文献   

12.
Diabetes mellitus (DM), a chronic multifarious metabolic disorder resulting from impaired glucose homeostasis has become one of the most challenging diseases with severe life threat to public health. The inhibition of α-glucosidase, a key carbohydrate hydrolyzing enzyme, could serve as one of the effective methodology in both preventing and treating diabetes through controlling the postprandial glucose levels and suppressing postprandial hyperglycemia. In this context, three series of diamine-bridged bis-coumarinyl oxadiazole conjugates were designed and synthesized by one-pot multi-component methodology. The synthesized conjugates (4a–j, 5a–j, 6a–j) were evaluated as potential inhibitors of glucosidases. Compound 6f containing 4,4′-oxydianiline linker was identified as the lead and selective inhibitor of α-glucosidase enzyme with an IC50 value of 0.07 ± 0.001 μM (acarbose: IC50 = 38.2 ± 0.12 μM). This inhibition efficacy was ∼545-fold higher compared to the standard drug. Compound 6f was also emerged as the lead molecule against intestinal maltase-glucoamylase with good inhibition strength (IC50 = 0.04 ± 0.02 μM) compared to acarbose (IC50 = 0.06 ± 0.01 μM). Against β-glucosidase enzyme, compound 6 g was noted as the lead inhibitor with IC50 value of 0.08 ± 0.002 μM. Michaelis–Menten kinetic experiments were performed to explore the mechanism of inhibition. Molecular docking studies of the synthesized library of hybrid structures against glucosidase enzyme were performed to describe ligand-protein interactions at molecular level that provided an insight into the biological properties of the analyzed compounds. The results suggested that the inhibitors could be stabilized in the active site through the formation of multiple interactions with catalytic residues in a cooperative fashion. In addition, strong binding interactions of the compounds with the amino acid residues were effective for the successful identification of α-glucosidase inhibitors.  相似文献   

13.
A group of tetrazole bearing compounds were synthesized and evaluated for their in vitro cyclooxygenase (COX) isozymes (COX-1/COX-2) inhibitory activity, in vitro anti-inflammatory activity through measuring levels of expression of IL-6 and TNF-α and antimicrobial activity. Cyclization of pyridine derivative 5b was confirmed using 2D NMR such as NOESY and HMBC experiments. Within the synthesized compounds, compound 7c was identified as effective and selective COX-2 inhibitors (COX-2 IC50 = 0.23 uM; COX-2 selectivity index = 16.91). Moreover 7c was the most effective derivative on TNF-α (37.6 pg/ml). While, the most active compound on IL-6 was isoxazole derivative 6 (42.8 pg/ml). Dual inhibitory activity on both IL-6 and TNF-α was exhibited by compounds 2 and 3 (IL-6 = 47.5 and 82.7 pg/ml, respectively) and (TNF-α = 31.7 and 33.8 pg/ml, sequentially).Additionally, compound 7a, showed broad spectrum antimicrobial activity against Gram positive cocci, Gram positive rods and yeast fungus (inhibition zone = 20 and 19 mm). None of the test compounds exhibited activity against Gram negative rods. Compounds 3 and 7c exhibited good antifungal activity at MIC equal to 64.5 µg/ml. While compound 6 showed antibacterial activities against Micrococcus lysodicticus and Bacillus subtilis at MIC = 32.25 and 64.5 µg/ml, respectively.Computational analysis was used to predict molecular properties and bioactivity of the target compounds. To confirm the mode of action of the synthesized compounds as anti-inflammatory agents, molecular docking was done. Appreciable binding interactions were observed for compound 7c containing COX-2 pharmacophore (SO2NH2), with binding energy −10.6652 Kcal/mol, forming two hydrogen bonding interactions with His90 and Tyr355 amino acids. It was fully fitted within COX-2 active site having the highest COX-2 selectivity index between all the test compounds (S.I. = 16.91).  相似文献   

14.
Due to the immense importance of aryl indole nucleus, herein we report the palladium-catalyzed arylation of N-substituted 2-aryl indole utilizing Suzuki-Miyaura cross coupling methodology. The biological screening for cholinesterase inhibition of the resulted biaryl indole moieties was carried out to evaluate their pharmacological potential, expecting to involve the development of new therapeutics for various inflammatory, cardiovascular, gastrointestinal and neurological diseases. This research work also involved the use of utilization of microwave-assisted organic synthesis (MAOS) for the synthesis of Bischler-Möhlau indole which is further biarylated via palladium-catalyzed cross coupling reaction. All the synthetic compounds (3a-n) were tested for cholinesterase inhibition and exhibited high level of AChE inhibitory activities. Interestingly, compounds 3m and 3n were found to be dual inhibitors, however, remaining compound exhibited no inhibitory activity against BChE. The biological potential of the resulted compounds was explained on the basis of molecular docking studies, performed against AChE and BChE, exploring the probable binding modes of most potent inhibitors.  相似文献   

15.
With the aim to discover novel, efficient and selective inhibitors of human alkaline phosphatase and nucleotide pyrophosphatase enzymes, two new series of pyrazolyl pyrimidinetriones (PPTs) (6a–g) and thioxopyrimidinediones (PTPs) (6h–n) were synthesized in good chemical yields using Knoevenagel condensation reaction between pyrazole carbaldehydes (4a–g) and pharmacologically active N-alkylated pyrimidinetrione (5a) and thioxopyrimidinedione (5b). The inhibition potential of the synthesized hybrid compounds was evaluated against human alkaline phosphatase (h-TNAP and h-IAP) and ectonucleotidase (h-NPP1 and h-NPP3) enzymes. Most of the tested analogs were highly potent with a variable degree of inhibition depending on the functionalized hybrid structure. The detailed structure-activity relationship (SAR) of PPT and PTP derivatives suggested that the compound with unsubstituted phenyl ring from PPT series led to selective and potent inhibition (6a; IC50 = 0.33 ± 0.02 µM) of h-TNAP, whereas compound 6c selectively inhibited h-IAP isozyme with IC50 value of 0.86 ± 0.04 µM. Similarly, compounds 6b and 6h were identified as the lead scaffolds against h-NPP1 and h-NPP3, respectively. The probable binding modes for the most potent inhibitors were elucidated through molecular docking analysis. Structure-activity relationships, mechanism of action, cytotoxic effects and druglikeness properties are also discussed.  相似文献   

16.
A new series of pyrazolone–pyridazine conjugates 3 and 4al were synthesized and characterized by spectroscopic means and elemental analyses. All compounds were tested in vivo for their anti-inflammatory and analgesic properties against diclofenac, as reference compound. The synthesized compounds were also evaluated for their ability to inhibit the production of certain inflammatory cytokines such as TNF-α and IL-6 in serum samples. The ulcerogenic potential of the synthesized compounds was also determined. IC50 values for inhibition of COX-1 and COX-2 enzymes were investigated in vitro for the most active candidates. Molecular docking was performed on the active site of COX-2 to predict their mode of binding to the amino acids. Among the synthesized derivatives, compounds 4c and 4e showed good analgesic and anti-inflammatory activities with lower ulcer index than the reference drug.  相似文献   

17.
Aster tataricus L.f. is a traditional Eastern Asian herbal medicine used for the relief of cough-related illnesses. In this study, 32 known compounds and two novel monoterpene glycosides were isolated from the roots of A. tataricus. With the aid of reported data, elucidation of the root-extract components was carried out using a multitude of spectroscopic techniques. All isolates were investigated for their ability to inhibit nitric oxide (NO) secretion in lipopolysaccharide-activated RAW264.7 cells. Compound 7 remarkably suppressed NO production with an IC50 value of 8.5 µM. In addition, compound 7 exhibited significant inhibitory activity against the production of inflammatory cytokines (prostaglandin E2, interleukin-6, and interleukin-1 beta) and the expression of inflammatory enzymes (inducible nitric oxide synthase and cyclooxygenase-2) via inhibition of nuclear factor-kappa B activation. Moreover, compound 7 effectively prevented the downstream activation of the mitogen-activated protein kinase signaling pathway by inhibiting phosphorylation of c-Jun N-terminal kinases, extracellular signal-regulated kinases, and p38. These results outline compound 7 as a potential inhibitor for the broad treatment of inflammatory diseases, such as atopic dermatitis, asthma, and various allergies.  相似文献   

18.
Extensive optimization of quinazoline-based lead 8 is described. The structure-activity relationship studies indicate the S-configuration is preferred for the phenylmorpholine substitution. Together with incorporation of a (2-hydroxyl-2-methylpropyl)pyrazole moiety at the 2-position leads to analogs with comparable potency and marked improvement in the pharmacokinetic profile over our previously reported lead compounds. Further in vivo efficacy studies in Kasumi-1 xenograft mouse model demonstrates that the selected inhibitors are well tolerated and highly efficacious in the inhibition of tumor growth. Additionally, the representative analog 19 also demonstrated significant improvement of arthritis severity in a collagen-induced arthritis (CIA) mouse model. These results indicate potential use of these quinazoline-based BET inhibitors for treatment of cancer and inflammatory diseases. A brief discussion of the co-crystallized structure of 19 with BRD4 (BD1) is also highlighted.  相似文献   

19.
Different series of novel thieno [2,3-d]pyrimidine derivative (9a-d,10a-f,l,m and 15a-m) were designed, synthesized and evaluated for their ability to in vitro inhibit VEGFR-2 enzyme. Also, the cytotoxicity of the final compounds was tested against a panel of 60 different human cancer cell lines by NCI. The VEGFR-2 enzyme inhibitory results revealed that compounds 10d, 15d and 15 g are among the most active inhibitors with IC50 values of 2.5, 5.48 and 2.27 µM respectively, while compound 10a remarkably showed the highest cell growth inhibition with mean growth inhibition (GI) percent of 31.57%. It exhibited broad spectrum anti-proliferative activity against several NCI cell lines specifically on human breast cancer (T7-47D) and renal cancer (A498) cell lines of 85.5% and 77.65% inhibition respectively. To investigate the mechanistic aspects underlying the activity, further biological studies like flow cytometry cell cycle together with caspase-3 colorimetric assays were carried on compound 10a. Flow cytometric analysis on both MCV-7 and PC-3 cancer cells revealed that it induced cell-cycle arrest in the G0-G1phase and reinforced apoptosis via activation of caspase-3. Furthermore, molecular modeling studies have been carried out to gain further understanding of the binding mode in the active site of VEGFR-2 enzyme and predict pharmacokinetic properties of all the synthesized inhibitors.  相似文献   

20.
Glycogen synthase kinase-3β (GSK-3β) has been identified to promote inflammation and its inhibitors have also been proven to treat some inflammatory mediated diseases in animal models. Non-ATP competitive inhibitors inherently have better therapeutical value due to their higher specificity than ATP competitive ones. In this paper, we designed and synthesized a series of new BTZ derivatives as non-ATP competitive GSK-3β inhibitors. Kinetic analysis revealed two typical compounds 6j and 3j showed the different non-ATP competitive mechanism of substrate competition or allosteric modulation to GSK-3β, respectively. As expected, the two compounds showed good specificity in a panel test of 16 protein kinases, even to the closest enzymes, like CDK-1/cyclin B and CK-II. The in vivo results proved that both compounds can greatly attenuate the LPS-induced acute lung injury (ALI) and diminish inflammation response in mice by inhibiting the mRNA expression of IL-1β and IL-6. Western blot analysis demonstrated that they negatively regulated GSK-3β, and the mechanism of the observed beneficial effects of the inhibitors may involve both the increased phosphorylation of the Ser9 residue on GSK-3β and protein expression of Sirtuin 1 (SIRT1). The results support that such novel BTZ compounds have a protective role in LPS-induced ALI, and might be attractive candidates for further development of inflammation pharmacotherapy, which greatly thanks to their inherently high selectivities by the non-ATP competitive mode of action. Finally, we proposed suggesting binding modes by Docking study to well explain the impacts of compounds on the target site.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号