首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Type II bacterial topoisomerases are well validated targets for antimicrobial chemotherapy. Novel bacterial type II topoisomerase inhibitors (NBTIs) of these targets are of interest for the development of new antibacterial agents that are not impacted by target-mediated cross-resistance with fluoroquinolones. We now disclose the optimization of a class of NBTIs towards Gram-negative pathogens, especially against drug-resistant Pseudomonas aeruginosa. Physicochemical properties (pKa and log D) were optimized for activity against P. aeruginosa and for reduced inhibition of the hERG channel. The optimized analogs 9g and 9i displayed potent antibacterial activity against P. aeruginosa, and a significantly improved hERG profile over previously reported analogs. Compound 9g showed an improved QT profile in in vivo models and lower clearance in rat over earlier compounds. The compounds show promise for the development of new antimicrobial agents against drug-resistant Pseudomonas aeruginosa.  相似文献   

2.
Tsubery H  Ofek I  Cohen S  Fridkin M 《Peptides》2001,22(10):1675-1681
Polymyxin B (PMB) is a potent antibacterial lipopeptide composed of a positively charged cyclic peptide ring and a fatty acid containing tail. Polymyxin B nonapeptide (PMBN), the deacylated amino derivative of polymyxin B, is much less bactericidal but able to permeabilize the outer membrane of Gram-negative bacteria and to neutralize the toxic effects of lipopolysaccharide (LPS). In this study, we synthesized and evaluated the antibacterial and LPS neutralizing activities of four PMBN analogs modified at their N-terminal. Our results suggest that oligoalanyl substitutions of PMBN do not effect most of PMBN activities. However, a hydrophobic aromatic substitution generated a PMB-like molecule with high antibacterial activity and significant reduced toxicity.  相似文献   

3.
Synthetic modifications have been made directly to the cyclic peptide core of polymyxin B, enabling the further understanding of structure activity relationships of this antimicrobial peptide. Such modified polymyxins are also substrates for enzymic hydrolysis, enabling the synthesis of a variety of semi-synthetic analogues, resulting in compounds with increased in vitro antibacterial activity.  相似文献   

4.
Many human diseases, including cystic fibrosis lung infections, are caused or exacerbated by bacterial biofilms. Specialized modes of motility, including swarming and twitching, allow gram-negative bacteria to spread across surfaces and form biofilms. Compounds that inhibit these motilities could slow the spread of biofilms, thereby allowing antibiotics to work better. We previously demonstrated that a set of plant-derived triterpenes, including oleanolic acid and ursolic acid, inhibit formation of Escherichia coli and Pseudomonas aeruginosa biofilms, and alter expression of genes involved in chemotaxis and motility. In the present study, we have prepared a series of analogs of oleanolic acid. The analogs were evaluated against clinical isolates of E. coli and P. aeruginosa in biofilm formation assays and swarming assays. From these analogs, compound 9 was selected as a lead compound for further development. Compound 9 inhibits E. coli biofilm formation at 4 µg/mL; it also inhibits swarming at ≤1 µg/mL across multiple clinical isolates of P. aeruginosa, E. coli, Burkholderia cepacia, and Salmonella enterica, and at <0.5 µg/mL against multiple agricultural strains. Compound 9 also potentiates the activity of the antibiotics tobramycin and colistin against swarming P. aeruginosa; this is notable, as tobramycin and colistin are inhaled antibiotics commonly used to treat P. aeruginosa lung infections in people with cystic fibrosis. qPCR experiments suggested that 9 alters expression of genes involved in regulating Type IV pili; western blots confirmed that expression of Type IV pili components PilA and PilY1 decreases in P. aeruginosa in the presence of 9.  相似文献   

5.
Inhibitors for NorA efflux pump of Staphylococcus aureus have attracted the attention of many researchers towards the discovery and development of novel efflux pump inhibitors (EPIs). In an attempt to find specific potent inhibitors of NorA efflux pump of S. aureus, a total of 15 amino acid conjugates of 3-(1-chloro-3,4-dihydronaphthalen-2-yl)acrylic acid (418) were synthesized using a simple convenient synthetic approach and bioevaluated against NorA efflux pump. Two compounds 7 and 8 (each having MEC of 1.56?µg/mL) were found to restore the activity of ciprofloxacin through reduction of the MIC elucidated by comparing the ethidium bromide efflux in dose dependent manner in addition to ethidium bromide efflux inhibition and accumulation study using NorA overexpressing strain SA-1199B. Most potent compounds among these were able to restore the antibacterial activity of ciprofloxacin completely against SA-1199B. Structure activity relationship (SAR) studies and docking study of potent compounds 7 and 8 could elucidate the structural requirements necessary for interaction with the NorA efflux pumps. On the whole, compounds 7 and 8 have ability to reverse the NorA efflux mediated resistance and could be further optimized for development of potent efflux pump inhibitors.  相似文献   

6.
Two strategies were developed to synthesize the acylated cyclic peptides know as polymyxins. Synthesis of polymyxin E1 and several analogs enabled us to evaluate the minimum inhibitory concentration of individual compounds against Gram-negative bacteria. In this study we also report the first identification of two component peptides in the complex polymyxin fermentation product colistin, a Thr2Ser isoform and an acyl group isomer. Both of these peptides, as well as a known component peptide, Leu7Ile, were similar to polymyxin E1 in potency, suggesting that conservative mutations in the colistin family are functionally inconsequential. In contrast, the acyclic analogs of all of these peptides were inactive, indicating that the characteristic lariat structure of the polymyxins is necessary for antimicrobial activity.  相似文献   

7.
A new antimicrobial peptide l‐RW containing double amphipathic binding sequences was designed, and its biological activities were investigated in the present study. L‐RW showed antibacterial activity against several bacterial strains but low cytotoxicity to mammalian cells and low hemolytic activity to red blood cells, which makes it a potential and promising peptide for further development. Microscale thermophoresis (MST), a new technique, was applied to study the antimicrobial peptide–lipid interaction for the first time, which examined the binding affinities of this new antimicrobial peptide to various lipids, including different phospholipids, mixture lipids and bacterial lipid extracts. The results demonstrated that l‐RW bound preferentially to negatively charged lipids over neutral lipids, which was consistent with the biological activities, revealing the important role of electrostatic interaction in the binding process. L‐RW also showed higher binding affinity for lipid extract from Staphyloccocus aureus compared with Pseudomonas aeruginosa and Escherichia coli, which were in good agreement with the higher antibacterial activity against S. aureus than P. aeruginosa and E. coli, suggesting that the binding affinity is capable to predict the antibacterial activity to some extent. Additionally, the binding of l‐RW to phospholipids was also performed in fetal bovine serum solution by MST, which revealed that the components in biological solution may have interference with the binding event. The results proved that MST is a useful and potent tool in antimicrobial peptide–lipid interaction investigation. Copyright © 2015 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

8.
A series of benzyl-[3-(benzylamino-methyl)-cyclohexylmethyl]-amine derivatives with different substitution pattern on the aromatic ring have been prepared and evaluated for their antibacterial activity against Gram-positive and Gram-negative bacterial strains. Most of the compounds exhibit potent activity against Pseudomonas aeruginosa and Staphylococcus epidermidis while compounds 6l and 6m showed antibacterial activity against all the four bacterial strains with MIC values ranging from 0.002 to 0.016 μg/mL and no hemolytic activity up to 512 μg/mL in mammalian erythrocytes was observed.  相似文献   

9.
Metronidazole has a broad-spectrum antibacterial activity. Hereby a series of novel metronidazole derivatives were designed and synthesized based on nitroimidazole scaffold in order to find some more potent antibacterial drugs. For these compounds which were reported for the first time, their antibacterial activities against Escherichia coli, Pseudomonas aeruginosa, Bacillus subtilis and Staphylococcus aureus were tested. These compounds showed good antibacterial activities against Gram-positive strains. Compound 4m represented the most potent antibacterial activity against S. aureus ATCC 25923 with MIC of 0.003 μg/mL and it showed the most potent activity against S. aureus TyrRS with IC50 of 0.0024 μM. Molecular docking of 4m into S. aureus tyrosyl-tRNA synthetase active site were also performed to determine the probable binding mode.  相似文献   

10.
A synthetic route to paleic acid 1, antimicrobial agent effective against Mannheimia haemolytica and Pasteurella multocida, has been established. The absolute configuration of the secondary hydroxyl group was controlled by a catalytic asymmetric alkylation of an aldehyde using a chiral titanium sulfonamide complex and the cis double bond was installed using a Wittig reaction. This synthetic route was also applied to the preparation of structurally related analogs, which were used in structure–activity relationship studies for antibacterial activity.  相似文献   

11.
A series of aryl fluorosulfate analogues (137) were synthesized and tested for in vitro antibacterial and antifungal studies, and validated by docking studies. The compounds 9, 12, 14, 19, 25, 26, 35, 36 and 37 exhibited superior antibacterial potency against tested bacterial strains, while compounds 2, 4, 5, 15, 35, 36 and 37 were found to have better antifungal activity against tested fungal strains, compared to standard antibiotic gentamicin and ketoconazole respectively. Among all the synthesized 37 analogs, compounds 25, 26, 35, 36 and 37 displayed excellent anti-biofilm property against Staphylococcus aureus. The structure–activity relationship (SAR) revealed that the antimicrobial activity depends upon the presence of –OSO2F group and slender effect of different substituent’s on the phenyl rings. The electron donating (OCH3) groups in analogs increase the antibacterial activity, and interestingly the electron withdrawing (Cl, NO2, F and Br) groups increase the antifungal activity (except compound 35, 36 and 37). The mechanism of potent compounds showed membrane damage on bacteria confirmed by SEM. Compounds 35, 36 and 37 exhibited highest glide g-scores in molecular docking studies and validated the biocidal property.  相似文献   

12.
With the high number of patients infected by tuberculosis and the sharp increase of drug-resistant tuberculosis cases, developing new drugs to fight this disease has become increasingly urgent. In this context, analogs of the naturally occurring enolphosphates Cyclipostins and Cyclophostin (CyC analogs) offer new therapeutic opportunities. The CyC analogs display potent activity both in vitro and in infected macrophages against several pathogenic mycobacteria including Mycobacterium tuberculosis and Mycobacterium abscessus. Interestingly, these CyC inhibitors target several enzymes with active-site serine or cysteine residues that play key roles in mycobacterial lipid and cell wall metabolism. Among them, TesA, a putative thioesterase involved in the synthesis of phthiocerol dimycocerosates (PDIMs) and phenolic glycolipids (PGLs), has been identified. These two lipids (PDIM and PGL) are non-covalently bound to the outer cell wall in several human pathogenic mycobacteria and are important virulence factors. Herein, we used biochemical and structural approaches to validate TesA as an effective pharmacological target of the CyC analogs. We confirmed both thioesterase and esterase activities of TesA, and showed that the most active inhibitor CyC17 binds covalently to the catalytic Ser104 residue leading to a total loss of enzyme activity. These data were supported by the X-ray structure, obtained at a 2.6-Å resolution, of a complex in which CyC17 is bound to TesA. Our study provides evidence that CyC17 inhibits the activity of TesA, thus paving the way to a new strategy for impairing the PDIM and PGL biosynthesis, potentially decreasing the virulence of associated mycobacterial species.  相似文献   

13.
The liver X receptors (LXR) play a key role in cholesterol homeostasis and lipid metabolism. SAR studies around tertiary-amine lead molecule 2, an LXR full agonist, revealed that steric and conformational changes to the acetic acid and propanolamine groups produce dramatic effects on agonist efficacy and potency. The new analogs possess good functional activity, demonstrating the ability to upregulate LXR target genes, as well as promote cholesterol efflux in macrophages.  相似文献   

14.
《Phytomedicine》2015,22(4):469-476
Six compounds (16), isolated from the methanol extract of the roots of the African medicinal plant Zanthoxylum capense Thunb. (Rutaceae), and seven ester derivatives (713) were evaluated for their antibacterial activities and modulatory effects on the MIC of antibiotics (erythromycin, oxacillin, and tetracycline) and ethidium bromide (EtBr) against a Staphylococcus aureus reference strain (ATCC 6538). Using the same model, compounds 113 were also assessed for their potential as efflux pump inhibitors by a fluorometric assay that measures the accumulation of the broad range efflux pump substrate EtBr. Compounds 8 and 11 were further evaluated for their antibacterial, modulatory and EtBr accumulation effects against four additional S. aureus strains, which included two clinical methicillin-resistant S. aureus (MRSA) strains. Compounds (113) have not shown antibacterial activity at the concentration ranges tested. When evaluated against S. aureus ATCC 6538, oxychelerythrine (1) a benzophenanthridine alkaloid, showed the highest modulatory activity enhancing the susceptibility of this strain to all the tested antibiotics from two to four-fold. Ailanthoidiol diacetate (8) and ailanthoidiol di-2-ethylbutanoate (11) were also good modulators when combined with EtBr, increasing the bacteria susceptibility by four and two-fold, respectively. In the EtBr accumulation assay, using ATCC 6538 strain, the phenylpropanoid (+)-ailanthoidiol (6) and most of its ester derivatives (811) exhibited higher activity than the positive control verapamil. The highest effects were found for compounds 8 and 11 that also increased the accumulation of EtBr, using S. aureus ATCC 25923 as model. Furthermore, both compounds (8, 11) were able to enhance the ciprofloxacin activity against the MRSA clinical strains tested, causing a reduction of the antibiotic MIC values from two to four-fold. The EtBr accumulation assay revealed that this modulation activity was not due to an inhibition of efflux pumps mechanism.These results suggested that Z. capense constituents may be valuable as leads for restoring antibiotic activity against MRSA strains.  相似文献   

15.
The synthesis and antibacterial activity of heterocyclic methylsulfone hydroxamates is presented. Compounds in this series are potent inhibitors of the LpxC enzyme, a key enzyme involved in the production of lipopolysaccharide (LPS) found in the outer membrane of Gram-negative bacteria. SAR evaluation of compounds in this series revealed analogs with potent antibacterial activity against challenging Gram-negative species such as Pseudomonas aeruginosa and Klebsiella pneumoniae.  相似文献   

16.
A series of metronidazole–thiazole derivatives has been designed, synthesized and evaluated as potential antibacterial inhibitors. All the synthesized compounds were determined by elemental analysis, 1H NMR and MS. They were also tested for antibacterial activity against Escherichia coli, Bacillus thuringiensis, Bacillus subtilis and Pseudomonas aeruginosa as well as for the inhibition to FabH. The results showed that compound 5e exhibited the most potent inhibitory activity against E. coli FabH with IC50 of 4.9 μM. Molecular modeling simulation studies were performed in order to predict the biological activity of proposed compounds. Toxicity assay of compounds 5a, 5b, 5d, 5e, 5g and 5i showed that they were noncytotoxic against human macrophage. The results revealed that these compounds offered remarkable viability.  相似文献   

17.
A series of novel compounds 6-amino-1-((1,3-diphenyl-1H-pyrazole-4-yl)methyleneamino)-4-(aryl)-2-oxo-1,2-dihydropyridine-3,5-dicarbonitriles (4at) were synthesized and characterized by IR, 1H NMR, 13C NMR and mass spectral data. These compounds were screened for their in vitro antibacterial activity against Staphylococcus aureus, Streptococcus pyogenes (Gram positive), Escherichia coli, Pseudomonas aeruginosa (Gram negative) by serial broth dilution and cytotoxic activity (NIH 3T3 & HeLa) by MTT assay. The results indicated that compounds 4g, 4i, 4m, 4o, 4r and 4t exhibit potent antibacterial activity against bacterial strains at non-cytotoxic concentrations.  相似文献   

18.
The combination of increased incidence of drug-resistant strains of bacteria and a lack of novel drugs in development creates an urgency for the search for new antimicrobials. Initial screening of compounds from an in-house library identified two 6-bromoindolglyoxylamide polyamine derivatives (3 and 4) that exhibited intrinsic antimicrobial activity towards Gram-positive bacteria, Staphylococcus aureus and S. intermedius with polyamine 3 also displaying in vitro antibiotic enhancing properties against the resistant Gram-negative bacterium Pseudomonas aeruginosa. A series of 6-bromo derivatives (515) were prepared and biologically evaluated, identifying analogues with enhanced antibacterial activity towards Escherichia coli and with moderate to excellent antifungal properties. Polyamine 3, which includes a spermine chain, was the most potent of the series – its mechanism of action was attributed to rapid membrane permeabilization and depolarization in both Gram-positive and Gram-negative bacteria.  相似文献   

19.
Chemical transformation studies of the marine sesquiterpene phenol (S)-(+)-curcuphenol (1), isolated from the Jamaican sponges Myrmekioderma styx, were accomplished. In order to optimize the activity and better understand the SAR of (S)-(+)-curcuphenol, nineteen semisynthetic analogs were prepared and evaluated for activity against infectious diseases. A number of analogs showed significant activity against Mtb and Leishmania donovani, while showed good to moderate activities in antibacterial and antifungal assays as well as against Plasmodium falciparium (D6 clone) and (W2 clone). The analogs a, c, h, and r exhibited Mtb activity with MICs of 24.6, 41.2, 6.90, and 50.5 μM, respectively. Analog f showed enhanced activity against L. donovani with an IC50 of 0.6 μM and IC90 of 40 μM respectively.  相似文献   

20.
A series of novel 1,4-benzodioxane thiazolidinedione piperazine derivatives targeting FabH were designed and synthesized. The compounds exhibited better inhibitory activity against Gram-negative bacteria by computer-assisted screening, antibacterial activity test and E. coli FabH inhibitory activity test, wherein compound 6j exhibited the most significant inhibitory activity (MIC = 1.80 μΜ for P. aeruginosa, MIC = 1.56 μΜ for E. coli). Besides, compound 6j still showed the best E. coli FabH inhibitory activity (IC50 = 0.06 μΜ). Moreover, the antibacterial activities of all compounds were strongly correlated with the inhibitory ability of FabH, with a correlation coefficient of 0.954. Computational docking studies also showed that compound 6j has interacting with FabH key residues in the active site.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号