首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this study, 4-[3-(4-hydroxyphenyl)-5-aryl-4,5-dihydro-pyrazol-1-yl]benzenesulfonamide (19) types compounds were synthesized and their chemical structures were confirmed by 1H NMR, 13C NMR and HRMS spectra. Cytotoxic and carbonic anhydrase (CA) inhibitory effects of the compounds were investigated. Cytotoxicity experiments pointed out that compound 4, (4-[5-(4-chlorophenyl)-3-(4-hydroxyphenyl)-4,5-dihydro-pyrazol-1-yl]benzenesulfonamide), exerting the highest tumor selectivity (TS) and potency selectivity expression (PSE) values, can be considered as a lead compound of this study in terms of development of novel anticancer agents. All synthesized sulfonamides showed a good inhibition profile on hCA IX and XII in the range of 53.5–923?nM and 6.2–95?nM, respectively. These compounds were 2.5–13.4 times more selective for the inhibition of hCA XII versus hCA IX, except compound 2 which had similar inhibitory action towards both isoenzymes.  相似文献   

2.
New mono Mannich bases, (2-(4-hydroxy-3-((4-substituephenylpiperazin-1-yl)methyl)benzylidene)-2,3-dihydro-1H-inden-1-one), were prepared to evaluate their cytotoxic/anticancer properties and also their inhibitory effects on human carbonic anhydrase I and II isoenzymes (hCA I and II). Amine part was changed as [N-phenylpiperazine (1), N-benzylpiperazine (2), 1-(2-fluorophenyl)piperazine (3), 1-(4-fluorophenyl)piperazine (4), 1-(2-methoxyphenyl)piperazine (5)]. The structure of the synthesized compounds was characterized by 1H NMR, 13C NMR and HRMS spectra. Cytotoxicity results of the series pointed out that the compound 4 had the highest tumor selectivity value (TS: 59.4) possibly by inducing necrotic cell death in series. Additionally, all compounds synthesized showed a good inhibition profile towards hCA I and II isoenzymes with the Ki values between 29.6 and 58.4 nM and 38.1–69.7 nM, respectively. These values were lower than the reference compound AZA. However, it seems that the compounds 4 and 2 can be considered as lead compounds of CA studies with the lowest Ki values in series for further designs.  相似文献   

3.
In this study, 4-[5-(4-hydroxyphenyl)-3-aryl-4,5-dihydro-1H-pyrazol-1-yl]benzenesulfonamide derivatives (8-14) were synthesized for the first time by microwave irradiation and their chemical structures were confirmed by 1H NMR, 13C NMR and HRMS. Cytotoxic activities and inhibitory effects on carbonic anhydrase I and II isoenzymes of the compounds were investigated. The compounds 9 (PSE?=?4.2), 12 (PSE?=?4.1) and 13 (PSE?=?3.9) with the highest potency selectivity expression (PSE) values in cytotoxicity experiments and the compounds 13 (Ki?=?3.73?±?0.91?nM toward hCA I) and 14 (Ki?=?3.85?±?0.57?nM toward hCA II) with the lowest Ki values in CA inhibition studies can be considered as leader compounds for further studies.  相似文献   

4.
In this study, new dibenzensulfonamides, 79, having the chemical structure 4,4′-(5′-chloro-3′-methyl-5-aryl-3,4-dihydro-1′H,H-[3,4′-bipyrazole]-1′,2-diyl)dibenzenesulfonamide were synthesized in five steps to develop new anticancer drug candidates. Their chemical structures were confirmed by 1H NMR, 13C NMR and HRMS spectra. Cytotoxicities of the dibenzensulfonamides were investigated towards HCC1937, MCF7, HeLa, A549 as tumor cell lines and towards MRC5 and Vero as non-tumor cells. Carbonic anhydrase (CAs, EC 4.2.1.1) inhibitory effects of the dibenzensulfonamides 79 were also evaluated on the cytosolic human (h) hCA I and II and the tumor-associated hCA IX and XII isoenzymes. Results indicate that both 7 and 8 induced cleavage of poly (ADP ribose) polymerase (PARP), activation of caspases -3, -7 and -9 which are the hallmarks of apoptosis. Meanwhile both compounds induced autophagy in HCC1937 cells which is shown by enhanced expression of LC3 and decreased level of p62 protein. The compounds tested were also effectively inhibited tumor-associated hCA IX and hCA XII isoenzymes in the range of 20.7–28.1 nM and 4.5–9.3 nM, respectively.  相似文献   

5.
In this study, new Mannich bases, 2-(4-hydroxy-3-methoxy-5-((substitutedpiperazin-1-yl)methyl)benzylidene)-2,3-dihydro-1H-inden-1-one (1, 2, 4, 5, 8), 2-(3-((substituted)piperazin-1-yl)methyl)-4-hydroxy-5-methoxybenzylidene)-2,3-dihydro-1H-inden-1-one (3, 6, 7) were synthesized with the reaction of vanilin derived chalcone compound (2-(4-hydroxy-3-methoxybenzylidene)indan-1-one), paraformaldehyde and suitable amine in 1:1.2:1 mol ratios. Amine part was changed as N-methylpiperazine (1), N-phenylpiperazine (2), N-benzylpiperazine (3), 1-(2-methoxyphenyl)piperazine (4), 1-(3-methoxyphenyl)piperazine (5), 1-(2-fluorophenyl)piperazine (6), 1-(4-fluorophenyl)piperazine (7), and 1-(3-trifluoromethyl)phenyl piperazine (8). Compounds were evaluated in terms of cytotoxic/anticancer and CA inhibitory effects. According to the results obtained, the compounds 2 and 8 had the highest potency selectivity expression (PSE) values (60.6 and 19.2, respectively). On the other hand, the compounds 3 (Ki = 209.6 ± 70.2 pM) and 5 (Ki = 342.66 ± 63.72 pM) had the lowest Ki values in CA inhibition experiments towards hCA I and hCA II, respectively.In conclusion, the compounds 2 (with cytotoxic/anticancer activity), 3 (with hCA I inhibiting activity) and 5 (with hCA II inhibiting activity) can be leading compounds of the study for further designs and evaluations.  相似文献   

6.
A novel class of fluoro-substituted tris-chalcones derivatives (5a-5i) was synthesized from phloroglucinol and corresponding benzaldehydes. A three step synthesis method was followed for the production of these tris-chalcone compounds. The structures of the newly synthesized compounds (5a-5i) were confirmed on the basis of IR, 1H NMR, 13C NMR, and elemental analysis. The compounds’ inhibitory activities were tested against human carbonic anhydrase I and II isoenzymes (hCA I and hCA II), acetylcholinesterase (AChE), butyrylcholinesterase (BChE), and α-glycosidase (α-Gly). These chalcone derivatives had Ki values in the range of 19.58–78.73 nM for hCA I, 12.23–41.70 nM for hCA II, 1.09–6.84 nM for AChE, 8.30–32.30 nM for BChE and 0.93 ± 0.20–18.53 ± 5.06 nM against α-glycosidase. These results strongly support the promising nature of the tris-chalcone scaffold as selective carbonic anhydrase, acetylcholinesterase, butyrylcholinesterase, and α-glycosidase inhibitor. Overall, due to these derivatives’ inhibitory potential on the tested enzymes, they are promising drug candidates for the treatment of diseases like glaucoma, leukemia, epilepsy; Alzheimer’s disease; type-2 diabetes mellitus that are associated with high enzymatic activity of carbonic anhydrase, acetylcholine esterase, butyrylcholinesterase, and α-glycosidase.  相似文献   

7.
In this study, 4-(2-substituted hydrazinyl)benzenesulfonamides were synthesized by microwave irradiation and their chemical structures were confirmed by 1H NMR, 13CNMR, and HRMS. Ketones used were: Acetophenone (S1), 4-methylacetophenone (S2), 4-chloroacetophenone (S3), 4-fluoroacetophenone (S4), 4-bromoacetophenone (S5), 4-methoxyacetophenone (S6), 4-nitroacetophenone (S7), 2-acetylthiophene (S8), 2-acetylfuran (S9), 1-indanone (S10), 2-indanone (S11). The compounds S9, S10 and S11 were reported for the first time, while S1S8 was synthesized by different method than literature reported using microwave irradiation method instead of conventional heating in this study. The inhibitory effects of 4-(2-substituted hydrazinyl)benzenesulfonamide derivatives (S1S11) against hCA I and II were studied. Cytosolic hCA I and II isoenzymes were potently inhibited by new synthesized sulphonamide derivatives with Kis in the range of 1.79?±?0.22–2.73?±?0.08?nM against hCA I and in the range of 1.72?±?0.58–11.64?±?5.21?nM against hCA II, respectively.  相似文献   

8.
In the current study, a series of pyrazole-sulfonamide derivatives (2–14) were synthesized, characterized, and the inhibition effects of the derivatives on human carbonic anhydrases (hCA I and hCA II) were investigated as in vitro. Structures of these sulfonamides were confirmed by FT-IR, 1H NMR, 13C NMR and LC–MS analysis. 1H NMR and 13C NMR revealed the tautomeric structures. hCA I and hCA II isozymes were purified from human erythrocytes and inhibitory effects of newly synthesized sulfonamides on esterase activities of these isoenzymes have been studied. The Ki values of compounds were 0.062–1.278 μM for hCA I and 0.012–0.379 μM for hCA II. The inhibition effects of 7 for hCA I and 4 for hCA II isozymes were almost in nanomolar concentration range.  相似文献   

9.
In the present study, a series of new hybrid compounds containing chalcone and methanoisoindole units 7a-n ((3aR,4S,7R,7aS)-2-(4-((E)-3-(3-aryl)acryloyl) phenyl)-3a,4,7,7a-tetrahydro-1H-4,7-methanoisoindole-1,3(2H)-dione) were synthesized, characterized and investigated for their anticancer activity against C6 gliocarcinoma cell in rats, and antimicrobial activity against some human pathogen microorganisms. The compounds 7e, 7h, 7j, 7k, 7L and 7n showed very high anticancer activity with the inhibition range of 80.51–97.02% compared to 5-FU. Some of the compounds exhibited anti-microbial activity. Also, they evaluated for inhibition effects against human carbonic anhydrase I, and II isoenzymes (hCA I and II) with Ki values in the range of 405.26–635.68 pM for hCA I, and 245.40–489.60 pM for hCA II, respectively. These results demonstrated that 3aR,4S,7R,7aS)-2-(4-((E)-3-(3-aryl)acryloyl)phenyl)-3a,4,7,7a-tetrahydro-1H-4,7-methanoisoindole-1,3(2H)-dione derivatives could be used in different biomedical applications.  相似文献   

10.
4-(3-Substitutedphenyl-5-polymethoxyphenyl-4,5-dihydro-1H-pyrazol-1-yl)benzenesulfonamides (916) were synthesized and their chemical structures were elucidated by 1H NMR, 13C NMR, and HRMS. The compounds designed include pyrazoline and sulfonamide pharmacophores in a single molecule by hibrit molecule approach which is a useful technique in medicinal chemistry in designing new compounds with potent activity for the desired several bioactivities. Inhibition potency of the sulfonamides were evaluated against human CA isoenzymes (hCA I and hCA II) and acetylcholinesterase (AChE) enzyme and also their cytotoxicities were investigated towards oral squamous cancer cell carcinoma (OSCC) cell lines (Ca9-22, HSC-2, HSC-3, and HSC-4) and non-tumor cells (HGF, HPLF, and HPC). Cytosolic hCA I and hCA II isoenzymes were inhibited by the sulfonamide derivatives (916) and Ki values were found in the range of 27.9 ± 3.2–74.3 ± 28.9 nM and 27.4 ± 1.4–54.5 ± 11.6 nM, respectively. AChE enzyme was strongly inhibited by the sulfonamide derivatives with Ki values in the range of 37.7 ± 14.4–89.2 ± 30.2 nM The CC50 values of the compounds were found between 15 and 200 µM towards OSCC malign cell lines. Their tumor selectivities were also calculated with two ways. Compound’s selectivities towards cancer cell line were found generally low, except compounds bearing 3,4-dimethoxyphenyl 14 (TS1 = 1.3, TS2 = 1.4) and 10 (TS2 = 1.4). All sulfonamide derivatives studied here can be considered as good candidates to develop novel CAs or AChE inhibitor candidates based on the enzyme inhibition potencies with their low cytotoxicity and tumor selectivity.  相似文献   

11.
In this study, a series of novel bis-thiomethylcyclohexanone compounds (3a–3j) were synthesized by the addition of thio-Michael to the bis-chalcones under mild reaction conditions. The bis-thiomethylcyclohexanone derivatives (bis-sulfides) were characterized by 1H NMR, 13C NMR, FTIR and elemental analysis techniques. Furthermore, the molecular and crystal structures of 3h, 3i and 3j compounds were determined by single crystal X-ray diffraction studies. In this study, X-ray crystallography provided an alternative and often-complementary means for elucidating functional groups at the enzyme inhibitory site. Acetylcholinesterase (AChE) is a member of the hydrolase protein super family and has a significant role in acetylcholine-mediated neurotransmission. Here, we report the synthesis and determining of novel bis-thiomethylcyclohexanone compounds based hybrid scaffold of AChE inhibitors. The newly synthesized bis-thiomethylcyclohexanone compounds showed Ki values of in range of 39.14–183.23 nM against human carbonic anhydrase I isoenzyme (hCA I), 46.03–194.02 nM against human carbonic anhydrase II isoenzyme (hCA II), 4.55–32.64 nM against AChE and 12.77–37.38 nM against butyrylcholinesterase (BChE). As a result, novel bis-thiomethylcyclohexanone compounds can have promising anti Alzheimer drug potential and record novel hCA I, and hCA II enzymes inhibitor.  相似文献   

12.
A series of 1-(3-substituted-phenyl)-5-phenyl-N3,N4-bis(5-sulfamoyl-1,3,4-thiadiazol-2-yl)-1H-pyrazole-3,4-dicarboxamides (4–15) were synthesized. The structures of these pyrazole-sulfonamides were confirmed by FT-IR, 1H NMR, 13C NMR and elemental analysis methods. Human cytosolic carbonic anhydrase (CA, EC 4.2.1.1) isozymes (hCA I and II) were purified from erythrocyte cells by affinity chromatography. The inhibitory effects of newly synthesized derivatives (4–15) were investigated in vitro on esterase activities of these isozymes. The Ki values were determined as 0.119–3.999 μM for hCA I and 0.084–0.878 μM for hCA II. The results showed that the compound 6 for hCA I and the compound 11 for hCA II had the highest inhibitory effect. Beside that, the compound 8 had the lowest inhibition effect on both isozymes.  相似文献   

13.
A series of 24 novel heterocyclic compounds—functionalized at position 4 with aldehyde (5a5f), carboxylic acid (6a6f), nitrile (7a7f) and oxime (8a8f) functional groups—bearing 6-aminosulfonybenzothiazole moiety at position 1 of pyrazole has been synthesized and investigated for the inhibition of four isoforms of the α-class carbonic anhydrases (CAs, EC 4.2.1.1), comprising hCAs I and II (cytosolic, ubiquitous isozymes) and hCAs IX and XII (transmembrane, tumor associated isozymes). Against the human isozyme hCA I, compounds 6a6f showed medium-weak inhibitory potential with Ki values in the range of 157–690 nM with 6a showing better potential than the standard drug acetazolamide (AZA). Against hCA II, all the compounds showed excellent to moderate inhibition with Ki values of compounds 5a, 5d, 5f, 6a6f, 8d and 8f lower than 12 nM (Ki of AZA). Against hCA IX, all the compounds showed moderate inhibition with the exception of 6e which showed nearly 9 fold a better profile compared to AZA, whereas against hCA XII, four compounds 6e, 7a, 7b and 7d showed Ki in the same order as that of AZA. Carboxylic acid 6e was found to be an excellent inhibitor of both hCA IX and XII, with Ki values of 2.8 nM and 5.5 nM, respectively.  相似文献   

14.
Herein, we report that acridine intermediates 5 were obtained from the reduction of nitro acridine derivatives 4, which were synthesized via condensation of dimedone, p-nitrobenzaldehyde with 4-amino-N-(5-sulfamoyl-1,3,4-thiadiazol-2-yl)benzamide, respectively. Then acridine sulfonamide/carboxamide (7ai) compounds were synthesized by reaction of amino acridine 5 with sulfonyl chlorides and carbamoyl chlorides. The new compounds were characterized by melting points, FT-IR, 1H NMR, 13C NMR and HRMS analyzes. The evaluation of in vitro test of the synthesized compounds against hCA I, II, IV and VII showed that some of them are potent inhibitors. Among them, compound 7e showed the most potent activity against hCA II with a KI of 7.9 nM.  相似文献   

15.
Inhibition of carbonic anhydrases (CAs, EC 4.2.1.1) has clinical importance for the treatment of several diseases. They participate in crucial regulatory mechanisms for balancing intracellular and extracellular pH of the cells. Among CA isoforms, selective inhibition of hCA IX has been linked to decreasing of cell growth for both primary tumors and metastases. The discovery of novel CA inhibitors as anticancer drug candidates is a current topic in medicinal chemistry. 1,3,5-Trisubstituted pyrazoles carrying benzenesulfonamide were evaluated against physiologically abundant cytosolic hCA I and hCA II and trans-membrane, tumor-associated hCA IX isoforms by a stopped-flow CO2 hydrase method. Their in vitro cytotoxicities were screened against human oral squamous cell carcinoma (OSCC) cell lines (HSC-2) and human mesenchymal normal oral cells (HGF) via 3-(4,5-Dimethylthiazol-2-yl)-2,5-Diphenyltetrazolium Bromide (MTT) test. Compounds 6, 8, 9, 11, and 12 showed low nanomolar hCA II inhibitory potency with Ki < 10 nM, whereas compounds 9 and 12 displayed Ki < 10 nM against hCA IX isoenzyme when compared with reference Acetazolamide (AZA). Compound 9, 4-(3-(hydrazinecarbonyl)-5-(4-nitrophenyl)-1H-pyrazol-1-yl)benzenesulfonamide, can be considered as the most selective hCA IX inhibitor over off-target cytosolic isoenzymes hCA I and hCA II with the lowest Ki value of 2.3 nM and selectivity ratios of 3217 (hCA I/hCA IX) and 3.9 (hCA II/hCA IX). Isoform selectivity profiles were also discussed using in silico modelling. Cytotoxicity results pointed out that compounds 5 (CC50 = 37.7 μM) and 11 (CC50 = 58.1 μM) can be considered as lead cytotoxic compounds since they were more cytotoxic than 5-Fluorouracil (5-FU) and Methotrexate (MTX).  相似文献   

16.
Recently, inhibition of carbonic anhydrase (hCA) and acetylcholinesterase (AChE) have appeared as a promising approach for pharmacological intervention in a variety of disorders such as glaucoma, epilepsy, obesity, cancer, and Alzheimer’s disease. Keeping this in mind, N,N′-bis[(1-aryl-3-heteroaryl)propylidene]hydrazine dihydrochlorides, N1-N11, P1, P4-P8, and R1-R6, were synthesized to investigate their inhibitory activity against hCA I, hCA II, and AChE enzymes. All compounds in N, P, and R-series inhibited hCAs (I and II) and AChE more efficiently than the reference compounds acetazolamide (AZA), and tacrine. According to the activity results, the most effective inhibitory compounds were in R-series with the Ki values of 203 ± 55–473 ± 67 nM and 200 ± 34–419 ± 94 nM on hCA I, and hCA II, respectively. N,N′-Bis[1-(4-fluorophenyl)-3-(morpholine-4-yl)propylidene]hydrazine dihydrochlorides, N8, in N-series, N,N′-Bis[1-(4-hydroxyphenyl)-3-(piperidine-1-yl)propylidene]hydrazine dihydrochlorides, P4, in P-series, and N,N′-bis[1-(4-chlorophenyl)-3-(pyrrolidine-1-yl)propylidene]hydrazine dihydrochlorides, R5, in R-series were the most powerful compounds against hCA I with the Ki values of 438 ± 65 nM, 344 ± 64 nM, and 203 ± 55 nM, respectively. Similarly, N8, P4, and R5 efficiently inhibited hCA II isoenzyme with the Ki values of 405 ± 60 nM, 327 ± 80 nM, and 200 ± 34 nM, respectively. On the other hand, P-series compounds had notable inhibitory effect against AChE than the reference compound tacrine and the Ki values were between 66 ± 20 nM and 128 ± 36 nM. N,N′-Bis[1-(4-fluorophenyl)-3-(piperidine-1-yl)propylidene]hydrazine dihydrochlorides, P7, was the most potent compound on AChE with the Ki value of 66 ± 20 nM. The other most promising compounds, N,N′-bis[1-(4-hydroxyphenyl)-3-(morpholine-4-yl)propylidene]hydrazine dihydrochlorides, N4 in N-series and N,N′-bis[1-(4-hydroxyphenyl)-3-(pyrrolidine-1-yl)propylidene]hydrazine dihydrochlorides, R4 in R-series were againts AChE with the Ki values of 119 ± 20 nM, 88 ± 14 nM, respectively.  相似文献   

17.
Abstract

Phenolic bis Mannich bases having the chemical structure of 1-[3,5-bis-aminomethyl-4-hydroxyphenyl]-3-(4-halogenophenyl)-2-propen-1-ones (1a-c, 2a-c, 3a-c) were synthesized (Numbers 1, 2, and 3 represent fluorine, chlorine, and bromine bearing compounds, respectively, while a, b, and c letters represent the compounds having piperidine, morpholine, and N-methyl piperazine) and their cytotoxic and carbonic anhydrase (CA, EC 4.2.1.1) enzyme inhibitory effects were evaluated. Lead compounds should possess both marked cytotoxic potencies and selective toxicity for tumors. To reflect this potency, PSE values of the compounds were calculated. According to PSE values, the compounds 2b and 3b may serve as lead molecules for further anticancer drug candidate developments. Although the compounds showed a low inhibition potency toward hCA I (25–43%) and hCA II (6–25%) isoforms at 10?μM concentration of inhibitor, the compounds were more selective (1.5–5.2 times) toward hCA I isoenzyme. It seems that the compounds need molecular modifications for the development of better CA inhibitors.  相似文献   

18.
In the presented work, we report the synthesis of a series of 4-benzylidene-2-phenyl-5(4H)-imidazolone-based benzenesulfonamides 7a-f via the Erlenmeyer–Plöchl reaction. All the prepared imidazolones 7a-f were evaluated as inhibitors of human (h) carbonic anhydrases (CA, EC 4.2.1.1) cytosolic isoforms hCA I and II, as well as transmembrane tumor-associated isoforms hCA IX and XII. All the tested hCA isoforms were inhibited by the prepared imidazolones 7a-f in variable degrees with the following KIs ranges: 673.2–8169 nM for hCA I, 61.2–592.1 nM for hCA II, 23–155.4 nM for hCA XI, and 21.8–179.6 nM for hCA XII. In particular, imidazolones 7a, 7e, and 7f exhibited good selectivity towards the tumor-associated isoforms (CAs IX and XII) over the off-target cytosolic (CAs I and II) with selectivity index (SI) in the range of 6.2–19.4 and 3.3–8, respectively. Moreover, imidazolones 7a-f were screened for their anticancer activity in one dose (10−5 M) assay against a panel of 60 cancer cell lines according to US-NCI protocol. Furthermore, 7a, 7e and 7f were evaluated for their anti-proliferative activity against colorectal cancer HCT-116 and breast cancer MCF-7 cell lines. Furthermore, 7e and 7f were screened for cell cycle disturbance and apoptosis induction in HCT-116 cells. Finally, a molecular docking study was carried out to rationalize the obtained results.  相似文献   

19.
Abstract

A series of polymethoxylated-pyrazoline benzene sulfonamides were synthesized, investigated for their cytotoxic activities on tumor and non-tumor cell lines and inhibitory effects on carbonic anhydrase isoenzymes (hCA I and hCA II). Although tumor selectivity (TS) of the compounds were less than the reference compounds 5-Fluorouracil and Melphalan, trimethoxy derivatives 4, 5, and 6 were more selective than dimethoxy derivatives 2 and 3 as judged by the cytotoxicity assay with the cells both types originated from the gingival tissue. The compound 6 (4-[3-(4-methoxyphenyl)-5-(3,4,5-trimethoxyphenyl)-4,5-dihydro-1H-pyrazol-1-yl] benzene sulfonamide) showed the highest TS values and can be considered as a lead molecule of the series for further investigations. All compounds synthesized showed superior CA inhibitory activity than the reference compound acetazolamide on hCA I, and II isoenzymes, with inhibition constants in the range of 26.5–55.5?nM against hCA I and of 18.9–28.8?nM against hCA II, respectively.  相似文献   

20.
Novel N-(1-(4-(dibenzo[b,f][1,4]thiazepin-11-yl)piperazin-1-yl)-1-oxo-3-phenylpropan-2-yl derivatives were designed, synthesized and their chemical structures were confirmed by 1H NMR, 13C NMR and Mass spectra. The anticancer activities of the newly synthesized compounds were evaluated in vitro against three human cancer cell lines including K562, Colo-205 and MDA-MB 231 by MTT assay. The screening results showed that five compounds (16b, 16d, 16i, 16p and 16q) exhibited potent cytotoxic activities with IC50 values between 20 and 40 μM. Further in vitro studies revealed that inhibition of sirtuins could be the possible mechanism of action of these molecules.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号