首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The nuclearity, bonding and H-bonded networks of copper(I) halide complexes with thiophene-2-carbaldehyde thiosemicarbazones {(C4H3S)HC2N3-N(H)-C1(S)N1HR} are influenced by R substituents at N1 atom. Thiophene-2-carbaldehyde-N1-methyl thiosemicarbazone (HttscMe) or thiophene-2-carbaldehyde-N1-ethyl thiosemicarbazone (HttscEt) have yielded halogen-bridged dinuclear complexes, [Cu2(μ-X)21-S-Htsc)2(Ph3P)2] (Htsc, X: HttscMe, I, 1; Br, 2; Cl, 3; HttscEt, I, 4; Br, 5; Cl, 6), while thiophene-2-carbaldehyde-N1-phenyl thiosemicarbazone (HttscPh) has yielded mononuclear complexes, [CuX(η1-S-HttscPh)2] (X, I, 7a; Br 8; Cl, 9) and a sulfur bridged dinuclear complex, [Cu2(μ-S-HttscPh)21-S-HttscPh)2I2] 7b co-existing with 7a in the same unit cell. These results are in contrast to S-bridged dimers [Cu2(μ-S-Httsc)21-Br)2(Ph3P)2] · 2H2O and [Cu2(μ-S-Httsc)21-Cl)2(Ph3P)2] · 2CH3CN obtained for R = H and X = Cl, Br (Httsc = thiophene-2-carbaldehyde thiosemicarbazone) as reported earlier. The intermolecular CHPh?π interaction in 1-3 (2.797 Å, 1; 3.264 Å, 2; 3.257 Å, 3) have formed linear polymers, whereas the CHPh?X and N3?HCH interactions in 4-6 (2.791, 2.69 Å, 5; 2.776, 2.745 Å, 6, respectively) have led to the formation of H-bonded 2D polymer. The PhN1H?π, interactions (2.547 Å, 8, 2.599 Å, 9) have formed H-bonded dimers only. The Cu?Cu separations are 3.221-3.404 Å (1-6).  相似文献   

2.
cis,trans-Fe(CO)2(PMe3)2(p-Y-C6H4)X [X=Br, Y=H (4a), MeO (4b), Cl (4c), F (4d), Me (4e); X=I, Y=H (5); X=Cl, Y=H (6)] and cis,trans-Fe(CO)2(PMe3)2(σ-CHCH2)X [X=Br (7); X=I (8); X=Cl (9)] are prepared by reacting dihalide complexes cis,trans,cis- Fe(CO)2(PMe3)2X2 [X=Br (1), X=I (2), X=Cl (3)] with Grignard reagents p-Y-C6H4-MgBr (Y=H, OMe, Cl, F, Me) or CH2CH-MgBr and with lithium reagents PhLi, CH2CH-Li. With both reagents, the reaction proceeds following two parallel pathways: one is the metallation reaction which yields alkyl derivatives, the other affords 17 electron complexes [Fe(CO)2(PMe3)2X] via monoelectron reductive elimination. The influence of the halides and organometallic reagents on the yield of the metallation reaction is discussed. The solution structure of the complexes is assigned on the basis of IR and 1H, 13C, 19F, 31P NMR spectra. The solid state structure of complexes 4a, 5 and 6 is determined by single crystal X-ray diffractometric methods.  相似文献   

3.
The iron hydrido complex HFe(CO)2{P(OPh)3}{(PhO)2POC6H4} (1), was rapidly deprotonated by DBU or [BzMe3N][OH] in THF to afford the new carbonyl iron anion [Fe(CO)2{P(OPh)3}{(PhO)2POC6H4}] ([2]), containing an ortho-metallated triphenyl phosphite ligand. Complex [2] reacted with triorganostannyl and plumbyl salts and with halogens to give the octahedral FeII compounds Fe(CO)2{P(OPh)3}{(PhO)2POC6H4}(X) (X=SnPh3, 3; SnMe3, 4; PbPh3, 5; PbMe3, 6; Cl, 7; Br, 8; I, 9). The Group 14 complexes 3-6 were obtained in one isomeric form in which the PIII-donor atoms are mutually cis, the carbonyl ligands are cis and the P(OPh)3 and MR3 (M=Sn, Pb; R=Ph, Me) groups are trans as determined by solution-state IR, 31P and 13C NMR spectroscopic data. This geometry was confirmed for 3 by a single crystal X-ray diffraction study. The halide complexes, however, were obtained as a mixture of isomers. The major isomer (7, X=Cl; 8a, X=Br; 9a, X=I) has cis P atoms, trans CO groups and the halide located trans to the phosphorus atom of the ortho-metallated phosphite ligand. The structure of 9a was confirmed by an X-ray diffraction study. Two other isomers, designated 8b (X=Br) and 9b (X=I), with cis P atoms and cis CO groups were isolated from the reactions of [2] with Br2 and I2, respectively. The structure of the latter was established by X-ray crystallography and is related to 9a by exchange of the P(OPh)3 ligand and a carbonyl group such that the metal-bound C atom of the five-membered metallacycle is trans to CO. The stereo-geometry of 8b could not be unambiguously assigned from the spectroscopic data; however, two of the seven possible geometric isomers were suggested as plausible structures.  相似文献   

4.
《Inorganica chimica acta》1988,144(2):241-248
The syntheses and ligand dissociation kinetics of vitamin B12 model compounds LCo(DH)2CHX2 with X = Cl and Br and L = different neutral N- and P- ligands are reported together with the crystal structures of the CHCl2 derivatives with L = py (1) and 1,5,6-trimethylbenzimidazole, Me3Bzm (2). Compound 1 crystallizes in the space group P21/n with cell parameters a = 9.617(1), b = 12.601(2), c = 15.586(2) Å, β = 95.44(1)°; 2 crystallizes in the space group P1 with cell parameters a = 8.867(2), b = 10.719(2), c = 13.345(2) Å, α = 94.81(2), β = 90.89(1), γ = 105.63(2)°. The two structures were solved by Patterson and Fourier methods and refined by least-squares methods to final R values of 0.037 (1) and 0.036 (2), using 3474 (1) and 4435 (2) independent reflections.The axial NCoC fragment is characterized by CoN and CoC distances of 2.045(2) and 1.995(2) Å in 1 and 2.043(2) and 1.983(2) Å in 2, respectively. The CoC bond lengths have the smallest values so far reported in both py and Me3Bzm alkylcobaloximes.The displacement of the L ligand followed SN1 LIM behaviour and the corresponding rate constants depend upon the nature of L and vary in CHCl2 derivatives from 2.42 X 10−1 s−1 for 2-aminopyridine to 1.99 X 10−5 s−1 for P(OMe)3. For fewer CHBr2 analogs the rate constants were smaller.Kinetic results confirm previous findings that the donating ability of CHBr2 is less than that of CHCl2, although the electronegativity of Cl and Br species would suggest an opposite trend. Some relationships between kinetic and structural properties are discussed.  相似文献   

5.
《Inorganica chimica acta》1988,145(1):105-109
Copper(I) chloride and bromide reacted with an equimolar amount of ferrocenyldiphenylphosphine (PFcPh2) in refluxing benzene, affording the new tetrameric complexes [CuX(PFcPh2)]4 (1, X= Cl; 2, X = Br) as yellow microcrystals. Their bipyridyl (bpy) derivatives [CuX(bpy)(PFcPh2)] (3, X=Cl; 4, X=Br) were prepared also. When copper(I) chloride was allowed to react with abundant PFcPh2, only the mononuclear complex [CuCl(PFcPh2)2] (5) was isolated. THF solutions of the copper(I) complexes and 2,5-norbornadiene (Nbd) were irradiated at 366 nm, and the valence isomerization of Nbd to quadricyclene (Q) was observed. Quantum yields with 1 and 2 were about 0.011 and 0.008, respectively, and those with other complexes were very small. 31P NMR studies were performed for the complexes in the presence of Nbd or norbornene, and the key photoactive species in the isomerization with 1 and 2 were determined to be their ground state copper-Nbd adducts, i.e. ‘CuX(PFcPh2)(Nbd)’. Photoexcitation of the adducts was assumed to give rise to the valence isomerization and to release Q.  相似文献   

6.
《Inorganica chimica acta》1987,132(2):217-222
XPd(μ-dppm)2Pt(C6F5) (X = Cl (I), Br (II)) have been prepared by reacting Pd2(dba)3·CHCl3 and PtX- (C6F5)(η1-dppm)2. Reaction of complex I with SnCl2 gives the SnCl3 derivative, whilst ligands L (PPh3, P(OPh)3, SbPh3) render the cationic complexes. The species R2N+, SO2 or MeOOC)CCCOOMe insert into the PdPt bond of I to give A-frame Pd(II)- Pt(II) complexes. The reactions of CIPd(μ-dppm)2- Pt(C6F5) with isonitriles CNR (R = p-Tol, Cy) lead to products containing either terminal or inserted isocyanide or both.  相似文献   

7.
《Inorganica chimica acta》1989,156(2):251-256
The title compounds (1, X=F; 2, X=Cl) were obtained in quantitative yield by refluxing together (NBu4)2[Pd2(μ-Br)2(C6X5)4] and (NBu4)2[Pd2(μ-Br)2Br4]. Treatment of 1 or 2 with AgClO4 (Pd:Ag= 1:1) gave solutions which behaved as containing ‘Pd(C6X5)Br’. 1, 2 and the ‘Pd(C6X5)Br’ solutions were checked as precursors of mono-pentahalophenyl derivatives, yielding a variety of complexes [Pd(C6X5)Br(L-L)] (L-L=bipy, tmen, dpe, COD), [Pd(C6X5)BrL2] (L=p-TolNH2, py, PPh3, AsPh3, SbPh3), [Pd2(μ-Br)2(C6X5)2L2] (X=F, L=AsPh3; X=Cl, L=SbPh3) and (NBu4)[Pd(C6X5)Br2L] (X=F, L= py, AsPh3, SbPh3; X=Cl, L=p-TolNH2, py, PPh3, AsPh3, SbPh3). The solutions of ‘Pd(C6X5)Br’ proved to be the best general precursors of complexes [Pd(C6X5)BrL2] although complexes with OPPh3 could not be obtained.  相似文献   

8.
《Inorganica chimica acta》2001,312(1-2):40-52
The substitution of chloro ligand in [M(triphos)Cl]Cl complexes [M=Pd (1), Pt (2); triphos=Ph2PC2H4P(Ph)C2H4PPh2] by reaction with 1 equiv. of KX resulted in the formation of the ionic complexes [M(triphos)X]Cl [X=I, M=Pd (3), Pt (4); X=CN, M=Pd (5), Pt (6)]. Methanolic solutions of silver nitrate in excess displace the chloro ligand and counterion of 1 and 2, giving rise to the formation of the crystalline complexes [M(triphos)(ONO2)](NO3) [M=Pd (7), Pt (8)] suitable for X-ray diffraction studies. The complexes show a distorted square-planar environment around the metal, there being three coordination sites occupied by phosphorus atoms from the triphos and the fourth by the oxygen atom from a nitrate acting as monodentate ligand. A second NO3  is acting as counterion with D3h symmetry. The use of a high excess of SnCl2 in the presence of 1 equiv. of PPh3 enabled the formation of complexes [M(triphos)(PPh3)](SnCl3)2 [M=Pd (9), Pt (10)]. These complexes, in addition to [M(triphos)X]X [X=Br, M=Pd (1a), Pt (2a); X=I, M=Pd (1b), Pt (2b)], were synthesised and all Pt(II) complexes characterised by microanalysis. Mass spectrometry, IR spectroscopy, NMR spectroscopy and conductivity measurements were also used for characterisation. The structure and reactivity studies in solution were carried out by 31P{1H} NMR. The trends in chemical shifts δ (P) and 1J(195Pt, 31P) coupling constants were used to establish a sequence in the X ligand exchange reactions. While [Pd(triphos)I]I (1b) undergoes a ring-opening reaction by titration with AuI, the analogous Pt(II) complex (2b) does not react. The formation of new five-coordinate Pd(II) and Pt(II) complexes was observed by titration of 58 with potassium cyanide.  相似文献   

9.
Samir Das 《Inorganica chimica acta》2008,361(9-10):2815-2820
The blue colored imido complexes [Re(NC6H4Cl)X3(L)] have been synthesized by three methods: (i) reaction of [ReVOX3(L)] with p-ClC6H4NH2, (ii) reaction of [ReIII(OPPh3)X3(L)] with p-ClC6H4NH2 and (iii) reaction of [ReVOX3(PPh3)2] with L followed by the addition of p-ClC6H4NH2 in boiling toluene. Here, X = Cl, Br, I and L are 5,6-diphenyl-3-(2-pyridyl)-1,2,4-triazine (L2) and its dimethyl (L1) and pyrazinyl (L3) analogues. The [Re(NC6H4Cl)Cl3(L1)] (1a), [Re(NC6H4Cl)Cl3(L2)] (1b), [Re(NC6H4Cl)Br3(L2)] (1c), [Re(NC6H4Cl)I3(L2)] (1d), [Re(NC6H4Cl)Cl3(L3)] (1e), [Re(NC6H4Cl)Br3(L3)] (1f), [Re(NC6H4Cl)I3(L3)] (1g), complexes have been characterized electrochemically and spectroscopically. The X-ray structures of [Re(NC6H4Cl)Cl3(L2)] and [Re(NC6H4Cl)I3(L3)] reveal that the ReCl3 fragment is meridionally disposed and that the L ligand is N,N-coordinated such that the pyridine/pyrazine nitrogen lies trans to the imide nitrogen. The feasibility of generating the rhenium(VI) congener of the imidorhenium(V) complex is also examined with the help of six-line EPR spectra at room temperature.  相似文献   

10.
The preparation is reported of [(NH3)3Pt(9- MeA)] X2 (9-MeA = 9-methyladenine) with XCl (1a) and XClO4 (1b) and of trans-[(OH)2Pt(NH3)3- (9-MeA)]X2 with XCl (2a) and XClO4 (2b), and the crystal structure of 1b. [(NH3)3Pt(C6H7N5)](ClO4)2 crystallizes in space group P21/n with a = 20.810(7) Å, b = 7.697(3) Å, c = 10.567(4) Å, β = 91.57(6)°, Z = 4. The structure was refined to R = 0.054, Rw = 0.063. In all four compounds Pt coordination is through N7 of 9-MeA, as is evident from 3J coupling between H8 of the adenine ring and 195Pt. Pt(II) and Pt(IV) complexes can be differentiated on the basis of different 3J values, larger for Pt(II) than for Pt(IV) by a factor of 1.57 (av). In Me2SO-d6, hydrogen bonding occurs between Cl? and C(8)H of 9-MeA as weil as between Cl? and the NH3 groups in the case of the Pt(II) complex 1a. Protonation of the 9-MeA ligands was followed using 1H NMR spectroscopy and pKa values for the N1 protonated 9-MeA ligands were determined in D2O. They are 1.9 for 1a and 1.8 for 2a, which compares with 4.5 for the non-platinated 9-MeA. Possible consequences for hydrogen bonding with the complementary bases thymine or uracil are discussed briefly. Protonation of the OH groups in the Pt(IV) complexes has been shown not to occur above pH 1.  相似文献   

11.
Three novel macrocyclic diorganotin(IV) compounds of the type: {[R10(SnO)3(SnOH)2]HnXOm}2 · L (n=1, m=4, R=PhCH2, X=P, L=0, 1; n=0, m=4, R=PhCH2, X=S, L=4H2O, 2; n=0, m=3, R=n-Bu, X=N, L=0, 3) were synthesized by the reaction of (PhCH2)2SnCl2 with Na2HnXO4 (n=1, X=P; n=0, X=S) or (n-Bu)2SnCl2 with NaNO3. All the compounds 1, 2 and 3 are characterized by elemental, IR and X-ray diffraction analyses. X-ray data reveal that a macrocyclic structure with two centrosymmetric ladders of hydrolysis exists in the crystals of the three compounds. The geometry about each tin atom involved is trigonal bipyramidal.  相似文献   

12.
A series of mononuclear manganese(III) complexes of formulae [Mn(L)(X)(H2O)] (1-13) and [Mn(L)(X)] (14-17) (X = ClO4, F, Cl, Br, I, NCS, N3), derived from the Schiff bases of 5-bromosalicylaldehyde and different types of diamine (1,2-diaminoethane, 1,2-diaminopropane, 1,3-diaminopropane and 1,4-diaminobutane), have been synthesized and characterized by the combination of IR, UV-Vis spectroscopies, cyclic voltammetry and by X-ray crystallography. The redox properties of all the manganese(III) complexes show grossly identical features consisting of a reversible or quasireversible MnIII/MnII reduction. Besides MnIII/MnII reduction, the complexes 4, 5, 10, 13 and 16 also show reversible or quasireversible MnIII/MnIV oxidation. A linear correlation has been found for the complexes 5, 7, 11 and 13 [Mn(L2)(X)(H2O)] (X = F, Cl, Br, I) when E1/2 [MnIII/MnII] is plotted against Mulliken electronegativities (χM). The effect of the flexibility of the ligand on redox potential has been studied. It has been observed that the manganese(II) state is stabilized with increasing flexibility of the ligand environment. The crystal structure of 6 shows an octahedral geometry.  相似文献   

13.
Reactions between XPd(μ-dmp)2PdX′ (X = X′ = Cl, Br, I, NCO, SCN, N3 or C6F5; X = C6F5, X′ = Cl, Br, I, NCO) with 1,4-diisocyanobenzene lead to the tetranuclear complexes [(μ,μ′-CNC6H4NC){XPd(μ-dpm)2PdX′}2], where both ends of the diisocyanide are inserted in a metalmetal bond. The cationic derivatives [(μ,μ′-CNC6H4NC){(RNC)Pd(μ-dpm)2(CNR)}2](BPh4)4 and [(μ,μ′-CNC6H4NC){(RNC)Pd(μ-dpm)2Pd(C6F5)}2] (BPh4)2 (R = p-Tol, Cy, or tBu) are obtained by reacting [(μ,μ′-CNC6H4NC){ClPd(μ-dpm)2PdX}2] (X= Cl or C6F5) with RNC in the presence of NaBPh4. Treatment of [(μ,μ′-CNC6H4NC){ClPd(μ-dpm)2Pd(C6F5)}]2 with NaBPh4 causes the di-insertion and subsequent coordination of the isocyanide, yielding [(C6F5)Pd(CN-C6H4NC) Pd(μ-dpm)2Pd(C6F5)](BPh4)2.  相似文献   

14.
《Inorganica chimica acta》2006,359(9):2835-2841
Rh(I) carbene complexes of [RhX(bmim)(η4-1,5-cod)] type (bmim = 1-butyl-3-methyl imidazolium cation, X = Cl 2, Br 3, I 4), obtained in the reaction of [Rh(OMe)(η4-1,5-cod)]2 (1) with [bmim]X ionic liquids, catalyzed polymerization of phenylacetylene (PA) to cis-polyphenylacetylene (PPA) in CH2Cl2 and in ionic liquids. The yield of PPA increased and molecular weight (Mw) decreased after addition of phosphorus ligands PPh3 or P(OPh)3. Complex 4 reacted with P(OPh)3 giving cis-[RhI(bmim)(P(OPh)3)2] (5) complex which catalyzed oligomerization but not polymerization of PA.  相似文献   

15.
Compounds 1-6 of the type MoO2X2L2 (X=F, Cl, Br; L=OPMePh2, OPPh3) have been prepared in order to investigate the variation in catalytic activity with changes in electronic and steric properties. All six complexes catalyze the epoxidation of cyclohexene with tert-butylhydroperoxide, and the species with X=Cl and L=OPMePh2 (2) displays the best activity with 83% conversion and 90% selectivity in one hour at ambient atmosphere. These inexpensive and easily prepared dioxo catalysts are stable to air and water. Reactions of the dioxo compounds with H2O2 and t-BuOOH have also been carried out. The structures of MoO2F2(OPMePh2)2 (1) and the product of its reaction with H2O2, MoO(O2)2(OPMePh2)2 (7) have been solved by single crystal X-ray diffraction.  相似文献   

16.
The silylphosphine ligand Ph2PSiMe3 reacts readily with a slurry of [Re(CO)5X] (X  Cl, Br) in polar and in non-polar solvents to yield soluble cis-[Re(CO)4- (Ph2PSiMe3)X] (Ia, X  Cl;Ib, X  Br) via CO substitution. Compound I is readily hydrolyzed by water or silica gel to cis-[Re(CO)4(Ph2PH)X]. Compound Ib reacts with [Re(CO)5Br] to yield [Re2(CO)8(μ-PPh2)- (μ-Br)] (II), and with [Mn(CO)5Br] to yield [MnRe- (CO)8(μ-PPh2)(μ-Br)] (III).The reaction of Ph2PSiMe3 with [Mn(CO)5X] (X=Cl,Br,I) is highly dependent upon reaction conditions.In polar and in non-polar solvents, an excess of ligand gives mainly cis-[Mn(CO)4(Ph2PSiMe3)X] (IVa, X  Cl;IVb, X  Br;IVc, X I). With ligand: [Mn(CO)5X] reacting ratios in the range 0.5–1.0:1, the products from the three respective halomanganese complexes in THF were: (a) mainly [Mn2(CO)8(μ- PPh2)(μ-Cl) (Va); (b) both [Mn(CO)4(Ph2PSiMe3)Br] and [Mn2(CO)8(μ-PPh2)(μ-Br)] (Vb); and (c) exclusively [Mn(CO)4(Ph2PSiMe3)I]. The compounds IVa-c are stable in solution at ambient temperatures and are readily hydrolyzed by water or methanol to [Mn(CO)4(Ph2PH)X]. Compound IVb reacts at room temperature with [Mn(CO)5Cl] to yield only [Mn2- (CO)8(μ-PPh2)(μ-Br)] (Vb); compound IVc reacts in hot toluene with [Mn(CO)5Cl] to yield mainly [Mn2(CO)8(μ-PPh2)(μ-I)] (Vc), together with a small amount of the chloro-bridged analog.The dinuclear species II, III and Va-c appear to be formed mainly via an intermolecular elimination of Me3SiX from the appropriate [M(CO)4(Ph2PSiMe3)X] and metalpentacarbonylhalide (chloride or bromide) complexes.  相似文献   

17.
The reduction of NiX2(PCy3)2 (X = Cl, Br; PCy3 = tricyclohexylphosphine) in toluene with sodium sand under argon affords [NiX(PCy3)2]2 or Ni(PCy3)3. In the same way starting from NiX2P2 [X = Cl, Br; P = P(C2H5)3, P(CH2CH2CH2CH3)3, P(C2H5)2 C6H5] the tetracoordinate Ni(0) complexes NiP4 are obtained. These give NiP3(N2) under nitrogen. The electronic spectra of Ni(0) and Ni(I) complexes, both in the solid state and solution, are reported.  相似文献   

18.
《Inorganica chimica acta》1988,148(2):255-260
Arytellurol complexes [PtCl(TeAr)(PPh3)2] (I) and [Pt(TeAr)2(PPh3)2] (II) are readily obtained from cis-[PtCl2(PPh)3)2] and NaTeAr (Ar = C6H5, 4-CH3OC6H4 and 4-CH3CH2OC6H4) in ethanolbenzene at room temperature. 31P NMR spectra of (I) and (II) indicate their trans configuration in solution. Metathetical reactions between I (Ar = 4-CH3OC6H4) and NaX (X = I, Br, SCN) occur in methanol to give [Pt(X)(TeC6H4OCH3-4)(PPh3)2]. 1H NMR shows that equimolar proportions of NaTeC6H5, NaTeC6H4OCH2CH3-4 and cis-[PtCl2(PPh3)2] give a mixture of three complexes: II, Ar = C6H5; II, Ar = 4-CH3CH2OC6H4; and [Pt(TeC6H5)(TeC6H4OCH2CH3-4)(PPh3)2]. Polymeric complexes [PtCl(TeAr)]n (III) and [Pt(TeAr)2]n (IV) result from reaction between K2[PtCl4] and NaTeAr in aqueaous ethanol. They react with excess of PPh3 in CDCl3 to yield monomeric complexes I and II respectively which were characterized in situ by 1H and 31P NMR of the reaction mixtures. IR spectra indicate the presence of bridging chloride ligands in III. An alternating chloride and tellurol bridged chain structure for III and a tellurol bridged for IV have been proposed. Reaction between equimolar amounts of III and PPh3 in dichloromethane yielded a tellurol bridged dimeric complex [PtCl(μ-TeAr)(PPh3)]2 (V) with terminal chloride ligand as suggested by IR study. Ethanolic solutions of diarylditellurides also react readily with an aqueous solution of K2[PtCl4] at 10 °C to give complexes for which the structure trans-[PtCl2(ArTeTeAr)2] (VI) is suggested from their elemental analyses, IR, Raman (in one case only), 1H, 125Te (in one case only), and 195Pt NMR spectra and reactions with triphenylphosphine which liberated free ditellurides. At 40 °C or above the same ditellurides form polymeric complexes III with K2[PtCl4] in aquaeous ethanol.  相似文献   

19.
A series of osmium(VI) nitrido complexes containing pyridine-carboxylato ligands OsVI(N)(L)2X (L = pyridine-2carboxylate (1), 2-quinaldinate (2) and X = Cl (a), Br (1b and 2c) or CH3O (2b)) and [OsVI(N)(L)X3] (L = pyridine-2,6-dicarboxylate (3) and X = Cl (a) or Br (b)) have been synthesised. Complexes 1 and 2 are electrophilic and react readily with various nucleophiles such as phosphine, sulfide and azide. Reaction of OsVI(N)(L)2X (1 and 2) with triphenylphosphine produces the osmium(IV) phosphiniminato complexes OsVI(NPPh3)(L)2X (4 and 5). The kinetics of nitrogen atom transfer from the complexes OsVI(N)(L)2Br (2c) (L = 2-quinaldinate) with triphenylphosphine have been studied in CH3CN at 25.0 °C by stopped-flow spectrophotometric method. The following rate law is obtained: −d[Os(VI)]/dt = k2[Os(VI)][PPh3]. OsVI(N)(L)2Cl (L = 2-quinaldinate) (2a) reacts also with [PPN](N3) to give an osmium(III) dichloro complex, trans-[PPN][OsIII(L)2Cl2] (6). Reaction of OsVI(N)(L)2Cl (L = 2-quinaldinate) (2a) with lithium sulfide produces an osmium(II) thionitrosyl complex OsII(NS)(L)2Cl (7). These complexes have been structurally characterised by X-ray crystallography.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号