首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A series of novel naproxen analogues containing 3-aryl-1,2,4-oxadiazoles moiety (4b-g) and their reaction intermediates aryl carboximidamides moiety (3b-g) was synthesized and evaluated in vitro as dual COXs/15-LOX inhibitors. Compounds 3b-g exhibited superior inhibitory activity than celecoxib as COX-2 inhibitors. Compounds 3b-d and 3g were the most potent COX-2 inhibitors with IC50 range of 6.4 – 8.13 nM and higher selectivity indexes (3b, SI = 26.19; 3c, SI = 13.73; 3d, SI = 29.27; 3g, SI = 18.00) comparing to celecoxib (IC50 = 42.60 nM, SI = 8.05). Regarding 15-LOX inhibitory activity, compounds belonging to aryl carboximidamide backbone 3b-e and 3g were the most potent with IC50 range of 1.77–4.91 nM comparing to meclofenamate sodium (IC50 = 5.64 µM). Data revealed that The levels of NO released by aryl carboximidamides 3b-g were more higher than 3-aryl-1,2,4-oxadiazole derivatives 4b-g, which correlated well with their COX-2 inhibitory activities.  相似文献   

2.
Three new series of 5-aminosalicylic acid derivatives; series I (14, 1618), series II (1930) and series III (3141) were synthesized as potential dual COX-2/5-LOX inhibitors. Their chemical structures were confirmed using spectroscopic tools including IR, 1H NMR, 13C NMR, mass spectroscopy and elemental analyses. The anti-inflammatory activity for all target compounds was evaluated in vivo using carrageenan-induced paw edema. Compound 36 showed the highest anti-inflammatory activity (114.12%) relative to reference drug indomethacin at 4 h interval. Selected derivatives were evaluated in vitro to inhibit ovine COX-1, human recombinant COX-2 and 5-LOX enzymes. Compounds 34 & 35 exhibited significant COX-2 inhibition (IC50 = 0.10 µM) with significant COX-2 selectivity indices (SI = 135 & 145 respectively) approximate to celecoxib (IC50 = 0.049 µM, SI = 308.16) and exceeding indomethacin (IC50 = 0.51 µM, SI = 0.08). Interestingly, all compounds showed superior 5-LOX inhibitory activity about 2–5 times relative to zileuton. Compound 16 was the superlative 5-LOX inhibitor that revealed (IC50 = 3.41 µM) relative to zileuton (IC50 = 15.6 µM). Compounds 34, 35, 36 and 41 showed significant dual COX-2/5-LOX inhibitions. The gastric ulcerogenic effect of compound 36 was examined on gastric mucosa of albino rats and they showed superior GI safety profile compared with indomethacin. Molecular docking studies of the compounds into the binding sites of COX-1, COX-2 and 5-LOX allowed us to shed light on the binding mode of these novels dual COX and 5-LOX inhibitors.  相似文献   

3.
The present study includes design and synthesis of new molecular hybrids of 2-methylthiobenzimidazole linked to various anti-inflammatory pharmacophores through 2-aminothiazole linker, to investigate the effect of such molecular variation on cyclooxygenase (COX) and 15-lipoxygenase (15-LOX) enzymes inhibition as well as in vivo anti-inflammatory activity. The chemical structures of new hybrids were confirmed using different spectroscopic tools and elemental analyses. Benzimidazole-thiazole hybrids linked to acetyl moiety 13, phenyl thiosemicarbazone 14, 1,3-thiazolines 15a-c and 4-thiazolidinone 16 exhibited significant COX-2 inhibition (IC50 = 0.045–0.075 µM) with significant COX-2 selectivity indices (SI = 142–294). All hybrids revealed potent 15-LOX inhibitory activity (IC50 = 1.67–6.56 µM). Benzimidazole-thiazole hybrid 15b was the most potent dual COX-2 (IC50 = 0.045 µM, SI = 294) inhibitor approximate to celecoxib (COX-2; IC50 = 0.045 µM, SI = 327), with double inhibitory activity versus 15-LOX enzyme (IC50 = 1.67 µM) relative to quercetin (IC50 = 3.34 µM). Three hybrids (14, 15b & 16) were selected for in vivo screening using carrageenan-induced paw edema method. Benzimidazole-thiazole hybrid linked to 4-thiazolidinone 16 showed the maximum edema inhibition at both 3 h and 4 h intervals as well (~119% and 102% relative to indomethacin, respectively). The gastric ulcerogenic effect of benzimidazole-thiazole hybrid 16 was estimated compared with indomethacin showing superior gastrointestinal safety profile. In bases of molecular modeling; all new active hybrids were subjected to docking simulation into active sites of COX-2 and 15-LOX enzymes to study the binding mode of these novel potent dual COX-2/15-LOX inhibitors.  相似文献   

4.
A group of novel isoindoline hybrids incorporating oxime, hydrazone, pyrazole, chalcone or aminosulfonyl pharmacophores (914) was designed and characterized by spectral data and elemental analyses results. All newly synthesized compounds were evaluated as COX-2 inhibitors, anti-inflammatory and analgesic agents. Six hybrid derivatives (10b, 10c, 11a, 11d, 13, 14) were moderate COX-2 inhibitors (IC50 = 0.11–0.18 µM) close to standard celecoxib (IC50 = 0.09 µM). The most active compounds showed outstanding in vivo anti-inflammatory activity (% edema inhibition = 41.7–50, 1 h; 40.7–67.4, 3 h; 20–46.7, 6 h) better than reference drug diclofenac (% edema inhibition = 29.2, 1 h; 22.2, 3 h; 20, 6 h). Most compounds showed significant peripheral and/or central analgesic activity. The moderate selective COX-2 inhibitor; dimethoxychalcone 11d (SI = 103) displayed excellent anti-inflammatory activity (% edema inhibition = 45.8–59.3) and increased thermal pain threshold (50–92.85%) comparable to piroxicam (75%). Molecular docking studies have been established.  相似文献   

5.
To evaluate the role of COX-2 and 5-LOX as dual inhibitors in controlling the cancer cell proliferation, a set of two series having 42 compounds of 1, 2, 3-Tethered Indole-3-glyoxamide derivatives were synthesized by employing click chemistry approach and were also evaluated for their in vitro cyclooxygenase-1 (COX-1), cyclooxygenase-2 (COX-2), 5-lipoxygenase (5-LOX) inhibitory activities with in vivo anti-inflammatory and in vitro anti-proliferative potencies. Among the compounds tested, compounds 11q and 13s displayed excellent inhibition of COX-2 (IC50 0.12 µM) with good COX-2 selectivity index (COX-2/COX-1) of 0.058 and 0.046 respectively. Compounds 11q and 13s also demonstrated comparable 5-LOX inhibitory activity with IC50 7.73 and 7.43 µM respectively to that of standard Norhihydroguaiaretic acid (NDGA: IC50 7.31 µM). Among all the selected cell lines, prostate cancer cell line DU145 was found to be susceptible to this class of compounds. Among all the tested compounds, compounds 11g, 11i, 11k, 11q, 13r, 13s and 13u demonstrated excellent to moderate anti-proliferative activity with IC50s ranging between 6.29 and 18.53 µM. Compounds 11q and 11g demonstrated better anti-proliferative activities against DU145 cancer cell line with IC50 values 8.17 and 8.69 µM respectively when compared to the standard drug etoposide (VP16; IC50 9.80 µM). Compounds 11g, 11k, 11q, 13s and 13u showed good dual COX-2/5-LOX inhibitory potentials with excellent anti-proliferative activity. Results from carrageenan-induced hind paw edema demonstrated that compounds 11b, 11l, 11q and 13q exhibited significant anti-inflammatory activity with 69–77% inhibition at 3 h, 75–82% inhibition at 5 h when compared to the standard drug indomethacin (66.6% at 3 h and 77.94% at 5 h). Ulcerogenic study revealed that compounds 11q and 13q did not cause any gastric ulceration. In vitro tubulin assay resuted that compound 11q interfered with microtubulin dynamic and act as tubulin polymerization inhibitor. In silico molecular docking studies demonstrated that compounds 11q and 13s are occupying the colchicines binding site of tubulin polymer and 11q illustrated very good binding affinities towards COX-2 and 5-LOX.  相似文献   

6.
A series of thio-substituted pyrimidine, benzoxazole, benzothiazole and triazole analogues were synthesized from Baylis–Hillman bromides in a clean and efficient way. The synthesized twenty new compounds were subjected to in vitro COX-1 and COX-2 inhibitory activity. Majority of compounds found to be highly selective COX-2 inhibitor. Seven compounds (16e, 16f, 16k, 16l, 16m, 16r and 16s) displayed anti-inflammatory activity at micromolar concentrations with IC50 values for COX-2 inhibition ranging from 2.93 to 5.34 μM compared to reference drug whose IC50 is 2.66 μM. All these seven compounds had very little COX-1 inhibition property and thus are suitable candidates for anti-inflammatory drugs with less gastrointestinal side effect.  相似文献   

7.
A series of N-(2-(3,4,5-trimethoxybenzyl)-benzoxazole-5-yl)benzamide derivatives (3a–3n) was synthesized and evaluated for its in vitro inhibitory activity against COX-1 and COX-2. The compounds with considerable in vitro activity (IC50 < 1 µM), were evaluated in vivo for their anti-inflammatory and ulcerogenic potential. Out of the fourteen newly synthesized compounds; 3b, 3d, 3e, 3h, 3l and 3m were found to be most potent COX-2 inhibitors in in vitro enzymatic assay with IC50 in the range of 0.14–0.69 µM. In vivo anti-inflammatory activity of these six compounds (3b, 3d, 3e, 3h, 3l and 3m) was assessed by carrageenan induced rat paw edema method. The compound 3b (79.54%), 3l (75.00%), 3m (72.72%) and 3d (68.18%) exhibited significant anti-inflammatory activity than standard drug ibuprofen (65.90%). Ulcerogenic activity with histopathological studies was performed, and the screened compounds demonstrated significant gastric tolerance than ibuprofen. Molecular Docking study was also performed with resolved crystal structure of COX-2 to understand the interacting mechanisms of newly synthesized inhibitors with the active site of COX-2 enzyme and the results were found to be in line with the biological evaluation studies of the compounds.  相似文献   

8.
Thirty-eight chalcone derivatives bearing a chromen or benzo[f]chromen moiety were synthesized and evaluated for their anti-inflammatory and analgesic activities. Using an ear edema model, anti-inflammatory activities were observed for compounds 3a-3s (ear inflammation: 1.75–3.71 mg) and 4a-4s (ear inflammation: 1.71–4.94 mg). All compounds also displayed analgesic effects with inhibition values of 66.7–100% (3a-3s) and 96.2–100% (4a-4s). The 12 compounds that displayed excellent anti-inflammatory and analgesic effects were tested for their inhibitory activity against ovine COX-1 and COX-2. Six compounds bearing a chromen moiety were weak inhibitors of the COX-1 isozyme but showed moderate COX-2 isozyme inhibitory effects (IC50s from 0.37 μM to 0.83 μM) and COX-2 selectivity indexes (SI: 22.49–9.34). Those bearing a benzo[f]chromen moiety were more selective toward COX-2 than those bearing a chromen moiety with IC50s from 0.25 μM to 0.43 μM and COX-2 selectivity indexes from SI: 31.08 to 20.67.  相似文献   

9.
Novel candidates of thiazolo[4,5-d]pyrimidines (9a-l) were synthesized and their structures were elucidated by spectral and elemental analyses. All the novel derivatives were screened for their cyclooxygenase inhibitory effect, anti-inflammatory activity and ulcerogenic liability. All the new compounds exhibited anti-inflammatory activity, especially 1-(4-[7-(4-nitrophenyl)-5-thioxo-5,6-dihydro-3H-thiazolo[4,5-d]pyrimidin-2-ylideneamino]phenyl)ethanone (9g) was the most active derivative with 57%, 88% and 88% inhibition of inflammation after 1, 3 and 5h, respectively. Furthermore, this derivative 9g recorded higher anti-inflammatory activity than celecoxib which showed 43%, 43% and 54% inhibition after 1, 3 and 5h, sequentially. Moreover, the target derivatives 9a-l demonstrated moderate to high potent inhibitory action towards COX-2 (IC50 = 0.87–3.78 µM), in particular, the derivatives 9e (IC50 = 0.92 µM), 9g (IC50 = 0.87 µM) and 9k (IC50 = 1.02 µM) recorded higher COX-2 inhibitory effect than the selective COX-2 inhibitor drug celecoxib (IC50 = 1.11 µM). The in vivo potent compounds (9e, 9g and 9k) caused variable ulceration effect (ulcer index = 5–12.25) in comparison to that of celecoxib (ulcer index = 3). Molecular docking was performed to the most potent COX-2 inhibitors (9e, 9g and 9k) to explore the binding mode of these derivatives with Cyclooxygenase-2 enzyme.  相似文献   

10.
A new series of hybrid structures 14a–l containing thiohydantoin as anti-cancer moiety and pyrazole core possessing SO2Me pharmacophore as selective COX-2 moiety was designed and synthesized to be evaluated for both anti-inflammatory and anti-cancer activities. The synthesized compounds were evaluated for their COX inhibition, in vivo anti-inflammatory activity, ulcerogenic liability, in vitro cytotoxic activity and human topoisomerase-1 inhibition. All compounds were more selective for COX-2 isozyme and showed good in vivo anti-inflammatory activity. Also, all derivatives were significantly less ulcerogenic (ulcer indexes = 2.64–3.87) than ibuprofen (ulcer index = 20.25) and were of acceptable ulcerogenicity when compared with the non-ulcerogenic reference drug celecoxib (ulcer index = 2.99). Regarding anti-cancer activity, most of the target derivatives showed activities against A-549, MCF-7 and HCT-116 cell lines (IC50 = 5.32–17.90, 3.67–19.04 and 3.19–14.87 µM respectively) in comparison with doxorubicin (IC50 = 0.20, 0.50 and 2.44 µM respectively). Compound 14a inhibited the human topoisomerase-1 with IC50 = 29.7 µg/ml while 14b and 14c showed more potent inhibitory activity with IC50 = 26.5 and 23.3 µg/ml. respectively in comparison with camptothecin (IC50 = 20.2 µg/ml). Additionally, COX-2 and human topoisomerase-1 docking studies were carried out to explain the interaction of the synthesized hybrid structures 14a–l with the target enzymes.  相似文献   

11.
The work reported herein describes the synthesis of a new series of anti-inflammatory pyrazolyl thiazolones. In addition to COX-2/15-LOX inhibition, these hybrids exerted their anti-inflammatory actions through novel mechanisms. The most active compounds possessed COX-2 inhibitory activities comparable to celecoxib (IC50 values of 0.09–0.14 µM) with significant 15-LOX inhibitory activities (IC50s 1.96 to 3.52 µM). Upon investigation of their in vivo anti-inflammatory activities and ulcerogenic profiles, these compounds showed activity patterns equivalent or more superior to diclofenac and/or celecoxib. Intriguingly, the most active compounds were more effective than diclofenac in suppressing monocyte-to-macrophage differentiation and inflammatory cytokine production by activated macrophages, as well as their ability to induce macrophage apoptosis. The latter finding potentially adds a new dimension to the previously reported anti-inflammatory mechanisms of similar compounds. These compounds were effectively docked into COX-2 and 15-LOX active sites. Also, in silico predictions confirmed the appropriateness of these compounds as drug-like candidates.  相似文献   

12.
In the present study we have discovered compound 1, a benzo[1.3.2]dithiazolium ylide-based compound, as a new prototype dual inhibitor of cyclooxygenase (COX) and 5-lipoxygenase (5-LOX). Compound 1 was initially discovered as a COX-2 inhibitor, resulting indirectly from the COX-2 structure-based virtual screening that identified compound 2 as a virtual hit. Compounds 1 and 2 inhibited COX-1 and COX-2 in mouse macrophages with IC50 in the range of 1.5–18.1 μM. Both compounds 1 and 2 were also found to be potent inhibitors of human 5-LOX (IC50 = 1.22 and 0.47 μM, respectively). Interestingly, compound 1 also had an inhibitory effect on tumor necrosis factor-α (TNF-α) production (IC50 = 0.44 μM), which was not observed with compound 2. Docking studies suggested the (S)-enantiomer of 1 as the biologically active isomer that binds to COX-2. Being a cytokine-suppressive dual COX/5-LOX inhibitor, compound 1 may represent a useful lead structure for the development of advantageous new anti-inflammatory agents.  相似文献   

13.
As a part of our continued efforts to discover new COX inhibitors, a series of 3-methyl-1-phenylchromeno[4,3-c]pyrazol-4(1H)-ones were synthesized and evaluated for in vitro COX inhibitory potential. Within this series, seven compounds (3ad, 3h, 3k and 3q) were identified as potential and selective COX-2 inhibitors (COX-2 IC50’s in 1.79–4.35 μM range; COX-2 selectivity index (SI) = 6.8–16.7 range). Compound 3b emerged as most potent (COX-2 IC50 = 1.79 μM; COX-1 IC50 >30 μM) and selective COX-2 inhibitor (SI >16.7). Further, compound 3b displayed superior anti-inflammatory activity (59.86% inhibition of edema at 5 h) in comparison to celecoxib (51.44% inhibition of edema at 5 h) in carrageenan-induced rat paw edema assay. Structure–activity relationship studies suggested that N-phenyl ring substituted with p-CF3 substituent (3b, 3k and 3q) leads to more selective inhibition of COX-2. To corroborate obtained experimental biological data, molecular docking study was carried out which revealed that compound 3b showed stronger binding interaction with COX-2 as compared to COX-1.  相似文献   

14.
Trimellitimides 621 were prepared and investigated in vivo for anti-inflammatory and ulcerogenic effects and in vitro for cytotoxicity. They were subjected to in vitro cyclooxygenase (COX-1/2) and carbonic anhydrase inhibition protocols. Compounds 611 and 18 exhibited anti-inflammatory activities and had median effective doses (ED50) of 34.3–49.8 mg kg−1 and 63.6–86.6% edema inhibition relative to the reference drug celecoxib (ED50: 33.9 mg kg−1 and 85.2% edema inhibition). Compounds 611 and 18 were weakly cytotoxic at 10 μM against 59 cell lines compared with the reference standard 5-fluorouracil (5-FU). Compounds 611 had optimal selectivity against COX-2. The selectivity index (SI) range was >200–490 and was comparable to that for celecoxib [COX-2 (SI) > 416.7]. In contrast, compounds 12, 13, and 1618 were nonselective COX inhibitors with a selectivity index range of 0.92–0.25. The carbonic anhydrase inhibition assay showed that sulfonamide incorporating trimellitimides 611 inhibited the cytosolic isoforms hCA I and hCA II, and tumor-associated isoform hCA IX. They were relatively more susceptible to inhibition by compounds 8, 9, and 11. The KI ranges were 54.1–81.9 nM for hCA I, 25.9–55.1 nM for hCA II, and 46.0–348.3 nM for hCA IX. © 2018 Elsevier Science. All rights reserved.  相似文献   

15.
A series of benzo[d]thiazole analogs were synthesized and evaluated for their anti-inflammatory and analgesic effects. Using an ear edema model, except for compounds 2k, 2m-2q and 3a, other compounds showed the anti-inflammatory effects. Among them, compounds 2c, 2d, and 2g showed the best anti-inflammatory activity (inhibition rate: 86.8%, 90.7% and 82.9%, respectively). By the acetic acid-induced abdominal writhing test, except for compounds 2e, 2l, 2m, 2o, 2p and 3a, other compounds showed the analgesic effects with inhibition rate values of 51.9–100% (2a-2r) and 68.6–100% (3a-3g). Next, compounds 2c, 2d, 2g, 3d, 3f, 3g that displayed the excellent anti-inflammatory and analgesic activities were evaluated for their inhibitory effect against ovine COX-1 and COX-2. Compounds 2c, 2d, 2g, 3d, 3f, 3g were weak inhibitors of the COX-1 isozyme but exhibited the moderate COX-2 isozyme inhibitory effects IC50 from 0.28 to 0.77 μM and COX-2 selectivity indexes (SI: 18.6 to 7.2). This benzo[d]thiazole moiety will be proved to be of great significance for developing more potent COX-2 inhibitors.  相似文献   

16.
In this study, the acid chlorides of pyrazolo[3,4-d]pyrimidine compounds were prepared and reacted with a number of nucleophiles. The novel compounds were experimentally tested via enzyme assay and they showed cyclooxygenase-2 inhibition activity in the middle micro molar range (4b had a COX-1 IC50 of 26 µM and a COX-2 IC50 of 34 µM, 3b had a COX-1 IC50 of 19 µM and a COX-2 IC50 of 31 µM, 3a had a COX-2 IC50 of 42 µM). These compounds were analyzed via docking and were predicted to interact with some of the COX-2 key residues. Our best hit, 4d (COX-1 IC50 of 28 µM, COX-2 IC50 of 23 µM), appears to adopt similar binding modes to the standard COX-2 inhibitor, celecoxib, proposing room for possible selectivity. Additionally, the resultant novel compounds were tested in several in vivo assays. Four compounds 3a (COX-2 IC50 of 42 µM), 3d, 4d and 4f were notable for their anti-inflammatory activity that was comparable to that of the clinically available COX-2 inhibitor celecoxib. Interestingly, they showed greater potency than the famous non-steroidal anti-inflammatory drug, Diclofenac sodium. In summary, these novel pyrazolo[3,4-d]pyrimidine analogues showed interesting anti-inflammatory activity and could act as a starting point for future drugs.  相似文献   

17.
Background : Modulation of the arachidonic acid (AA) cascade via 5-lipoxygenase (5-LOX) and cyclooxygenase-2 (COX-2) represent the two major pathways for treatments of inflammation and pain. The design and development of inhibitors targeting both 5-LOX and COX-2 has gained increasing popularity. As evidenced, 5-LOX and COX-2 dual targeted inhibitors have recently emerged as the front runners of anti-inflammatory drugs with improved efficacy and reduced side effects. Natural products represent a rich resource for the discovery of dual targeted 5-LOX and COX-2 inhibitors. By combining affinity ultrafiltration and high-performance liquid chromatography-mass spectrometry (AUF-LC-MS), an efficient method was developed to identify spirostanol glycosides and furostanol glycosides as the 5-LOX/COX-2 dual inhibitors from saponins extract of Anemarrhenae Rhizoma (SEAR).Methods: A highly efficient method by combining affinity ultrafiltration and high-performance liquid chromatography-mass spectrometry (AUF-LC-MS) was first developed to screen and characterize the 5-LOX/COX-2 dual targeted inhibitors from SEAR. The structures of compounds in the ultrafiltrate were characterized by high resolution Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR-MS). In addition, in vitro 5-LOX/COX-2 inhibition assays and their dual expression in vivo were performed to confirm the inhibitory activities of the compounds screened by AUF-LC-MS. Molecular docking studies with the corresponding binding energy were obtained which fit nicely to both 5-LOX and COX-2 protein cavities and in agreement with our affinity studies.Results: A total of 5 compounds, timosaponin A-II, timosaponin A-III, timosaponin B-II, timosaponin B-III and anemarrhenasaponin I, were identified as potential 5-LOX/COX-2 dual targeted inhibitors with specific binding values > 1.5 and IC50 ≤ 6.07 μM.Conclusion: The present work demonstrated that spirostanol glycoside and furostanol glycoside were identified as two novel classes of dual inhibitors of 5-LOX/COX-2 enzymes by employing a highly efficient screening method of AUF-LC-MS. These natural products represent a novel class of anti-inflammatory agents with the potential of improved efficacy and reduced side effects.  相似文献   

18.
A new series of substituted-N-(3,4-dimethoxyphenyl)-benzoxazole derivatives 13a13p was synthesized and evaluated in vitro for their COX (I and II) inhibitory activity, in vivo anti-inflammatory and ulcerogenic potential. Compounds 13d, 13h, 13k, 13l and 13n exhibited significant COX-2 inhibitory activity and selectivity towards COX-2 over COX-1. These selected compounds were screened for their in vivo anti-inflammatory activity by carrageenan induced rat paw edema method. Among these compounds, 13d was the most promising analogs of the series with percent inhibition of 84.09 and IC50 value of 0.04?µM and 1.02?µM (COX-2 and COX-1) respectively. Furthermore, ulcerogenic study was performed and tested compounds (13d, 13h, 13k, 13l) demonstrated a significant gastric tolerance than ibuprofen. Molecular docking study was also performed with resolved crystal structure of COX-2 to understand the binding mechanisms of newly synthesized inhibitors in the active site of COX-2 enzyme and the results were found to be concordant with the biological evaluation studies of the compounds. These newly synthesized inhibitors also showed acceptable pharmacokinetic profile in the in silico ADME/T analyses.  相似文献   

19.
Some derivatives containing pyrido[2,3-d:6,5d′]dipyrimidine-4,5-diones (9a-f), tetrahydropyrido[2,3-d]pyrimidine-6-carbonitriles (11a-c) and 6-(4-acetylphenyl)-2-thioxo-2,3,5,6,7,8-hexahydro-1H-pyrimido[4,5-d]pyrimidin-4-one (12) were synthesized from 6-amino-2-thioxo-2,3-dihydro-1H-pyrimidin-4-one (8). The anti-inflammatory effect of these candidates was determined and the ulcer indices were calculated for active compounds. 7-Amino-5-(3,4,5-trimethoxyphenyl)-4-oxo-2-thioxo-1,2,3,4-tetrahydropyrido[2,3-d] pyrimidine-6-carbonitrile (11c) exhibited better edema inhibition than celecoxib. Moreover, compounds 9b, 9d and 11c revealed better COX-2 inhibitory activity in a range (IC50 = 0.25–0.89 µM) than celecoxib (IC50 = 1.11 µM). Regarding ulcerogenic liability, all of the compounds under the study were less ulcerogenic than indomethacin. Molecular docking studies had been carried on active candidates 9d and 11c to explore action mode of these candidates as leads for discovering other anti-inflammatory agents.  相似文献   

20.
Novel purine-pyrazole hybrids combining thiazoles, thiazolidinones and rhodanines, were designed and tested as 15-LOX inhibitors, potential anticancer and antioxidant agents. All tested compounds were found to be potent 15-LOX inhibitors with IC50 ranging from 1.76 to 6.12 µM. The prepared compounds were evaluated in vitro against five cancer cell lines: A549 (lung), Caco-2 (colon), PC3 (prostate), MCF-7 (breast) and HepG-2 (liver). Compounds 7b and 8b displayed broad spectrum anticancer activity against the five tested cell lines (IC50 = 18.5–95.39 µM). While, compound 7h demonstrated moderate anticancer activity against lung A549 and colon Caco-2 cell lines. Antioxidant screening revealed that six compounds (5a, 5b, 6b, 7b, 7h and 8b) with IC50 ranging from 0.93 to 14.43 µg/ml were found to be more potent scavengers of 2,2- diphenyl-1-picrylhydrazyl (DPPH) than the reference ascorbic acid with IC50 value of 15.34 µg/ml. Compounds 7b, 7h and 8b, when evaluated for their antioxidant activity, where found to be potent DPPH scavengers. Moreover, compound 7b displayed twice the potency of ascorbic acid as NO scavenger. Docking study was performed to elucidate the possible binding mode of the most active compounds with the active site of 15-LOX enzyme. Collectively, the purine-pyrazole hybrids having thiazoline or thizolidinone moieties (7b, 7h and 8b) constitute a promising scaffold in designing more potent 15-LOX inhibitors with anticancer and antioxidant potential.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号