首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Nicotinic acetylcholine receptors (nAChRs) are pentameric ligand-gated ion channels that have been implicated in higher brain functions. To elucidate the functional mechanisms underlying nAChRs and contribute significantly to development of drugs targeting neurological and neuropsychiatric diseases, non-invasive nuclear medical imaging can be used for evaluation. In addition, technetium-99m (99mTc) is a versatile radionuclide used clinically as a tracer in single-photon emission computed tomography. Because A85380 is known as a potent α4β2-nAChR agonist, we prepared A85380 derivatives labeled with 99mTc using a bifunctional chelate system. A computational scientific approach was used to design the probe efficiently. We used non-radioactive rhenium (Re) for a 99mTc analog and found that one of the derivatives, Re-A-YN-IDA-C4, exhibited high binding affinity at α4β2-nAChR in both the docking simulation (?19.3 kcal/mol) and binding assay (Ki = 0.4 ± 0.04 nM). Further, 99mTc-A-YN-IDA-C4 was synthesized using microwaves, and its properties were examined. Consequently, we found that 99mTc-A-YN-IDA-C4, with a structure optimized by using computational chemistry techniques, maintained affinity and selectivity for nAChR in vitro and possessed efficient characteristics as a nuclear medicine molecular imaging probe, demonstrated usefulness of computational scientific approach for molecular improvement strategy.  相似文献   

2.
The ciprofloxacin dithiocarbamate (CPFXDTC) was radiolabeled with [99mTc(CO)3(H2O)3]+ intermediate to form the 99mTc(CO)3–CPFXDTC complex in high yield. The 99mTc(CO)3–CPFXDTC complex was characterized by HPLC and its stability in serum was studied. Its partition coefficient indicated that it was a lipophilic complex. The bacterial binding efficiency of 99mTc(CO)3–CPFXDTC was almost the same as that of 99mTcN–CPFXDTC, and was higher than that of 99mTc–ciprofloxacin. Biodistribution results in induced infection mice showed 99mTc(CO)3–CPFXDTC had higher uptake at the sites of infection and better abscess/blood and abscess/muscle ratios than those of 99mTc–ciprofloxacin and 99mTcN–CPFXDTC. Single photon emission computed tomography (SPECT) static imaging study in infected rabbits demonstrated the uptake in the left thigh infection lesion was observable, while no accumulation in the right thigh muscle was found. These results suggested 99mTc(CO)3–CPFXDTC would be a promising candidate for further evaluation as infection imaging agent.  相似文献   

3.
Two 99mTc/Re complexes based on flavone and aurone were tested as potential probes for imaging β-amyloid plaques using single photon emission computed tomography. Both 99mTc-labeled derivatives showed higher affinity for Aβ(1–42) aggregates than did 99mTc-BAT. In sections of brain tissue from an animal model of AD, the Re-flavone derivative 9 and Re-aurone derivative 19 intensely stained β-amyloid plaques. In biodistribution experiments using normal mice, 99mTc-labeled flavone and aurone displayed similar radioactivity pharmacokinetics. With additional modifications to improve their brain uptake, 99mTc complexes based on the flavone or aurone scaffold may serve as probes for imaging cerebral β-amyloid plaques.  相似文献   

4.
[99mTc(N)(DBODC)(PNP5)]+ [DBODC is bis(N-ethoxyethyl)dithiocarbamato; PNP5 is bis(dimethoxypropylphosphinoethyl)ethoxyethylamine], abbreviated as 99mTc(N)-DBODC(5), is a lipophilic cationic mixed compound investigated as a myocardial imaging agent. The findings that this tracer accumulates in mitochondrial structures through a mechanism mediated by the negative mitochondrial membrane potential and that the rapid efflux of 99mTc(N)-DBODC(5) from nontarget tissues seems to be associated with the multidrug resistance (MDR) P-glycoprotein (P-gp) transport function open up the possibility to extend its clinical applications to tumor imaging and noninvasive MDR studies. The rate of uptake at 4 and 37 °C of 99mTc(N)-DBODC(5) was evaluated in vitro in selected human cancer cell lines and in the corresponding sublines before and after P-gp and/or MDR-associated protein (MRP) modulator/inhibitor treatment using 99mTc-sestamibi as a reference. The results indicated that (1) the uptake of both 99mTc(N)-DBODC(5) and 99mTc-sestamibi is correlated to metabolic activity of the cells and (2) the cellular accumulation is connected to the level of P-gp/MRP expression; in fact, an enhancement of uptake in resistant cells was observed after treatment with opportune MDR inhibitor/modulator, indicating that the selective blockade of P-gp/MRP prevented efflux of the tracers. This study provides a preliminary indication of the applicability of 99mTc(N)-DBODC(5) in tumor imaging and in detecting P-gp/MRP-mediated drug resistance in human cancer. In addition, the possibility to control the hydrophobicity and pharmacological activity of this heterocomplex through the variation of the substituents on the ligands backbone without affecting the P2S2 coordinating sphere makes 99mTc(N)-DBODC(5) a suitable scaffold for the preparation of a molecular probe for single photon emission computed tomography of MDR.  相似文献   

5.
Prostate-specific membrane antigen (PSMA) is expressed strongly in prostate cancers and is, therefore, an attractive diagnostic and radioimmunotherapeutic target. In contrast to previous reports of PMSA-targeting 99mTc-tricarbonyl complexes that are cationic or lack a charge, no anionic 99mTc-tricarbonyl complexes have been reported. Notably, the hydrophilicity conferred by both cationic and anionic charges leads to rapid hepatobiliary clearance, whereas an anionic charge might better enhance renal clearance relative to a cationic charge. Therefore, an improvement in rapid clearance would be expected with either cationic or anionic charges, particularly anionic charges. In this study, we designed and synthesized a novel anionic 99mTc-tricarbonyl complex ([99mTc]TMCE) and evaluated its use as a single-photon emission computed tomography (SPECT) imaging probe for PSMA detection. Direct synthesis of [99mTc]TMCE from dimethyl iminodiacetate, which contains both the asymmetric urea and succinimidyl moiety important for PSMA binding, was performed using our microwave-assisted one-pot procedure. The chelate formation was successfully achieved even though the precursor included a complicated bioactive moiety. The radiochemical yield of [99mTc]TMCE was 12–17%, with a radiochemical purity greater than 98% after HPLC purification. [99mTc]TMCE showed high affinity in vitro, with high accumulation in LNCaP tumors and low hepatic retention in biodistribution and SPECT/CT studies. These findings warrant further evaluation of [99mTc]TMCE as an imaging agent and support the benefit of this strategy for the design of other PSMA imaging probes.  相似文献   

6.
Mannitol has been labelled with 99mTc by using cuprous chloride as a reducing agent. Blood and kidney clearance of 99mTc(Cu)-mannitol was slightly faster than that of 99mTc(Sn)-DTPA in rat and maximum radioactivity ratio of kidneys to blood was 84.6 at 5 min. A comparative study of 99mTc(Cu)-mannitol, 99mTc(Sn)-DTPA was made in rabbits by taking serial images of kidneys and bladder with a γ camera. Results show superiority of 99mTc(Cu)-mannitol over other agents for dynamic renal function studies.  相似文献   

7.
The deoxyglucose dithiocarbamate (DGDTC) was successfully labeled with the 99mTc(CO)3 core to provide the corresponding 99mTc(CO)3–DGDTC complex in good yields. The radiochemical purity of the 99mTc(CO)3–DGDTC complex was over 90%, as measured by high performance liquid chromatography (HPLC). The complex possessed good stability in saline at room temperature and in mouse plasma at 37 °C. Its partition coefficient result indicated that it was a hydrophilic complex. The electrophoresis results showed the complex was neutral. The biodistribution of 99mTc(CO)3–DGDTC in mice bearing S 180 tumor showed that the complex clearly accumulated in tumor, exhibiting high tumor/blood and tumor/muscle ratios and good tumor retention. Single photon emission computed tomography (SPECT) image studies showed there was a visible uptake in tumor sites, suggesting 99mTc(CO)3–DGDTC could be considered as a potential tumor imaging agent.  相似文献   

8.
Aiming to develop a new 99mTc-labeled folate derivative for FR-positive tumor imaging, a simpler method has been established to synthesize the folate-drug conjugates with free α-carboxyl group. In this study, the conjugate pteroyl-lys-HYNIC was synthesized and labeled with 99mTc using tricine and TPPTS as co-ligands. The radiochemical purity of the final complex 99mTc(HYNIC-lys-pteroyl)(tricine/TPPTS), 5 was high (>98%), and it remained stable in saline and plasma over 6 h after preparation. The biologic evaluation results showed that the 99mTc labeled pteroyl-lys conjugate was able to specifically target the FR-positive tumor cells and tissues both in vitro and in vivo, highlighting its potential as an effective folate receptor targeted agent for tumor imaging.  相似文献   

9.
Metal-free click chemistry has become an important tool for pretargeted approaches in the molecular imaging field. The application of bioorthogonal click chemistry between a pretargeted trans-cyclooctene (TCO) derivatized monoclonal antibody (mAb) and a 99mTc-modified 1,2,4,5-tetrazine for tumor imaging was examined in vitro and in vivo. The HYNIC tetrazine compound was synthesized and structurally characterized, confirming its identity. Radiolabeling studies demonstrated that the HYNIC tetrazine was labeled with 99mTc at an efficiency of >95% and was radiochemically stable. 99mTc–HYNIC tetrazine reacted with the TCO–CC49 mAb in vitro demonstrating its selective reactivity. In vivo biodistribution studies revealed non-specific liver and GI uptake due to the hydrophobic property of the compound, however pretargeted SPECT imaging studies demonstrated tumor visualization confirming the success of the cycloaddition reaction in vivo. These results demonstrated the potential of 99mTc–HYNIC–tetrazine for tumor imaging with pretargeted mAbs.  相似文献   

10.
The 2-[(3-carboxy-1-oxopropyl)amino]-2-deoxy-d-glucose (CPADG) was synthesized and radiolabeled with 99mTcO4 to obtain the 99mTc–CPADG complex in high yield. It was stable over 6 h in saline at room temperature and in serum at 37 °C. The partition coefficient and electrophoresis results indicated that the complex was hydrophilic and cationic. In vitro cell studies showed there was an increase in the uptake of 99mTc–CPADG as a function of incubation time and 99mTc–CPADG was possibly transported via the glucose transporters. The biodistribution of 99mTc–CPADG in mice bearing S 180 tumor showed that the complex accumulated in the tumor with high uptake and good retention. The tumor/blood and tumor/muscle ratios increased with time and reached 1.91 and 5.05 at 4 h post-injection. Single photon emission computed tomography (SPECT) image studies showed there was an obvious accumulation in tumor sites, suggesting 99mTc–CPADG would be a promising candidate for tumor imaging.  相似文献   

11.
Radiolabeling of nanoparticles (NPs) has been performed for a variety of reasons, such as for studying pharmacokinetics, for imaging, or for therapy. Here, we describe the in vitro and in vivo evaluation of DTPA-derivatized lipid-based NP (DTPA-NP) radiolabeled with different radiometals, including 111In and 99mTc, for single-photon emission computed tomography (SPECT), 68Ga for positron emission tomography (PET), and 177Lu for therapeutic applications. PEGylated DTPA-NP with varying DTPA amounts, different composition, and size were radiolabeled with 111In, 177Lu, and 68Ga, using various buffers. 99mTc-labeling was performed directly and by using the carbonyl aquaion, [99mTc(H2O)3(CO)3]+. Stability was tested and biodistribution evaluated. High labeling yields (>90%) were achieved for all radionuclides and different liposomal formulations. Specific activities (SAs) were highest for 111In (>4 MBq/μg liposome), followed by 68Ga and 177Lu; for 99mTc, high labeling yields and SA were only achieved by using [99mTc(H2O)3(CO)3]+. Stability toward DTPA/histidine and in serum was high (>80 % RCP, 24 hours postpreparation).). Biodistribution in Lewis rats revealed no significant differences between NP in terms of DTPA loading and particle composition; however, different uptake patterns were found between the radionuclides used. We observed lower retention in blood (<3.3 %ID/g) and lower liver uptake (< 2.7 %ID/g) for 99mTc- and 68Ga, compared to 111In-NP (blood, <4 %ID/g; liver, <3.6 %ID/g). Imaging potential was shown by both PET magnetic resonance imaging fusion imaging and SPECT imaging. Overall, our study shows that PEGylated DTPA-NP are suitable for radiolabeling studies with a variety of radiometals, thereby achieving high SA suitable for targeting applications.  相似文献   

12.

Background

Preclinical imaging requires anaesthesia to reduce motion-related artefacts. For direct translational relevance, anaesthesia must not significantly alter experimental outcome. This study reports on the effects of both anaesthetic and carrier gas upon the uptake of [64Cu]-CuATSM, [99mTc]-HL91 and [18F]-FMISO in a preclinical model of tumor hypoxia.

Methodology/Principal Findings

The effect of carrier gas and anaesthetic was studied in 6 groups of CaNT-bearing CBA mice using [64Cu]-CuATSM, [99mTc]-HL91 or [18F]-FMISO. Mice were anaesthetised with isoflurane in air, isoflurane in pure oxygen, with ketamine/xylazine or hypnorm/hypnovel whilst breathing air, or in the awake state whilst breathing air or pure oxygen. PET or SPECT imaging was performed after which the mice were killed for organ/tumor tracer quantitation. Tumor hypoxia was confirmed. Arterial blood gas analysis was performed for the different anaesthetic regimes. The results demonstrate marked influences on tumor uptake of both carrier gas and anaesthetic, and show differences between [99mTc]-HL91, [18F]-FMISO and [64Cu]-CuATSM. [99mTc]-HL91 tumor uptake was only altered significantly by administration of 100% oxygen. The latter was not the case for [18F]-FMISO and [64Cu]-CuATSM. Tumor-to-muscle ratio (TMR) for both compounds was reduced significantly when either oxygen or anaesthetics (isoflurane in air, ketamine/xylazine or hypnorm/hypnovel) were introduced. For [18F]-FMISO no further decrease was measured when both isoflurane and oxygen were administered, [64Cu]-CuATSM did show an additional significant decrease in TMR. When using the same anaesthetic regimes, the extent of TMR reduction was less pronounced for [64Cu]-CuATSM than for [18F]-FMISO (40–60% versus 70% reduction as compared to awake animals breathing air).

Conclusions/Significance

The use of anaesthesia can have profound effects on the experimental outcome. More importantly, all tested anaesthetics reduced tumor-hypoxia uptake. Anaesthesia cannot be avoided in preclinical studies but great care has to be taken in preclinical models of hypoxia as anaesthesia effects cannot be generalised across applications, nor disease states.  相似文献   

13.
Angiogenesis imaging agents for single photon emission computed tomography (SPECT) play a role in diagnosing tumor-induced angiogenesis as well as tumor metastasis. We synthesized and evaluated radiolabeled RGD glycopeptides by incorporation of the [99mTc(CO)3(H2O)3]+. 99mTc labeled glucosamino-D-c(RGDfK) ([99mTc]2) was prepared in 90–93% radiochemical yields (decay corrected). In vitro cell binding assays demonstrated selective binding [99mTc]2 to human umbilical vein endothelial (HUVE) cells, with inhibition of binding to 37.3% of control levels by 10 μM of cold authentic compounds. In addition, [99mTc]2 was shown to have high binding affinity to purified αvβ3 integrin (IC50 = 1.5 nM). These results suggest that these radiolabeled RGD glycopeptides may have value for non-invasive assessment of angiogenesis.  相似文献   

14.
Two new ligand systems for complexation with 99mTc were prepared. The two analogs of bisaminoethanethiol (BAT): N,N′-bis(2-methyl-2-mercaptopropyl)-2,2-dimethylpropylenediamine (PAT-HM) and N,N′-bis[2-(2-ethyl-1-mercaptopropyl)] ethylenediamine (TMR), form neutral and lipid soluble complexes with 99mTc that readily penetrate the blood-brain barrier following i.v. injection into rats. Although the 99mTc chelates do not display the prolonged brain retention required for use in single photon emission computed tomographic imaging studies, the fact that each ligand forms a neutral and lipid-soluble complex of high chemical stability when coordinated with 99mTc warrants further investigation to increase the site- and organ-specificity of these agents.  相似文献   

15.
Breast cancer is one of the most frequent and aggressive primary tumors among women of all races. Matrix metalloproteinase (MMPs), a family of zinc- and calcium-dependent secreted or membrane anchored endopeptidases, is overexpressed in varieties of diseases including breast cancer. Therefore, noninvasive visualization and quantification of MMP in vivo are of great interest in basic research and clinical application for breast cancer early diagnosis. Herein, we developed a 99mTc labeled membrane type I matrix metalloproteinase (MT1-MMP) specific binding peptide, [99mTc]-(HYNIC-AF7p)(tricine)(TPPTS), for in vivo detection of MDA-MB-231 breast tumor by single photon emission computed tomography (SPECT). [99mTc]-(HYNIC-AF7p)(tricine)(TPPTS) demonstrated nice biostability and high MT1-MMP binding affinity in vitro and in vivo. Tumor-to-muscle ratio was found to reach to the highest (4.17±0.49) at 2 hour after intravenously administration of [99mTc]-(HYNIC-AF7P)(tricine)(TPPTS) into MDA-MB-231 tumor bearing mice. Overall, [99mTc]-(HYNIC-AF7P)(tricine)(TPPTS) demonstrated great potential for MT1-MMP targeted detection in vivo and it would be a promising molecular imaging probe that are probably beneficial to breast cancer early diagnoses.  相似文献   

16.
Small cell lung cancer (SCC) has the most rapid growth rate of the four cell types and metastasizes early. Present imaging modalities for staging include chest x-ray, CT, MRI and bone scans. In this preliminary study, we assessed the clinical role of 99mTc-monoclonal antibody (MOAB) scintigraphy in five patients with histologically proven SCC. Each patient was infused with 20–30 mCi of 99mTc labeled Fab fragment of MOAB (NR-LU-10, NeoRx, Seattle, Wash.). Total body simultaneous anterior and posterior images were obtained 14–16 h post injection. SPECT images of the chest were obtained through a 360 ° rotation of the gamma camera and recorded on a 62 × 64 × 16 matrix. Images (1.2cm thick) were generated in transaxial, sagittal and coronal views.Fourteen of fifteen chest lesions detected by CT were confirmed by 99mTc MOAB scintigraphy. Scintigraphy detected one additional chest lesion not seen by CT. Scintigraphy failed to detect a brain lesion (2 cm), a chest lesion, and two adrenal lesions, all of which were seen by CT. In one patient with multiple (more than 10) lesions in the liver, both scintigraphy and CT detected all lesions. Three spine lesions seen on 99mTc MDP scan and positive for metastasis on MRI concentrated 99mTc MOAB, but two rib lesions seen on 99mTc MDP bone scan did not concentrate 99mTc MOAB. It is concluded from these preliminary results that the potential usefulness of 99mTc MOAB scintigraphy as a complementary imaging modality in the staging of small cell lung cancer should be investigated further.  相似文献   

17.
Aiming to develop new bone-seeking radiotracers based on the organometallic core fac-[99mTc(CO)3]+ with improved radiochemical and biological properties, we have prepared new conjugates with phosphonate pendant groups. The conjugates comprise a chelating unit for metal coordination, which corresponds to a pyrazolyl-containing backbone (pz) with a N,N,N donor-atom set, and a pendant diethyl phosphonate (pz-MPOEt), phosphonic acid (pz-MPOH) or a bisphosphonic acid (pz-BPOH) group for bone targeting. Reactions of the conjugates with the precursor [99mTc(H2O)3(CO)3]+ yielded (mote than 95%) the single and well-defined radioactive species [99mTc(CO)33-pz-MPOEt)]+ (1a), [99mTc(CO)33-pz-MPOH]+ (2a) and [99mTc(CO)33-pz-BPOH)]+ (3a), which were characterized by reversed-phase high-performance liquid chromatography . The corresponding Re surrogates (13), characterized by the usual analytical techniques, including X-ray diffraction analysis in the case of 1, allowed for macroscopic identification of the radioactive conjugates. These radioactive complexes revealed high stability both in vitro (phosphate-buffered saline solution and human plasma) and in vivo, without any measurable decomposition. Biodistribution studies of the complexes in mice indicated a fast rate of blood clearance and high rate of total radioactivity excretion, occurring primarily through the renal–urinary pathway in the case of complex 3a. Despite presenting moderate bone uptake (3.04 ± 0.47% injected dose per gram of organ, 4 h after injection), the high stability presented by 3a and its adequate in vivo pharmacokinetics encourages the search for new ligands with the same chelating unit and different bisphosphonic acid pendant arms.  相似文献   

18.
Two somatostatin analogues, [99mTc]Demotide and [99mTc]Demotate 4, were compared with [99mTc]Demotate 1, a previously reported somatostatin receptor subtype 2 (sst2) targeting tracer. Conjugates were prepared by coupling an open‐chain tetraamine chelator to D ‐Phe1 of [Tyr3]‐octreotide or [Tyr3]‐octreotate, respectively, via a p‐benzylaminodiglycolic acid spacer adopting solid‐phase peptide synthesis techniques. Peptide conjugates were collected in a highly pure form after chromatographic purification. Eventually, [99mTc]Demotide and [99mTc]Demotate 4 were obtained in ~1 Ci/µmol specific activity and >96% purity after labeling under alkaline conditions. Demotide and Demotate 4 exhibited similar high binding affinities for the sst2 expressed in AR4‐2J cells with IC50 values 0.16 and 0.10 nM, respectively. The (radio)metallated analogues [99mTc]Demotide and [99mTc]Demotate 4 showed equally high affinities to the sst2 during saturation binding assays in AR4‐2J cell membranes (Kds 0.08 and 0.07 nM, respectively). During incubation at 37 °C with AR4‐2J cells, the radiopeptides internalized effectively via a receptor‐mediated process, with [99mTc]Demotate 4 exhibiting a faster internalization rate than [99mTc]Demotide. After injection in athymic mice bearing sst2‐expressing AR4‐2J tumors, the radiotracers showed high and specific uptake in the tumor (>25%ID/g at 1 h) and in the sst2–positive organs. However, both [99mTc]Demotide and [99mTc]Demotate 4 showed unfavorably higher background activity, especially in the abdomen, in comparison to [99mTc]Demotate 1 and are, therefore, less suited than [99mTc]Demotate 1 for sst2‐targeted tumor imaging in man. Copyright © 2005 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

19.
Nuclear medicine imaging of cell proliferation has gained broad interest in clinical oncology. A good tracer to image cell proliferation, possibly associated to tumour progression, should rapidly and specifically be incorporated into growing DNA. Following this idea, we have singled out thymidine as a potential biological carrier for delivery of the organometallic fragment [M(CO)3]+ (M = “cold” Re, γ-emitter 99mTc) to DNA. In the present paper we report the two-step synthesis of thymidine N-3 derivatives and their coordination complexes. Thymidine could be alkylated without protecting the sugar alcoholic functions. Methyl-2,2′-diaminodiethylamine thymidine derivative was quickly reacted with rhenium and technetium carbonyls in almost quantitative yield. The resulting 99mTc complex represents a convenient radiopharmaceutical for single photon emission tomography (SPECT).  相似文献   

20.
Availability of 123I of high radionuclidic purity has encouraged the development of 123I-based radiopharmaceuticals for the assessment of myocardial fatty acid metabolism, myocardial neuronal activity, and for receptor and antibody imaging. Advances in the chemistry of technetium have resulted in the development of novel agents for myocardial and cerebral perfusion and renal function studies. Monoclonal antibodies labeled with 99mTc show promise for imaging neoplastic lesions, myocardial infarcts, and thrombus localization. Recent developments in 123I and 99mTc agents for myocardial and brain imaging studies are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号