共查询到20条相似文献,搜索用时 15 毫秒
1.
Tania Luthra K. Naga Lalitha A. Uma Subhabrata Sen 《Bioorganic & medicinal chemistry》2018,26(18):4996-5005
Diabetes a non-communicable disease occurs either due to the lack of insulin or the inability of the human body to recognize it. The recent data indicated an increase in the trend of people diagnosed with type 2 diabetes mainly due to unhealthy life style. Here in we report a new class of oxindole derivatives 6a-kvia scaffold hopping of known α-glucosidase inhibitors 1–4. When molecular docking was performed against a homology model of α-glucosidase the resulting compound 6d revealed binding interactions comparable to 1–4. The compounds were accessed through a unique condensation-ring opening protocol of pyridofuranone building blocks. Overall the compounds exhibited decent binding to the yeast α-glucosidase, where the most potent compound 6h, inhibited the enzyme with IC50 of 0.6?µM. This was nearly threefold improvement from the original known compounds 1–4, selected to design the newer analogs. The reaction kinetics of 6h indicated competitive inhibition. 相似文献
2.
A series of nineteen nitrogen-containing lupane triterpenoids was obtained by modification of C2, C3, C20 and C28 positions of betulonic acid and their α-glucosidase inhibiting activity was investigated. Being a leader compound from our previous study, 2,3-indolo-betulinic acid was used as the main template for different modifications at C-(28)-carboxyl group to obtain cyano-, methylcyanoethoxy-, propargyloxy- and carboxamide derivatives. 20-Oxo- and 29-hydroxy-20-oxo-30-nor-analogues of 2,3-indolo-betulinic acid were synthesized by ozonolysis of betulonic acid followed by Fischer indolization reaction. To compare the influence of the fused indole or the seven-membered A-ring on the inhibitory activity, lupane A-azepanones with different substituents at C28 were synthesized. The structure-activity relationships revealed that the enzyme inhibition activity dramatically increased (up to 4730 times) when the carboxylic group of 2,3-indolo-betulinic acid was converted to the corresponding amide. Thus, the IC50 values for glycine amide and L-phenylalanine amides were 0.04 and 0.05 μM, respectively. This study also revealed that 2,3-indolo-platanic acid is 4.5 times more active than the parent triterpenoid with IC50 of 0.4 μM. Molecular modeling suggested that improved potency is due to additional polar interactions formed between C28 side chain and a sub-pocket of the α-glucosidase allosteric site. 相似文献
3.
《Bioorganic & medicinal chemistry》2016,24(8):1675-1682
A series of new malonamide derivatives were synthesized by Michael addition reaction of N1,N3-di(pyridin-2-yl)malonamide into α,β-unsaturated ketones mediated by DBU in DCM at ambient temperature. The inhibitory potential of these compounds in vitro, against α-glucosidase enzyme was evaluated. Result showed that most of malonamide derivatives were identified as a potent inhibitors of α-glucosidase enzyme. Among all the compounds, 4K (IC50 = 11.7 ± 0.5 μM) was found out as the most active one compared to standard drug acarbose (IC50 = 840 ± 1.73 μM). Further cytotoxicity of 4a–4m were also evaluated against a number of cancer and normal cell lines and interesting results were obtained. 相似文献
4.
A new series of coumarin thiazole derivatives 7a-7t were synthesized, characterized by 1H NMR, 13C NMR and element analysis, evaluated for their α-glucosidase inhibitory activity. The majority of the screened compounds displayed potent inhibitory activities with IC50 values in the range of 6.24 ± 0.07–81.69 ± 0.39 μM, when compared to the standard acarbose (IC50 = 43.26 ± 0.19 μM). Structure–activity relationship (SAR) studies suggest that the pattern of substitution in the phenyl ring is closely related to the biological activity of this class of compounds. Among all the tested molecules, compound 7e (IC50 = 6.24 ± 0.07 μM) was found to be the most active compound in the library of coumarin thiazole derivatives. Enzyme kinetic studies showed that compound 7e is a non-competitive inhibitor with a Ki of 6.86 μM. Furthermore, the binding interactions of compound 7e with the active site of α-glucosidase were confirmed through molecular docking. This study has identified a new class of potent α-glucosidase inhibitors for further investigation. 相似文献
5.
Lorraine C. Axford Piyush K. Agarwal Kelly H. Anderson Laura N. Andrau John Atherall Stephanie Barker James M. Bennett Michael Blair Ian Collins Lloyd G. Czaplewski David T. Davies Carlie T. Gannon Dushyant Kumar Paul Lancett Alastair Logan Christopher J. Lunniss Dale R. Mitchell Daniel A. Offermann David J. Haydon 《Bioorganic & medicinal chemistry letters》2013,23(24):6598-6603
The discovery and optimisation of a new class of benzothiazole small molecules that inhibit bacterial DNA gyrase and topoisomerase IV are described. Antibacterial properties have been demonstrated by activity against DNA gyrase ATPase and potent activity against Staphylococcus aureus, Enterococcus faecalis, Streptococcus pyogenes and Haemophilus influenzae. Further refinements to the scaffold designed to enhance drug-likeness included analogues bearing an α-substituent to the carboxylic acid group, resulting in excellent solubility and favourable pharmacokinetic properties. 相似文献
6.
《Bioorganic & medicinal chemistry》2019,27(23):115148
In this work, new derivatives of diarylimidazole-1,2,3-triazole 7a-p were designed, synthesized, and evaluated for their in vitro α-glucosidase inhibitory activity. All compounds showed potent inhibitory activity in the range of IC50 = 90.4–246.7 µM comparing with acarbose as the standard drug (IC50 = 750.0 µM). Among the synthesized compounds, compounds 7b, 7c, and 7e were approximately 8 times more potent than acarbose. The kinetic study of those compounds indicated that they acted as the competitive inhibitors of α-glucosidase. Molecular docking studies were also carried out for compounds 7b, 7c, and 7e using modeled α-glucosidase to find the interaction modes responsible for the desired inhibitory activity. 相似文献
7.
A series of triarylimidazoles substituted with 2-arylindoles (4a-4j) were prepared and evaluated for their in vitro α-Glucosidase inhibition. α-Glucosidase inhibition assay displayed a new class of highly potent agents The new compounds showed significant α-glucosidase inhibitory activity as compared to the standard inhibitor acrabose. Structures of synthesized compounds were determined by using Mass spectrometry FT-IR, 1H NMR and 13C NMR. 相似文献
8.
Xiaojun Zhang Peter W. Glunz Wen Jiang Aaron Schmitt Makenzie Newman Frank A. Barbera Jeffery M. Bozarth Alan R. Rendina Anzhi Wei Xiao Wen Karen A. Rossi Joseph M. Luettgen Pancras C. Wong Robert M. Knabb Ruth R. Wexler E. Scott Priestley 《Bioorganic & medicinal chemistry letters》2013,23(6):1604-1607
Bicyclic pyrazinone and pyrimidinone amides were designed and synthesized as potent TF–FVIIa inhibitors. SAR demonstrated that the S2 and S3 pockets of FVIIa prefer to bind small, lipophilic groups. An X-ray crystal structure of optimized compound 9b bound in the active site of FVIIa showed that the bicyclic scaffold provides 5 hydrogen bonding interactions in addition to projecting groups for interactions within the S1, S2 and S3 pockets. Compound 9b showed excellent FVIIa potency, good selectivity against FIXa, Xa, XIa and chymotrypsin, and good clotting activity. 相似文献
9.
Yun-Yun Xu Yi Cao Hailkuo Ma Huan-Qiu Li Gui-Zhen Ao 《Bioorganic & medicinal chemistry》2013,21(2):388-394
A type of novel α,β-unsaturated cyclohexanone analogous, which designed based on the curcumin core structure, have been discovered as potential EGFR inhibitors. These compounds exhibit potent antiproliferative activity in two human tumor cell lines (Hep G2 and B16-F10). Among them, compounds I3 and I12 displayed the most potent EGFR inhibitory activity (IC50 = 0.43 μM and 1.54 μM, respectively). Molecular docking of I12 into EGFR TK active site was also performed. This inhibitor nicely fitting the active site might well explain its excellent inhibitory activity. 相似文献
10.
A new series of triazinoindole analogs 1–11 were synthesized, characterized by EI-MS and 1H NMR, evaluated for α-glucosidase inhibitory potential. All eleven (11) analogs showed different range of α-glucosidase inhibitory potential with IC50 value ranging between 2.46 ± 0.008 and 312.79 ± 0.06 μM when compared with the standard acarbose (IC50, 38.25 ± 0.12 μM). Among the series, compounds 1, 3, 4, 5, 7, 8, and 11 showed excellent inhibitory potential with IC50 values 2.46 ± 0.008, 37.78 ± 0.05, 28.91 ± 0.0, 38.12 ± 0.04, 37.43 ± 0.03, 36.89 ± 0.06 and 37.11 ± 0.05 μM respectively. All other compounds also showed good enzyme inhibition. The binding modes of these analogs were confirmed through molecular docking. 相似文献
11.
Xiaoli Bian Qian Wang Changhu Ke Guilan Zhao Yiping Li 《Bioorganic & medicinal chemistry letters》2013,23(7):2022-2026
Several members of a new family of non-sugar-type α-glycosidase inhibitors, bearing a 5-(p-toluenesulfonylamino)phthalimide moiety and various substituent at the N2 position, were synthesized and their activities were investigated. The newly synthesized compounds displayed different inhibition profile towards yeast α-glycosidase and rat intestinal α-glycosidase. Almost all the compounds had strong inhibitory activities against yeast α-glycosidase. Regarding rat intestinal α-glycosidase, only analogs with N2-aromatic substituents displayed varying degrees of inhibitory activities on rat intestinal maltase and lactase and nearly all compounds showed no inhibition against rat intestinal α-amylase. Structure–activity relationship studies indicated that 5-(p-toluenesulfonylamino)phthalimide moiety is a favorable scaffold to exert the α-glucosidase inhibitory activity and substituents at the N2 position have considerable influence on the efficacy of the inhibition activities. 相似文献
12.
《Bioorganic & medicinal chemistry》2016,24(7):1431-1438
Considerable interest has been attracted in xanthone and its derivatives because of their important biological activities. In this paper, a series of novel 3-arylacyloxyxanthone derivatives 2a–p were synthesized and evaluated for their biological activities toward α-glucosidase. In comparison to the parent 1,3-dihydroxylxanthone 1a, 3-arylacyloxy derivatives 2a–p with additional aromatic ester groups at 3-position show up to 13.7-fold higher inhibitory activities. In particular, the IC50 values of compounds 2i, 2m, 2p reach 13.3, 10.6, 11.6 μM, respectively. These results suggest that addition of aromatic moieties by esterification at the 3-OH of the parent 1,3-dihydroxylxanthone is an efficient way to increase the inhibition against α-glucosidase. Different from previous multi-hydroxylxanthones, these 3-arylacyloxyxanthone derivatives show efficient inhibitory activities may due to the π-stacking or hydrophobic effects of the additional aromatic moieties rather than the H-bonding donor interaction of 3-OH. Structure–activity relationship analysis shows that the substituents on the additional aromatic ring also influence the inhibition. All the oxygen or nitrogen-containing groups, like hydroxyl, methoxy, methaminyl, and alkylsilyloxy, can enhance the inhibitory activities. In addition, the kinetics of enzyme inhibition measured by using Lineweaver–Burk plots shows that selected compounds 2i, 2m and 2p are non-competitive inhibitors. Docking simulations further support our structure–activity relationship analysis that additional aromatic moieties enhance inhibitory activities via hydrophobic effects. The new developed 3-arylacyloxyxanthone derivatives probably bind with α-glucosidase in an allosteric site different from traditional multi-hydroxylxanthones. 相似文献
13.
Adriana Coricello Asma El-Magboub Marian Luna Angela Ferrario Ian S. Haworth Charles J. Gomer Francesca Aiello James D. Adams 《Bioorganic & medicinal chemistry letters》2018,28(6):993-996
Sesquiterpene compounds are widely known for their numerous pharmacological activities. Herein the focus of the authors was on α-Santonin, a sesquiterpene lactone from the Artemisia genus: the aim was to determine whether α-Santonin could be considered in the treatment of inflammation and pain. To this purpose, a small series of derivatives was designed and screened in silico against the enzyme COX-2 along with the parent compound. Drug-likeness parameters were also assessed. The compounds were eventually synthesized, and few were tested to determine their efficacy in the inhibition of COX-2 activity and expression. Overall, compound A2 was the only one with a detectable inhibitory potential of COX-2 activity whilst two of its ether derivatives demonstrated improved ability in the inhibition of COX-2 expression. 相似文献
14.
Mete A Andrews G Bernstein M Connolly S Hartopp P Jackson CG Lewis R Martin I Murray D Riley R Robinson DH Smith GM Wells E Withnall WJ 《Bioorganic & medicinal chemistry letters》2011,21(10):3128-3133
We report the design of novel, potent cPLA2α inhibitors that possess an α-methyl-2-ketothiazole that acts as a serine-reactive moiety. We describe the optimization of the series for potency and metabolic stability towards ketone reduction. This was achieved by attenuating the reactivity of the ketone using a combination of electronic and steric effects. 相似文献
15.
A novel pharmacophore with theophylline and acetylene moieties was constructed by using a fragment-based drug design and a series of twenty theophylline containing acetylene conjugates were designed and synthesized, and all the compounds were evaluated by enzyme-based in vitro α-amylase inhibition activity. The in vitro evaluation revealed that most of the compounds displayed good inhibitory activities, and among them nine analogs 13–15, 20, 21 and 24–27 were exhibited more or nearly as equipotent inhibitory activity with IC50 values 1.11 ± 0.07, 1.14 ± 0.17, 1.07 ± 0.01 and 1.21 ± 0.03, 1.33 ± 0.09, 1.17 ± 0.01, 1.05 ± 0.02, 1.61 ± 0.04, 1.02 ± 0.03 μM respectively, as compared with standard, acarbose 1.37 ± 0.26 μM. Further, molecular docking simulation studies were done to identify the interactions and binding mode of synthesized analogs at binding site of α-amylase enzyme (PBD ID: 4GQR). Among the synthesized analogs, two compounds 25 and 27 were selected on the basis of α-amylase inhibition activity and evaluated for in vivo anti-diabetic activity by High Fat Diet-Streptozotocin (HFD-STZ) model in normal rats. At the dose of 10 mg/kg, bw, po these compounds have significantly reduced Plasma Glucose level in rats as compared to pioglitazone. The anti-diabetic activity results showed that the animal treated with the compounds 25 and 27 could better reverse and control the progression of the disease compared to the standard. 相似文献
16.
A novel series of acridine linked to thioacetamides 9a–o were synthesized and evaluated for their α-glucosidase inhibitory and cytotoxic activities. All the synthesized compounds exhibited excellent α-glucosidase inhibitory activity in the range of IC50 = 80.0 ± 2.0–383.1 ± 2.0 µM against yeast α-glucosidase, when compared to the standard drug acarbose (IC50 = 750.0 ± 1.5 µM). Among the synthesized compounds, 2-((6-chloro-2-methoxyacridin-9-yl)thio)-N-(p-tolyl) acetamide 9b displayed the highest α-glucosidase inhibitory activity (IC50 = 80.0 ± 2.0 μM). The in vitro cytotoxic assay of compounds 9a–o against MCF-7 cell line revealed that only the compounds 9d, 9c, and 9n exhibited cytotoxic activity. Cytotoxic compounds 9d, 9c, and 9n did not show cytotoxic activity against the normal human cell lines HDF. Kinetic study revealed that the most potent compound 9b is a competitive inhibitor with a Ki of 85 μM. Furthermore, the interaction modes of the most potent compounds 9b and 9f with α-glucosidase were evaluated through the molecular docking studies. 相似文献
17.
A series of thiazole derivatives 1–21 were prepared, characterized by EI-MS and 1H NMR and evaluated for α-glucosidase inhibitory potential. All twenty one derivatives showed good α-glucosidase inhibitory activity with IC50 value ranging between 18.23 ± 0.03 and 424.41 ± 0.94 μM when compared with the standard acarbose (IC50, 38.25 ± 0.12 μM). Compound (8) (IC50, 18.23 ± 0.03 μM) and compound (7) (IC50 = 36.75 ± 0.05 μM) exhibited outstanding inhibitory potential much better than the standard acarbose (IC50, 38.25 ± 0.12 μM). All other analogs also showed good to moderate enzyme inhibition. Molecular docking studies were carried out in order to find the binding affinity of thiazole derivatives with enzyme. Studies showed these thiazole analogs as a new class of α-glucosidase inhibitors. 相似文献
18.
Chaulet C Croix C Alagille D Normand S Delwail A Favot L Lecron JC Viaud-Massuard MC 《Bioorganic & medicinal chemistry letters》2011,21(3):1019-1022
Several thalidomide analogues were synthesized and compared to thalidomide and its more active analogue, lenalidomide, for their ability to inhibit the production of the pro-inflammatory cytokine tumour necrosis factor (TNF)-α and interleukin (IL)-6 by LPS-activated peripheral blood mononuclear cells (PBMCs). Among these compounds, two analogues containing sulfonyl group displayed interesting downregulation of TNF-α and IL-6 production. 相似文献
19.
The designed compounds, 4a–p, were synthesized using a simple and smooth method with an asymmetric 1,3-dipolar reaction as the key step. The chemical structures for all synthesized compounds were elucidated and confirmed by spectral analysis. The molecular complexity and the absolute stereochemistry of 4b and 4e designed analogs were determined by X-ray crystallographic analysis. The anticancer activities of the synthesized compounds were tested against colon (HCT-116), prostate (PC-3), and hepatocellular (HepG-2) cancer cell lines. Molecular modeling revealed that the compound 4d binds through hydrophobic–hydrophobic interactions with the essential amino acids (LEU: 57, GLY: 58, ILE: 61, and HIS: 96) in the p53-binding cleft, as a standard p53-MDM2 inhibitor (6SJ). The mechanism underlying the anticancer activity of compound 4d was further evaluated, and the study showed that compound 4d inhibited colony formation, cell migration, arrested cancer cell growth at G2/M, and induced apoptosis through intrinsic and extrinsic pathways. Transactivation of p53 was confirmed by flow cytometry, where compound 4d increased the level of activated p53 and induced mRNA levels of cell cycle inhibitor, p21. 相似文献
20.
《Bioorganic & medicinal chemistry letters》2014,24(8):1912-1917
Tuberculosis remains a global public health problem in recent years. To develop novel type of potential antitubercular agents, twelve novel dihydroartemisinin–fluoroquinolone (DHA–FQ) conjugates (three types of molecules) were gradually designed and conveniently synthesized. All the newly synthesized conjugates were well characterized and evaluated against different Mycobacterium tuberculosis strains in vitro. The screening results showed that five DHA–FQ conjugates were active toward M. tuberculosis H37Rv, and compound 3a exhibited the strongest inhibitory activity (MIC = 0.0625 μg/mL), which was comparable to the positive control Moxifloxacin and even stronger than Ofloxacin. Conjugates 2a and 3a also displayed comparable activities against various clinically isolated sensitive and resistant M. tuberculosis strains (MIC = 0.125–16 μg/mL) to Moxifloxacin. All target compounds possessed selective anti-M. tuberculosis ability. Preliminary structure–activity relationship demonstrated that short linker between DHA and FQ was favorable for strong antitubercular activity. This study provides a new clue for the development of novel antitubercular lead molecules. 相似文献