首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The free fatty acid receptor 1 (FFA1/GPR40) is a novel antidiabetic target based on particular mechanism in enhancing glucose-stimulated insulin secretion. Most of reported FFA1 agonists, however, have been suffered from relatively high lipophilicity and molecular weight. Aiming to develop potent agonists with improved physicochemical property, 25 compounds containing triazole scaffold and various carboxylic acid fragments were synthesized via the click chemistry. Among them, the optimal lead compound 26 with relatively low lipophicity (Log D7.4 = 1.95) and molecular weight (Mw = 391.78) exhibited a considerable FFA1 agonistic activity (36.15%). In addition, compound 26 revealed a significant improvement in the glucose tolerance with a 21.4% and 14.2% reduction of glucose AUC0–2h in normal ICR mice and type 2 diabetic C57BL/6 mice, respectively. All of these results demonstrated that compound 26 was considered to be a promising lead compound suitable for further optimization.  相似文献   

2.
FFA1 (free fatty acid receptor 1) has emerged as an attractive antidiabetic target due to its role in mediating the enhancement of glucose-stimulated insulin secretion in pancreatic β cells with a low risk of hypoglycemia. Many reported FFA1 agonists possessed somewhat pharmacokinetic and/or safety issues. Herein, we describe the identification of 2,3-dihydrobenzo[b][1,4]dioxine as a novel scaffold for FFA1 agonists. Comprehensive structure-activity relationship study based on this scaffold led to the discovery of (S)-3-(4-(((S)-7-(4-methoxyphenyl)-2,3-dihydrobenzo [b][1,4]dioxin-2-yl)methoxy) phenyl)hex-4-ynoic acid (26k), which displayed a potent FFA1 agonistic activity and good pharmacokinetic profiles. Subsequent in vivo studies demonstrated that compound 26k significantly improved the glucose tolerance in ICR mice. In summary, compound 26k is a promising drug candidate for further investigation.  相似文献   

3.
The free fatty acid receptor 1 (FFA1) plays an important role in amplifying insulin secretion in a glucose dependent manner. We have previously reported a series of FFA1 agonists with thiazole scaffold exemplified by compound 1, and identified a small hydrophobic subpocket partially occupied by the methyl group of compound 1. Herein, we describe further structure optimization to better fit the small hydrophobic subpocket by replacing the small methyl group with other hydrophobic substituents. All of these efforts resulted in the identification of compound 6, a potent FFA1 agonist (EC50 = 39.7 nM) with desired ligand efficiency (0.24) and ligand lipophilicity efficiency (4.7). Moreover, lead compound 6 exhibited a greater potential for decreasing the hyperglycemia levels than compound 1 during an oral glucose tolerance test. In summary, compound 6 is a promising FFA1 agonist for further investigation, and the structure-based study promoted our understanding for the binding pocket of FFA1.  相似文献   

4.
Free fatty acid receptor 1 (FFA1), previously known as GPR40 is a G protein-coupled receptor and a new target for treatment of type 2 diabetes. Two series of FFA1 agonists utilizing a 1,3,4-thiadiazole-2-caboxamide scaffold were synthetized. Both series offered significant improvement of the potency compared to the previously described 1,3,4-thiadiazole-based FFA1 agonists and high selectivity for FFA1. Molecular docking predicts new aromatic interactions with the receptor that improve agonist potency. The most potent compounds from both series were profiled for in vitro ADME properties (plasma and metabolic stability, Log D, plasma protein binding, hERG binding and CYP inhibition). One series suffered very rapid degradation in plasma and in presence of mouse liver microsomes. However, the other series delivered a lead compound that displayed a reasonable ADME profile together with the improved FFA1 potency.  相似文献   

5.
Dopamine D1/D2 receptors are important targets for drug discovery in the treatment of central nervous system diseases. To discover new and potential D1/D2 ligands, 17 derivatives of tetrahydroprotoberberine (THPB) with various substituents were prepared by chemical synthesis or microbial transformation using Streptomyces griseus ATCC 13273. Their functional activities on D1 and D2 receptors were determined by cAMP assay and calcium flux assay. Seven compounds showed high activity on D1/D2 receptor with low IC50 values less than 1?µM. Especially, top compound 5 showed strong antagonistic activity on both D1 and D2 receptor with an IC50 of 0.391 and 0.0757?µM, respectively. Five compounds displayed selective antagonistic activity on D1 and D2 receptor. The SAR studies revealed that (1) the hydroxyl group at C-9 position plays an important role in keeping a good activity and small or fewer substituents on ring D of THPBs may also stimulate their effects, (2) the absence of substituents at C-9 position tends to be more selective for D2 receptor, and (3) hydroxyl substitution at C-2 position and the substitution at C-9 position may facilitate the conversion of D1 receptor from antagonist to agonist. Molecular docking simulations found that Asp 103/Asp 114, Ser 107/Cys 118, and Trp 285/ Trp 386 of D1/ D2 receptors are the key residues, which have strong interactions with the active D1/D2 compounds and may influence their functional profiles.  相似文献   

6.
The free fatty acid receptor 1 (FFA1) and peroxisome proliferator-activated receptor δ (PPARδ) were considered as potential anti-diabetic targets, and the dual FFA1/PPARδ agonists might provide synergistic effect in insulin secretion and sensibility. Herein, we further develop dual agonists by screening 7 series of heterocycles, resulting in the discovery of compound 19 with considerable oral pharmacokinetic profile. Compound 19 exhibited a balanced potency between FFA1 and PPARδ, and high selectivity over PPARα and PPARγ. Moreover, compound 19 exerted improved glucose-lowering effects and insulin sensitivity in a dose-dependent manner, which might be attributed to its dual effects to simultaneously regulate insulin secretion and resistance. Our results extended the existing chemical space, and provided a potent tool compound 19.  相似文献   

7.
Virtual screening of a library of commercially available compounds versus the structure of Mycobacterium tuberculosis lumazine synthase identified 2-(2-oxo-1,2-dihydrobenzo[cd]indole-6-sulfonamido)acetic acid (9) as a possible lead compound. Compound 9 proved to be an effective inhibitor of M. tuberculosis lumazine synthase with a Ki of 70 μM. Lead optimization through replacement of the carboxymethylsulfonamide sidechain with sulfonamides substituted with alkyl phosphates led to a four-carbon phosphate 38 that displayed a moderate increase in enzyme inhibitory activity (Ki 38 μM). Molecular modeling based on known lumazine synthase/inhibitor crystal structures suggests that the main forces stabilizing the present benzindolone/enzyme complexes involve π–π stacking interactions with Trp27 and hydrogen bonding of the phosphates with Arg128, the backbone nitrogens of Gly85 and Gln86, and the side chain hydroxyl of Thr87.  相似文献   

8.
Substituted phenyl[(5-benzyl-1,3,4-oxadiazol-2-yl)sulfanyl]acetates/acetamides 9a-j were synthesized as alkaline phosphatase inhibitors. Phenyl acetic acid 1 through a series of reactions was converted into 5-benzyl-1,3,4-oxadiazole-2-thione 4. The intermediate oxadiazole 4 was then reacted with chloroacetyl derivatives of phenols 6a-f and anilines derivatives 8a-d to afford the title oxadiazole derivatives 9a-j. All of the title compounds 9a-j were evaluated for their inhibitory activity against human alkaline phosphatise (ALP). It was found that compounds 9a-j exhibited good to excellent alkaline phosphatase inhibitory activity especially 9h displayed potent activity with IC50 value 0.420 ± 0.012 µM while IC50 value of standard (KH2PO4) was 2.80 µM. The enzyme inhibitory kinetics of most potent inhibitor 9h was determined by Line-weaever Burk plots showing non-competitive mode of binding with enzyme. Molecular docking studies were performed against alkaline phosphatase enzyme (1EW2) to check the binding affinity of the synthesized compounds 9a-j against target protein. The compound 9h exhibited excellent binding affinity having binding energy value (−7.90 kcal/mol) compared to other derivatives. The brine shrimp viability assay results proved that derivative 9h was non-toxic at concentration used for enzyme assay. The lead compound 9h showed LD50 106.71 µM while the standard potassium dichromate showed LD50 0.891 µM. The DNA binding interactions of the synthesized compound 9h was also determined experimentally by spectrophotometric and electrochemical methods. The compound 9h was found to bind with grooves of DNA as depicted by both UV–Vis spectroscopy and cyclic voltammetry with binding constant values 7.83 × 103 and 7.95 × 103 M−1 respectively revealing significant strength of 9h-DNA complex. As dry lab and wet lab results concise each other it was concluded that synthesized compounds, especially compound 9h may serve as lead compound to design most potent inhibitors of human ALP.  相似文献   

9.
New thiazolylpyrazolyl coumarin derivatives were synthesized and tested for their anticancer potential in vitro against five different human cell lines, including breast MCF-7, lung A549, prostate PC3, liver HepG2 and normal melanocyte HFB4. Breast carcinoma revealed higher sensitivity towards compounds 7a, 8c, 9b, 9c and 9d with IC50 values ranging from 5.41 to 10.75 μM in comparison to the reference drug doxorubicin (IC50 = 6.73 μM). In addition, no noticeable toxicity was exhibited towards normal cells HFB4. Moreover, in vitro studies of the VEGFR-2 inhibition in human breast cancer MCF-7 cell line for the promising cytotoxic compounds showed that compounds 7a, 8c, 9b, 9c and 9d were potent inhibitors at low micromolar concentrations (IC50 = 0.034–0.582 μM) compared to the reference drug, sorafenib (IC50 = 0.019 μM). Several theoretical and experimental studies were done to reveal the molecular mechanisms that control breast carcinoma metastasis. The mechanistic effectiveness in cell cycle progression, apoptotic induction and gene regulation were assessed for the promising compound 9d due to its remarkable cytotoxic activity against MCF-7 and significant VEGFR-2 inhibition. Flow cytometeric analysis showed that compound 9d induced cell growth cessation at G2/M phase and increased the percentage of cells at pre-G1 phase that stimulates the apoptotic death of MCF-7 cells. Furthermore, real time PCR assay illustrated that compound 9d up regulated p53 gene expression and elevated Bax/Bcl-2 ratio which confirmed the mechanistic pathway of compound 9d. Moreover, the apoptotic induction of breast cancer cells MCF-7 was enhanced effectively through activation of caspases-7 and 9 by compound 9d. On the other hand, a set of in silico methods such as molecular docking, molecular dynamics simulation, QSAR analysis as well as ADMET analysis was performed in order to study the protein-ligand interactions and the relationship between the physicochemical properties and the inhibitory activity of the promising compounds 7a, 8c and 9d. Based on the aforementioned findings, compound 9d could be considered as effective apoptosis modulator and promising lead for future development of new anti-breast cancer agents.  相似文献   

10.
A new phenol compound, (9S)-9-hydroxy-9-[(2-hydroxyphenyl)methoxy]-nonanoic acid methyl ester (1) was isolated from the stem bark of Alnus mandshurica (Callier) Hand.-Mazz., along with eight known compounds (29). The structure of compound 1 was determined by spectral analyses, including HR-ESI-MS, 1D and 2D NMR (COSY, HMQC and HMBC) experiments. All the isolated compounds were reported for first time from A. mandshurica. Furthermore, compounds 39 were found in the family Betulaceae for the first time.  相似文献   

11.
The cardiovascular complications were highly prevalent in type 2 diabetes mellitus (T2DM), even at the early stage of T2DM or the state of intensive glycemic control. Thus, there is an urgent need for the intervention of cardiovascular complications in T2DM. Herein, the new hybrids of FFA1 agonist and NO donor were design to obtain dual effects of anti-hyperglycemic and anti-thrombosis. As expected, the induced-fit docking study suggested that it is feasible for our design strategy to hybrid NO donor with compound 1. These hybrids exhibited moderate FFA1 agonistic activities and anti-platelet aggregation activities, and their anti-platelet effects mediated by NO were also confirmed in the presence of NO scavenger. Moreover, compound 3 revealed significantly hypoglycemic effect and even stronger than that of TAK-875 during an oral glucose tolerance test in mice. Potent and multifunctional hybrid, such as compound 3, is expected as a potential candidate with additional cardiovascular benefits for the treatment of T2DM.  相似文献   

12.
Glucose transporters (GLUTs) regulate glucose uptake and are often overexpressed in several human tumors. To identify new chemotypes targeting GLUT1, we built a pharmacophore model and searched against a NCI compound database. Sixteen hit molecules with good docking scores were screened for GLUT1 inhibition and antiproliferative activities. From these, we identified that compounds 2, 5, 6 and 13 inhibited the cell viability in a dose-dependent manner and that the IC50s of 2 and 6 are<10 µM concentration in the HCT116 colon cancer cell line. Lead compound 13 (NSC295720) was a GLUT1 inhibitor. Docking studies show that GLUT1 residues Phe291, Phe379, Glu380, Trp388, and Trp412 were important for inhibitor binding.  相似文献   

13.
Hyperpigmentation disorders are difficult to treat without causing permanent depigmentation or irritation. The most effective hypopigmenting agents are tyrosinase inhibitors, however some of those currently used have shown serious side effects. As several classes of flavonoids have already demonstrated ability to inhibit tyrosinase, a library of natural polymethoxyflavones isolated (17) from the bud exudate of Gardenia oudiepe and semi-synthetic derivatives (8,9) were evaluated. IC50 of the most active compounds were in the micromolar range. The strongest inhibitors 1, 2 and 3 all shared a 3′,4′-dimethoxy-5′-hydroxy trisubstituted B ring. These SAR conclusions were confirmed by molecular docking studies. The mode of interaction with the enzyme was elucidated, and important interactions between the most active compounds and catalytic residues of tyrosinase were observed. All of these data provided a library of compounds as potential leaders for the design of new depigmenting agents and formulations.  相似文献   

14.
A series of N′-substitutedbenzylidene-2-(6,7-dihydrothieno[3,2-c]pyridin-5(4H)-yl)acetohydrazide derivatives is synthesized and evaluated for antileishmanial activity against Leishmania donovani promastigotes. Compounds 9a and 9i were shown significant antileishmanial when compared with standard sodium stilbogluconate. Antimicrobial study revealed that compound 9b has potent as well as broad spectrum antibacterial activity when compared with ampicillin and compound 9e showed promising antifungal activity when compared with miconazole. Also, none of the synthesized compounds showed cytotoxicity up to tested concentration. Further, docking study against pteridine reductase 1 enzyme of L. donovani showed good binding interactions. ADME properties of synthesized compounds were also analyzed and showed potential to develop as good oral drug candidates.  相似文献   

15.
The free fatty acid receptor 1 (FFA1) is being considered to be a novel anti-diabetic target based on its role in amplifying insulin secretion. We have previously identified several series of FFA1 agonists with different heterocyclic scaffolds. Herein, we describe the structural exploration of other heterocyclic scaffolds directed by drug-like physicochemical properties. Further structure-based design and chiral resolution provided the most potent compound 11 (EC50?=?7.9?nM), which exhibited improved lipophilicity (LogD7.4: 1.93), ligand efficiency (LE?=?0.32) and ligand lipophilicity efficiency (LLE?=?6.2). Moreover, compound 11 revealed an even better pharmacokinetic property than that of TAK-875 in terms of plasma clearance, maximum concentration, and plasma exposure. Although robust agonistic activity and PK profiles for compound 11, the glucose-lowering effects in vivo is not ideal, and the exact reason for in vitro/in vivo difference was worthy for further exploration.  相似文献   

16.
The synthesis and full 3D structural characterization of nine new 1-benzenesulfonyl-2-methyl-1,2,3,4-tetrahydroquinoline derivatives are reported. These belong to a library whose rationale for the design was the previous knowledge of the biological relevant properties of both structural moieties. From protozoan antiparasitic screening, compounds 3 demonstrated interesting activity against Trypanozoma cruzi with low cytotoxicity. Besides, most compounds were moderately active against Plasmodium falciparum. Of these, 3 and 9 can be considered as lead scaffolds for further optimization. The substituent on BS did not influence the 3D structure properties and the 1H NMR spectra revealed the existence of an intramolecular weak hydrogen bond, C–H?OS. Molecular modeling and X-ray crystallography also confirmed this finding, which is relevant to compound conformational preference.  相似文献   

17.
A novel series of 2-amino-2-phenylethanol derivatives were developed as β2-adrenoceptor agonists. Among them, 2-amino-3-fluoro-5-(2-hydroxy-1-(isopropylamino)ethyl)benzonitrile (compound 2f) exhibited the highest activity (EC50 = 0.25 nM) in stimulating β2-adrenoceptor-mediated cellular cAMP production with a 763.6-fold selectivity over the β1-adrenoceptor. The (S)-isomer of 2f was subsequently found to be 8.5-fold more active than the (R)-isomer. Molecular docking was performed to determine the putative binding modes of this new class of β2-adrenoceptor agonists. Taken together, these data show that compound 2f is a promising lead compound worthy of further study for the development of β2-adrenoceptor agonists.  相似文献   

18.
In order to identify compounds selective for the GluK1 and GluK3 subtypes of kainate receptors we have designed and synthesized a series of (S)-2-amino-3-((2-carboxyethyl)phenyl)propanoic acid analogs with hydrogen bond donating and accepting substituents on the aromatic ring. Based on crystal structures of GluK1 in complex with related ligands, the compounds were designed to explore possible interactions with non-conserved residues outside the glutamate ligand binding site and challenge the water binding network. Apart from obtaining GluK1 selective antagonists one analog with a phenyl-substituted urea (compound 31) showed some preference for GluK3 over GluK1-receptors. Docking studies indicate that this preference may be attributed to contacts between the NH of the urea substituent and non-conserved Ser741 and Ser761 residues.  相似文献   

19.
Designing novel inverse agonists of NR RORγt still represents a challenge for the pharmaceutical community to develop therapeutics for treating immune diseases. By exploring the structure of NRs natural ligands, the representative arotenoid ligands and RORs specific ligands share some chemical homologies which can be exploited to design a novel molecular structure characterized by a polycyclic core bearing a polar head and a hydrophobic tail. Compound MG 2778 (8), a cyclopenta[a]phenantrene derivative, was identified as lead compound which was chemically modified at position 2 in order to obtain a small library for preliminary SARs. Cell viability and estrogenic activity of compounds 7, 8, 19a, 30, 31 and 32 were evaluated to attest selectivity. The selected 7, 8, 19a and 31 compounds were assayed in a Gal4 UAS-Luc co-transfection system in order to determine their ability to modulate RORγt activity in a cellular environment. They were evaluated as inverse agonists taken ursolic acid as reference compound. The potency of compounds was lower than that of ursolic acid, but their efficacy was similar. Compound 19a was the most active, significantly reducing RORγt activity at low micromolar concentrations.  相似文献   

20.
Our ongoing drug development endeavor to design compounds for symptomatic and neuroprotective treatment of Parkinson’s disease (PD) led us to carry out a structure activity relationship study based on dopamine agonists pramipexole and 5-OHDPAT. Our goal was to incorporate structural elements in these agonists in a way to preserve their agonist activity while producing inhibitory activity against aggregation of α-synuclein protein. In our design we appended various catechol and related phenol derivatives to the parent agonists via different linker lengths. Structural optimization led to development of several potent agonists among which (−)-8a, (−)-14 and (−)-20 exhibited potent neuroprotective properties in a cellular PD model involving neurotoxin 6-OHDA. The lead compounds (−)-8a and (−)-14 were able to modulate aggregation of α-synuclein protein efficiently. Finally, in an in vivo PD animal model, compound (−)-8a exhibited efficacious anti-parkinsonian effect.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号