首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Three series of polycyclic compounds possessing either primary sulfonamide or carboxylic acid moieties as zinc-binding groups were investigated as inhibitors of four physiologically relevant CA isoforms, the cytosolic hCA I and II, as well as the transmembrane hCA IX and XII. Most of the new sulfonamides reported here showed excellent inhibitory effects against isoforms hCA II, IX and XII, but no highly isoform-selective inhibition profiles. On the other hand, the carboxylates selectively inhibited hCA IX (KIs ranging between 40.8 and 92.7 nM) without inhibiting significantly the other isoforms. Sulfonamides/carboxylates incorporating polycyclic ring systems such as benzothiopyranopyrimidine, pyridothiopyranopyrimidine or dihydrobenzothiopyrano[4,3-c]pyrazole may be considered as interesting candidates for exploring the design of isoform-selective CAIs with various pharmacologic applications.  相似文献   

2.
A new series of 1,3,4-thiadiazole-2-thione derivatives have been prepared and assayed for the inhibition of three physiologically relevant carbonic anhydrase (CA, EC 4.2.1.1) isozymes, the cytosolic human isozymes I and II, and the transmembrane, tumor-associated hCA IX. Against hCA I the investigated thiones, showed inhibition constants in the range of 2.55-222 microM, against hCA II in the range of 2.0-433 microM, and against hCA IX in the range of 1.25-148 microM. Compound 5c, 4-(4,5-dihydro-5-thioxo-1,3,4-thiadiazol-2-yl)-1-(5-nitro-2-oxoindolin-3-ylidene)semicarbazide showed interesting inhibition of the tumor-associated hCA IX with K(I) value of 1.25 microM, being the first non-sulfonamide type inhibitor of such activity. This result is rather important taking into consideration the known antitumor activity of thiones. In addition, docking of the tested compounds into CA II active site was performed in order to predict the affinity and orientation of these compounds at the isozyme active site. The results showed similar orientation of the target compounds at CA II active site compared with reported sulfonamide type CAIs with the thione group acting as a zinc-binding moiety.  相似文献   

3.
Sulphamate and sulphamide derivatives have been largely investigated as carbonic anhydrase inhibitors (CAIs) by means of different experimental techniques. However, the structural determinants responsible for their different binding mode to the enzyme active site were not clearly defined so far. In this paper, we report the X-ray crystal structure of hCA II in complex with a sulphamate inhibitor incorporating a nitroimidazole moiety. The comparison with the structure of hCA II in complex with its sulphamide analogue revealed that the two inhibitors adopt a completely different binding mode within the hCA II active site. Starting from these results, we performed a theoretical study on sulphamate and sulphamide derivatives, demonstrating that electrostatic interactions with residues within the enzyme active site play a key role in determining their binding conformation. These findings open new perspectives in the design of effective CAIs using the sulphamate and sulphamide zinc binding groups as lead compounds.  相似文献   

4.
Carbonic anhydrase (CA, EC 4.2.1.1) inhibitors (CAIs) are a class of pharmaceuticals used as antiglaucoma agents, diuretics, antiepileptics, in the management of mountain sickness, gastric and duodenal ulcers, neurological disorders, or osteoporosis. We report here the inhibitory capacities of some organic nitrates against two human (hCA) isozymes, hCA I and hCA II. The IC50 values of compounds 112 against hCA I ranged between 7.13 mM and 124 mM, and against hCA II between 65.1 μM and 0.79 mM. Nitrate esters are thus interesting hCA I and II inhibitors, and might be used as leads for generating enzyme inhibitors eventually targeting other isoforms which have not been assayed yet for their interactions with such agents.  相似文献   

5.
A novel series of 4-oxo-spirochromane bearing primary sulfonamide group were synthetized as Carbonic Anhydrase inhibitors (CAIs) and tested for their management of neuropathic pain. Indeed, CAs have been recently validated as novel therapeutic targets in neuropathic pain. All compounds, here reported, showed strong activity against hCA II and hCA VII with KI values in the low or sub-nanomolar range. Two compounds (6d and 6l) showed good neuropathic pain attenuating effects and longer duration than drug reference acetazolamide in an animal model of oxaliplatin induced neuropathy.  相似文献   

6.
Carbonic anhydrase inhibitors (CAIs) are a class of pharmaceuticals used as anti-glaucoma agents, diuretics and anti-epileptics. We report here the inhibitory capacities of benzenesulphonamides, cyclitols and phenolic compounds 1–11 against three human CA isozymes (hCA I, hCA II and hCA VI) and bovine skeletal muscle carbonic anhydrase III (bCA III). The four isozymes showed quite diverse inhibition profiles with Ki values ranging from low micromolar to millimolar concentrations against all isoenzymes. Compound 5 and 6 had more powerful inhibitory action against hCA I and very similar action against hCA II and hCA VI as compared with acetazolamide (AZA) and sulphapyridine (SPD), specific CAIs. Probably the inhibition mechanism of the tested compounds is distinct of the sulphonamides with RSO2NH2 groups and similar to that of the coumarins/lacosamide, i.e. binding to a distinct part of the active site than that where sulphonamides bind. These data may lead to drug design campaigns of effective CAIs possessing a diverse inhibition mechanism compared to other sulphonamide/sulphamate inhibitors.  相似文献   

7.
A novel class of effective CAIs has been identified, starting from a very weak carbonic anhydrase inhibitor (CAI), sulfamide, whose X-ray crystal structure in the adduct with hCA II has recently been reported. A series of N,N-disubstituted- and N-substituted-sulfamides were prepared from the corresponding amines and N-(tert-butoxycarbonyl)-N-[4-(dimethylazaniumylidene)-1,4-dihydropyridin-1-ylsulfonyl]azanide or the unstable N-(tert-butoxycarbonyl)sulfamoyl chloride. The disubstituted compounds being too bulky, were ineffective as CAIs, whereas mono-substituted derivatives (incorporating aliphatic, cyclic and aromatic moieties) as well as a bis-sulfamide, behaved as micro-nanomolar inhibitors of two cytosolic isozymes, hCA I and hCA II, responsible for critical physiological processes in higher vertebrates. Aryl-sulfamides were more effective than aliphatic derivatives. Low nanomolar inhibitors have been detected, which generally incorporated 4-substituted phenyl moieties in their molecule. This is the first example of CAIs in which low nanomolar inhibitors were generated starting from a very ineffective lead molecule.  相似文献   

8.
Carbonic anhydrase inhibitors (CAIs) are a class of pharmaceuticals used as antiglaucoma agents, diuretics, antiepileptics, in the management of mountain sickness, gastric and duodenal ulcers, neurological disorders or osteoporosis. We report here the inhibitory capacities of some phenolic compounds against three human CA isozymes (hCA I, hCA II, and hCA VI) and the gill carbonic anhydrase of the teleost fish Dicentrarchus labrax (European seabass) (dCA). The isozymes showed quite diverse inhibition profiles with these compounds. These data may lead to design novel CAIs with a diverse inhibition mechanism compared to sulfonamide/sulfamate inhibitors.  相似文献   

9.
Three salts of 5-amino-2-sulfonamide-1,3,4-thiadiazole (Hats) were prepared and characterized by physico-chemical methods. The p-toluensulfonate, the methylsulfonate, and the chlorhydrate monohydrate salts of Hats were evaluated as carbonic anhydrase (CA, EC 4.2.1.1) inhibitors (CAIs) and as anticonvulsants and diuretics, since many CAIs are clinically used as pharmacological agents. The three Hats salts exhibited diuretic and anticonvulsant activities with little neurotoxicity. The human (h) isoforms hCA I, II, IV, VII, IX, and XII were inhibited in their micromolar range by these salts, whereas pathogenic beta and gamma CAs showed similar, weak inhibitory profiles.  相似文献   

10.
Carbonic anhydrase inhibitors (CAIs) are a class of pharmaceuticals used as antiglaucoma agents, diuretics and antiepileptics. Thus, discovery of novel CAIs has become of great importance in the recent years. In the current study, in vitro and in vivo inhibition effects of benzodiazepine drugs, diazepam and midazolam, on human erythrocytes carbonic anhydrase I and II isozymes were investigated. After purification of the isoenzymes, in vitro inhibition assays were performed and K(i) values were determined to be of 141.5 μM and 40.7 μM for hCA I and of 5.11 μM and 0.58 μM against hCA II by the esterase activity assay, respectively. The drugs showed strong inhibitory effects on hCA II, in the same range as the clinically used sulphonamide acetazolamide. For in vivo studies, five adult male New Zealand White rabbits (3-4.2 kg) were selected for intravenous administrations of the drugs (2 mg/kg and 0.2 mg/kg body weight, respectively). The enzyme was significantly inhibited by 2 mg/kg diazepam (p < 0.05), and 0.2 mg/kg midazolam (p < 0.05) for up to 30 min following intravenous administration.  相似文献   

11.
Pyridinium containing sulfonamides have been largely investigated as carbonic anhydrase inhibitors (CAIs), showing interesting selectivity features. Nevertheless, only few structural studies are so far available on adducts that these compounds form with diverse CA isoforms. In this paper, we report the structural characterization of the adduct that a triphenylpyridinium derivative forms with hCA II, showing that the substitution of the pyridinium ring plays a key role in determining the conformation of the inhibitor in the active site and consequently the binding affinity to the enzyme. These findings open new perspectives on the basic structural requirements for designing sulfonamide CAIs with a selective inhibition profile.  相似文献   

12.
Among the 14 human isozymes of carbonic anhydrase (CA, EC 4.2.1.1) presently known, the cytosolic hCA II is the most active and plays a host of physiological functions, whereas the mitochondrial hCA V is unique due to its role in several biosynthetic reactions. An inhibition study of these isozymes with a series of sulfonamides is reported here, with the scope to detect lead molecules for the design of isozyme-specific CA inhibitors (CAIs) targeting the mitochondrial isoform. Indeed, recently it has been shown that CA V is a novel target for the drug design of anti-obesity agents among others. Compounds included in this study were mainly ortho-, meta-, and para-substituted-benzenesulfonamides, together with several halogeno-substituted sulfanilamides and disubstituted-benzene-1,3-disulfonamide derivatives. Isozyme V showed an inhibition profile with these sulfonamides different of that of hCA II. Thus, IC(50) values in the range of 80 nM to 74 microM against hCA II, and 0.78-63.7 microM against hCA V with these derivatives have been obtained. Only one compound, 2-carboxymethyl-benzenesulfonamide, was more active against hCA V over hCA II (selectivity ratio of 1.39), whereas all other derivatives investigated here were much better hCA II inhibitors (selectivity ratios CA II/CA V in the range of 0.0008-0.73) than hCA V inhibitors.  相似文献   

13.
The synthesis of a new class of sulfonamide carbonic anhydrase (CA, EC 4.2.1.1) inhibitors (CAIs), also possessing carboxylate/hydroxamate moieties in their molecule, is reported. These compounds may act on dual antitumor targets, the tumor-associated CA isozymes (CA IX) and some matrix metalloproteinases (MMPs). The compounds were prepared by an original method starting from iminodiacetic acid, and assayed as inhibitors of three isozymes, hCA I, II (cytosolic), and IX (transmembrane). The new derivatives showed weak inhibitory activity against isozyme I (K(I)s in the range of 95-8300 nM), were excellent to moderate CA II inhibitors (K(I)s in the range of 8.4-65 nM), and very good and selective CA IX inhibitors (K(I)s in the range of 3.8-26 nM). The primary sulfonamide moiety is a better zinc-binding group in the design of CAIs as compared to the carboxylate/hydroxamate one, but the presence of hydroxamate functionalities in the molecule of CAIs leads to selectivity for the tumor-associated isozyme IX over the ubiquitous, cytosolic isoform II.  相似文献   

14.
(2-Bromo-3,4-dimethoxyphenyl) (3,4-dimethoxyphenyl)methanone (10) and its derivatives with Br, one dibromide and isomeric three tribromides, were synthesized. Demethylation of these compounds afforded a series of new bromophenols. Inhibition of human cytosolic carbonic anhydrase II (hCA II) isozyme by these new bromophenols and naturally occurring 3,4,6-tribromo-5-(2,5-dibromo-3,4-dihydroxybenzyl)benzene-1,2-diol (3), and 5,5'-methylenebis(3,4,6-tribromo-benzene-1,2-diol) (4) was investigated. The synthesized compounds showed carbonic anhydrase inhibitory capacities with IC(50) values in the range of 0.7-372 μM against hCA II. Some bromophenols investigated here showed effective hCA II inhibitory activity and might be used as leads for generating novel carbonic anhydrase inhibitors which are valuable drug candidates for the treatment of glaucoma, epilepsy, gastric and duodenal ulcers, neurological disorders, or osteoporosis.  相似文献   

15.
A library of benzenesulphonamides incorporating 1,2,3-triazole rings functionalised with ester, carboxylic acid, carboxamide, carboxyhydrazide, and hydroxymethyl moieties were synthesised. The carbonic anhydrase (CAs, EC 4.2.1.1) inhibitory activity of the new compounds was assessed against four human (h) isoforms, hCA I, hCA II, hCA IV, and hCA IX. Among them, hCA II and IV are anti-glaucoma drug targets, being involved in aqueous humour secretion within the eye. hCA I was inhibited with Ki’s ranging between 8.3?nM and 0.8737?µM. hCA II, the physiologically dominant cytosolic isoform, was excellently inhibited by these compounds, with Ki’s in the range of 1.6–9.4?nM, whereas hCA IV was effectively inhibited by most of them, with Ki’s in the range of 1.4–55.3?nM. Thirteen of the twenty sulphonamides were found to be excellent inhibitors of tumour associated hCA IX with Ki’s?≤?9.5?nM. Many of the new compounds reported here showed low nM inhibitory action against hCA II, IV, and IX, isoforms involved in glaucoma and some tumours, making them interesting candidates for further medicinal chemistry/pharmacologic studies.  相似文献   

16.
Thirty novel sulfonamide derivatives incorporating dipeptide were synthesized by facile acylation through benzotriazole mediated reactions and their structures were identified by 1H NMR, 13C NMR, MS and FT-IR spectroscopic techniques and elemental analysis. The carbonic anhydrase (CA, EC 4.2.1.1) inhibitory activity of the new compounds was assessed against four human (h) isoforms, hCA I, hCA II, hCA IV and hCA XII. Most of the synthesized compounds showed excellent in vitro carbonic anhydrase inhibitory properties comparable to those of the clinically used drug acetazolamide (AAZ). The new unprotected dipeptide-sulfonamide conjugates showed very effective inhibitory activity, in the low nanomolar range against II and XII, being less effective as hCA I and IV inhibitors. Four of the thirty compounds also showed strong inhibitory activity against hCA XII compared to AAZ.  相似文献   

17.
A new series of s-triazine derivatives incorporating sulfanilamide, homosulfanilamide, 4-aminoethyl-benzenesulfonamide and piperazine or aminoalcohol structural motifs is reported. Molecular docking was exploited to select compounds from virtual combinatorial library for synthesis and subsequent biological evaluation. The compounds were prepared by using step by step nucleophilic substitution of chlorine atoms from cyanuric chloride (2,4,6-trichloro-1,3,5-triazine). The compounds were tested as inhibitors of physiologically relevant carbonic anhydrase (CA, EC 4.2.1.1) isoforms. Specifically, against the cytosolic hCA I, II and tumor-associated hCA IX. These compounds show appreciable inhibition. hCA I was inhibited with KIs in the range of 8.5–2679.1 nM, hCA II with KIs in the range of 4.8–380.5 nM and hCA IX with KIs in the range of 0.4–307.7 nM. As other similar derivatives, some of the compounds showed good or excellent selectivity ratios for inhibiting hCA IX over hCA II, of 3.5–18.5. 4-[({4-Chloro-6-[(4-hydroxyphenyl)amino]-1,3,5-triazin-2-yl}amino)methyl] benzene sulfonamide demonstrated subnanomolar affinity for hCA IX (0.4 nM) and selectivity (18.50) over the cytosolic isoforms. This series of compounds may be of interest for the development of new, unconventional anticancer drugs targeting hypoxia-induced CA isoforms such as CA IX.  相似文献   

18.
We investigated the inhibition of carbonic anhydrase (CA, EC 4.2.1.1) isoforms I–XV with 4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenylsulfamide and other simple or sugar sulfamides, a class of less investigated CA inhibitors (CAIs). The crystal structure of the adduct of hCA II with the boron-substituted sulfamide shows the organic scaffold of this compound bound in the hydrophilic half of the active site where it makes a large number of van der Waals contacts with Ile91, Gln92, Val121, Phe131, Leu198, and Thr200. The data here reported provide further insights into sulfamide binding mechanism confirming that this zinc-binding group could be usefully exploited for obtaining new potent and selective CAIs.  相似文献   

19.
Carbonic anhydrase inhibitors (CAIs) are a class of pharmaceuticals used as antiglaucoma agents, diuretics and antiepileptics. Thus, discovery of novel CAIs has become of great importance in the recent years. In the current study, in vitro and in vivo inhibition effects of benzodiazepine drugs, diazepam and midazolam, on human erythrocytes carbonic anhydrase I and II isozymes were investigated. After purification of the isoenzymes, in vitro inhibition assays were performed and Ki values were determined to be of 141.5 μM and 40.7 μM for hCA I and of 5.11 μM and 0.58 μM against hCA II by the esterase activity assay, respectively. The drugs showed strong inhibitory effects on hCA II, in the same range as the clinically used sulphonamide acetazolamide. For in vivo studies, five adult male New Zealand White rabbits (3–4.2?kg) were selected for intravenous administrations of the drugs (2?mg/kg and 0.2?mg/kg body weight, respectively). The enzyme was significantly inhibited by 2?mg/kg diazepam (p?<?0.05), and 0.2?mg/kg midazolam (p?<?0.05) for up to 30?min following intravenous administration.  相似文献   

20.
We investigated the inhibitory activity of sulfonamides incorporating adamantyl moieties against the physiologically relevant human (h) CA (EC 4.2.1.1) isoforms hCA I, II III (cytosolic), IX and XII (transmembrane, tumor-associated). The presence of a benzenesulfonamide instead of an 1,3,4-thiadiazole-sulfonamide fragment in the molecule of CA inhibitors (CAIs) drastically affects both inhibition efficacy and binding within the enzyme active site, as rationalized by means of X-ray crystallography of the adduct of hCA II with 4-(1-adamantylcarboxamidomethyl)benzenesulfonamide. Comparing the present X-ray structure with that of the corresponding 1,3,4-thiadiazole-sulfonamide compound possessing the 1-adamantylcarboxamide moiety, important differences of binding emerged, which explain the highly different inhibition profile of the two compounds against the investigated CA isoforms, most of which (CA I, II, IX and XII) are important drug targets.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号