首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An unconventional interaction between SPCA2, an isoform of the Golgi secretory pathway Ca2+-ATPase, and the Ca2+ influx channel Orai1, has previously been shown to contribute to elevated Ca2+ influx in breast cancer derived cells. In order to investigate the physiological role of this interaction, we examined expression and localization of SPCA2 and Orai1 in mouse lactating mammary glands. We observed co-induction and co-immunoprecipitation of both proteins, and isoform-specific differences in the localization of SPCA1 and SPCA2. Three-dimensional cultures of normal mouse mammary epithelial cells were established using lactogenic hormones and basement membrane. The mammospheres displayed elevated Ca2+ influx by store independent mechanisms, consistent with upregulation of both SPCA2 and Orai1. Knockdown of either SPCA2 or Orai1 severely depleted Ca2+ influx and interfered with mammosphere differentiation. We show that SPCA2 is required for plasma membrane trafficking of Orai1 in mouse mammary epithelial cells and that this function can be replaced, at least in part, by a membrane-anchored C-terminal domain of SPCA2. These findings clearly show that SPCA2 and Orai1 function together to regulate Store-independent Ca2+ entry (SICE), which mediates the massive basolateral Ca2+ influx into mammary epithelia to support the large calcium transport requirements for milk secretion.  相似文献   

2.
3.
Store-operated calcium entry (SOCE) is a ubiquitous Ca2+ entry pathway that is activated in response to depletion of ER-Ca2+ stores and critically controls the regulation of physiological functions in miscellaneous cell types. The transient receptor potential canonical 1 (TRPC1) is the first member of the TRPC channel subfamily to be identified as a molecular component of SOCE. While TRPC1 has been shown to contribute to SOCE and regulate various functions in many cells, none of the reported TRPC1-mediated currents resembled ICRAC, the highly Ca2+-selective store-dependent current first identified in lymphocytes and mast cells. Almost a decade after the cloning of TRPC1 two proteins were identified as the primary components of the CRAC channel. The first, STIM1, is an ER-Ca2+ sensor protein involved in activating SOCE. The second, Orai1 is the pore-forming component of the CRAC channel. Co-expression of STIM1 and Orai1 generated robust ICRAC. Importantly, STIM1 was shown to also activate TRPC1 via its C-terminal polybasic domain, which is distinct from its Orai1-activating domain, SOAR. In addition, TRPC1 function critically depends on Orai1-mediated Ca2+ entry which triggers recruitment of TRPC1 into the plasma membrane where it is then activated by STIM1. TRPC1 and Orai1 form discrete STIM1-gated channels that generate distinct Ca2+ signals and regulate specific cellular functions. Surface expression of TRPC1 can be modulated by trafficking of the channel to and from the plasma membrane, resulting in changes to the phenotype of TRPC1-mediated current and [Ca2+]i signals. Thus, TRPC1 is activated downstream of Orai1 and modifies the initial [Ca2+]i signal generated by Orai1 following store depletion. This review will summarize the important findings that underlie the current concepts for activation and regulation of TRPC1, as well as its impact on cell function.  相似文献   

4.
MicroRNAs are small non-coding RNAs that are directly involved in the regulation of gene expression by either translational repression or degradation of target mRNAs. Because of the high level of conservation of the target motifs, known as seed sequences, within the 3′-untranslated regions, a single microRNA can regulate numerous target genes simultaneously, making this class of RNAs a powerful regulator of gene expression. The miR200 family of microRNAs has recently been shown to regulate the process of epithelial to mesenchymal transition during tumor progression and metastasis. Here, we report that the expression of WAVE3, an actin cytoskeleton remodeling and metastasis promoter protein, is regulated by miR200 microRNAs. We show a clear inverse correlation between expression levels of WAVE3 and miR200 microRNAs in invasive versus non-invasive cancer cells. miR200 directly targets the 3′-untranslated regions of the WAVE3 mRNA and inhibits its expression. The miR200-mediated down-regulation of WAVE3 results in a significant reduction in the invasive phenotype of cancer cells, which is specific to the loss of WAVE3 expression. Re-expression of a miR200-resistant WAVE3 reverses miR200-mediated inhibition of cancer cell invasion. Loss of WAVE3 expression downstream of miR200 also results in a dramatic change in cell morphology resembling that of a mesenchymal to epithelial transition. In conclusion, a novel mechanism for the regulation of WAVE3 expression in cancer cells has been identified, which controls the invasive properties and morphology of cancer cells associated with their metastatic potential.  相似文献   

5.
MicroRNAs (miRs) are small noncoding RNAs that negatively regulate gene expression by binding to the three untranslated regions of their target mRNAs. Deregulations of miRs were shown to play pivotal roles in tumorigenesis and progression. Recent research efforts have been devoted to translating these basic discoveries into applications that could improve the therapeutic outcome of patients with cancer. MiR-34a is a highly conserved miR throughout many different species. In humans, there are three homologs (hsa-miR34a, hsa-miR-34b and hsa-miR-34c). Early studies have shown that miR-34a acts as a tumor-suppressor gene by targeting many oncogenes related to proliferation, apoptosis and invasion. In this review, we provide a complex overview of miR-34a, including regulating its expression, its known functions in cancer and future challenges as a potential therapeutic target in human cancers.  相似文献   

6.
In prostate cancer, reactive oxygen species (ROS) are elevated and Ca2+ signaling is impaired. Thus, several novel therapeutic strategies have been developed to target altered ROS and Ca2+ signaling pathways in prostate cancer. Here, we investigate alterations of intracellular Ca2+ and inhibition of cell viability caused by ROS in primary human prostate epithelial cells (hPECs) from healthy tissue and prostate cancer cell lines (LNCaP, DU145, and PC3). In hPECs, LNCaP and DU145 H2O2 induces an initial Ca2+ increase, which in prostate cancer cells is blocked at high concentrations of H2O2. Upon depletion of intracellular Ca2+ stores, store-operated Ca2+ entry (SOCE) is activated. SOCE channels can be formed by hexameric Orai1 channels; however, Orai1 can form heteromultimers with its homolog, Orai3. Since the redox sensor of Orai1 (Cys-195) is absent in Orai3, the Orai1/Orai3 ratio in T cells determines the redox sensitivity of SOCE and cell viability. In prostate cancer cells, SOCE is blocked at lower concentrations of H2O2 compared with hPECs. An analysis of data from hPECs, LNCaP, DU145, and PC3, as well as previously published data from naive and effector TH cells, demonstrates a strong correlation between the Orai1/Orai3 ratio and the SOCE redox sensitivity and cell viability. Therefore, our data support the concept that store-operated Ca2+ channels in hPECs and prostate cancer cells are heteromeric Orai1/Orai3 channels with an increased Orai1/Orai3 ratio in cells derived from prostate cancer tumors. In addition, ROS-induced alterations in Ca2+ signaling in prostate cancer cells may contribute to the higher sensitivity of these cells to ROS.  相似文献   

7.
Breast cancer (BC) is the leading cancer in the world in terms of incidence and mortality in women. However, the mechanism by which BC develops remains largely unknown. The increase in cytosolic free Ca2+ can result in different physiological changes including cell growth and death. Orai isoforms are highly Ca2+ selective channels. In the present study, we analyzed Orai3 expression in normal and cancerous breast tissue samples, and its role in MCF‐7 BC and normal MCF‐10A mammary epithelial cell lines. We found that the expression of Orai3 mRNAs was higher in BC tissues and MCF‐7 cells than in normal tissues and MCF‐10A cells. Down‐regulation of Orai3 by siRNA inhibited MCF‐7 cell proliferation and arrested cell cycle at G1 phase. This phenomenon is associated with a reduction in CDKs 4/2 (cyclin‐dependent kinases) and cyclins E and D1 expression and an accumulation of p21Waf1/Cip1 (a cyclin‐dependent kinase inhibitor) and p53 (a tumor‐suppressing protein). Orai3 was also involved in MCF‐7 cell survival. Furthermore, Orai3 mediated Ca2+ entry and contributed to intracellular calcium concentration ([Ca2+]i). In MCF‐10A cells, silencing Orai3 failed to modify [Ca2+]i, cell proliferation, cell‐cycle progression, cyclins (D1, E), CDKs (4, 2), and p21Waf1/Cip1 expression. Our results provide strong evidence for a significant effect of Orai3 on BC cell growth in vitro and show that this effect is associated with the induction of cell cycle and apoptosis resistance. Our study highlights a possible role of Orai3 as therapeutic target in BC therapy. J. Cell. Physiol. 226: 542–551, 2011. © 2010 Wiley‐Liss, Inc.  相似文献   

8.
Ca2+ signals through store-operated Ca2+ (SOC) channels, activated by the depletion of Ca2+ from the endoplasmic reticulum, regulate various physiological events. Orai1 is the pore-forming subunit of the Ca2+ release-activated Ca2+ (CRAC) channel, the best characterized SOC channel. Orai1 is activated by stromal interaction molecule (STIM) 1, a Ca2+ sensor located in the endoplasmic reticulum. Orai1 and STIM1 are crucial for SOC channel activation, but the molecular mechanisms regulating Orai1 function are not fully understood. In this study, we demonstrate that protein kinase C (PKC) suppresses store-operated Ca2+ entry (SOCE) by phosphorylation of Orai1. PKC inhibitors and knockdown of PKCβ both resulted in increased Ca2+ influx. Orai1 is strongly phosphorylated by PKC in vitro and in vivo at N-terminal Ser-27 and Ser-30 residues. Consistent with these results, substitution of endogenous Orai1 with an Orai1 S27A/S30A mutant resulted in increased SOCE and CRAC channel currents. We propose that PKC suppresses SOCE and CRAC channel function by phosphorylation of Orai1 at N-terminal serine residues Ser-27 and Ser-30.  相似文献   

9.
Store-operated Ca2+ channels (SOCs) are voltage-independent Ca2+ channels activated upon depletion of the endoplasmic reticulum Ca2+ stores. Early studies suggest the contribution of such channels to Ca2+ homeostasis in insulin-secreting pancreatic β-cells. However, their composition and contribution to glucose-stimulated insulin secretion (GSIS) remains unclear. In this study, endoplasmic reticulum Ca2+ depletion triggered by acetylcholine (ACh) or thapsigargin stimulated the formation of a ternary complex composed of Orai1, TRPC1, and STIM1, the key proteins involved in the formation of SOCs. Ca2+ imaging further revealed that Orai1 and TRPC1 are required to form functional SOCs and that these channels are activated by STIM1 in response to thapsigargin or ACh. Pharmacological SOCs inhibition or dominant negative blockade of Orai1 or TRPC1 using the specific pore mutants Orai1-E106D and TRPC1-F562A impaired GSIS in rat β-cells and fully blocked the potentiating effect of ACh on secretion. In contrast, pharmacological or dominant negative blockade of TRPC3 had no effect on extracellular Ca2+ entry and GSIS. Finally, we observed that prolonged exposure to supraphysiological glucose concentration impaired SOCs function without altering the expression levels of STIM1, Orai1, and TRPC1. We conclude that Orai1 and TRPC1, which form SOCs regulated by STIM1, play a key role in the effect of ACh on GSIS, a process that may be impaired in type 2 diabetes.  相似文献   

10.
Mitochondria exert important control over plasma membrane (PM) Orai1 channels mediating store-operated Ca2+ entry (SOCE). Although the sensing of endoplasmic reticulum (ER) Ca2+ stores by STIM proteins and coupling to Orai1 channels is well understood, how mitochondria communicate with Orai1 channels to regulate SOCE activation remains elusive. Here, we reveal that SOCE is accompanied by a rise in cytosolic Na+ that is critical in activating the mitochondrial Na+/Ca2+ exchanger (NCLX) causing enhanced mitochondrial Na+ uptake and Ca2+ efflux. Omission of extracellular Na+ prevents the cytosolic Na+ rise, inhibits NCLX activity, and impairs SOCE and Orai1 channel current. We show further that SOCE activates a mitochondrial redox transient which is dependent on NCLX and is required for preventing Orai1 inactivation through oxidation of a critical cysteine (Cys195) in the third transmembrane helix of Orai1. We show that mitochondrial targeting of catalase is sufficient to rescue redox transients, SOCE, and Orai1 currents in NCLX-deficient cells. Our findings identify a hitherto unknown NCLX-mediated pathway that coordinates Na+ and Ca2+ signals to effect mitochondrial redox control over SOCE.  相似文献   

11.
Store-operated calcium (Ca2+) entry (SOCE) mediated by STIM/Orai proteins is a ubiquitous pathway that controls many important cell functions including proliferation and migration. STIM proteins are Ca2+ sensors in the endoplasmic reticulum and Orai proteins are channels expressed at the plasma membrane. The fall in endoplasmic reticulum Ca2+ causes translocation of STIM1 to subplasmalemmal puncta where they activate Orai1 channels that mediate the highly Ca2+-selective Ca2+ release-activated Ca2+ current (ICRAC). Whereas Orai1 has been clearly shown to encode SOCE channels in many cell types, the role of Orai2 and Orai3 in native SOCE pathways remains elusive. Here we analyzed SOCE in ten breast cell lines picked in an unbiased way. We used a combination of Ca2+ imaging, pharmacology, patch clamp electrophysiology, and molecular knockdown to show that native SOCE and ICRAC in estrogen receptor-positive (ER+) breast cancer cell lines are mediated by STIM1/2 and Orai3 while estrogen receptor-negative (ER) breast cancer cells use the canonical STIM1/Orai1 pathway. The ER+ breast cancer cells represent the first example where the native SOCE pathway and ICRAC are mediated by Orai3. Future studies implicating Orai3 in ER+ breast cancer progression might establish Orai3 as a selective target in therapy of ER+ breast tumors.  相似文献   

12.
Animal steroid hormones stimulate extracellular Ca2+ influx into cells; however, the mechanism remains unclear. In this study, we determined that the Ca2+ influx induced by steroid hormone 20-hydroxyecdysone (20E) is mediated by the calcium release-activated calcium channel modulator 1 (CRACM1/Orai1). The Orai1 mRNA is highly expressed during midgut programmed cell death in the lepidopteran insect Helicoverpa armigera. 20E upregulated the expression of Orai1 in H. armigera larvae and in an epidermal cell line (HaEpi). Knockdown of Orai1 in HaEpi cells blocked 20E-induced Ca2+ influx, and the inhibitor of inositol 1, 4, 5-trisphosphate receptor (IP3R) Xestospongin (XeC) blocked 20E-induced Ca2+ influx, suggesting that 20E, via Orai1, induces stored-operated Ca2+ influx. Orai1 interacts with stromal interaction molecule 1(Stim1) to exert its function in 20E-induced Ca2+ influx. 20E promotes Orai1 aggregation through G-protein-coupled receptors, phospholipase C gamma 1, and Stim1. Knockdown of Orai1 in the HaEpi cell line repressed apoptosis and maintained autophagy under 20E regulation. Knockdown of Orai1 in larvae delayed pupation, repressed midgut apoptosis, maintained the midgut in an autophagic state, and repressed 20E-pathway gene expression. These results revealed that steroid hormone 20E, via Orai1, induces Ca2+ influx to promote the transition of midgut from autophagy to apoptosis.  相似文献   

13.
We have studied in HeLa cells the molecular nature of the 2-APB induced ER Ca2+ leak using synthetic Ca2+ indicators that report changes in both the cytoplasmic ([Ca2+]i) and the luminal ER ([Ca2+]ER) Ca2+ concentrations. We have tested the hypothesis that Orai channels participate in the 2-APB-induced ER Ca2+ leak that was characterized in the companion paper. The expression of the dominant negative Orai1 E106A mutant, which has been reported to block the activity of all three types of Orai channels, inhibited the effect of 2-APB on the [Ca2+]ER but did not decrease the ER Ca2+ leak after thapsigargin (TG). Orai3 channel, but neither Orai1 nor Orai2, colocalizes with expressed IP3R and only Orai3 channel supported the 2-APB-induced ER Ca2+ leak, while Orai1 and Orai2 inhibited this type of ER Ca2+ leak. Decreasing the expression of Orai3 inhibited the 2-APB-induced ER Ca2+ leak but did not modify the ER Ca2+ leak revealed by inhibition of SERCA pumps with TG. However, reducing the expression of Orai3 channel resulted in larger [Ca2+]i response after TG but only when the ER store had been overloaded with Ca2+ by eliminating the acidic internal Ca2+ store with bafilomycin. These data suggest that Orai3 channel does not participate in the TG-revealed ER Ca2+ leak but forms an ER Ca2+ leak channel that is limiting the overloading with Ca2+ of the ER store.  相似文献   

14.
Calcium (Ca2+) is a ubiquitous second messenger that regulates a plethora of physiological functions. Deregulation of calcium homeostasis has been reported in a wide variety of pathological conditions including cardiovascular disorders, cancer and neurodegenerative diseases. One of the most ubiquitous pathways involved in regulated Ca2+ influx into cells is the store-operated Ca2+ entry (SOCE) pathway. In 2006, Orai1 was identified as the channel protein that mediates SOCE in immune cells. Orai1 has two mammalian homologs, Orai2 and Orai3. Although Orai1 has been the most widely studied Orai isoform, Orai3 has recently received significant attention. Under native conditions, Orai3 was demonstrated to be an important component of store-independent arachidonate-regulated Ca2+ (ARC) entry in HEK293 cells, and more recently of a store-independent leukotrieneC4-regulated Ca2+ (LRC) entry pathway in vascular smooth muscle cells. Recent studies have shown upregulation of Orai3 in estrogen receptor-expressing breast cancers and a critical role for Orai3 in breast cancer development in immune-compromised mice. Orai3 upregulation was also shown to contribute to vascular smooth muscle remodeling and neointimal hyperplasia caused by vascular injury. Furthermore, Orai3 has been shown to contribute to proliferation of effector T-lymphocytes under oxidative stress. In this review, we will discuss the role of Orai3 in reported pathophysiological conditions and will contribute ideas on the potential role of Orai3 in native Ca2+ signaling pathways and human disease.  相似文献   

15.
There is a body of evidence suggesting that Ca2+ handling proteins assemble into signaling complexes required for a fine regulation of Ca2+ signals, events that regulate a variety of critical cellular processes. Canonical transient receptor potential (TRPC) and Orai proteins have both been proposed to form Ca2+-permeable channels mediating Ca2+ entry upon agonist stimulation. A number of studies have demonstrated that inositol 1,4,5-trisphosphate receptors (IP3Rs) interact with plasma membrane TRPC channels; however, at present there is no evidence supporting the interaction between Orai proteins and IP3Rs. Here we report that treatment with thapsigargin or cellular agonists results in association of Orai1 with types I and II IP3Rs. In addition, we have found that TRPC3, RACK1 (receptor for activated protein kinase C-1), and STIM1 (stromal interaction molecule 1) interact with Orai1 upon stimulation with agonists. TRPC3 expression silencing prevented both the interaction of Orai1 with TRPC3 and, more interestingly, the association of Orai1 with the type I IP3R, but not with the type II IP3R, thus suggesting that TRPC3 selectively mediates interaction between Orai1 and type I IP3R. In addition, TRPC3 expression silencing attenuated ATP- and CCh-stimulated interaction between RACK1 and the type I IP3R, as well as Ca2+ release and entry. In conclusion, our results indicate that agonist stimulation results in the formation of an Orai1-STIM1-TRPC3-RACK1-type I IP3R complex, where TRPC3 plays a central role. This Ca2+ signaling complex might be important for both agonist-induced Ca2+ release and entry.  相似文献   

16.
The intracellular Ca2+ regulation has been implicated in tumorigenesis and tumor progression. Notably, store-operated Ca2+ entry (SOCE) is a major Ca2+ entry mechanism in non-excitable cells, being involved in cell proliferation and migration in several types of cancer. However, the expression and biological role of SOCE have not been investigated in clear cell renal cell carcinoma (ccRCC). Here, we demonstrate that Orai1 and STIM1, not Orai3, are crucial components of SOCE in the progression of ccRCC. The expression levels of Orai1 in tumor tissues were significantly higher than those in the adjacent normal parenchymal tissues. In addition, native SOCE was blunted by inhibiting SOCE or by silencing Orai1 and STIM1. Pharmacological blockade or knockdown of Orai1 or STIM1 also significantly inhibited RCC cell migration and proliferative capability. Taken together, Orai1 is highly expressed in ccRCC tissues illuminating that Orai1-mediated SOCE may play an important role in ccRCC development. Indeed, Orai1 and STIM1 constitute a native SOCE pathway in ccRCC by promoting cell proliferation and migration.  相似文献   

17.
18.
The outcome of a malignant disease depends on the efficacy of the immune system to destroy cancer cells. Key steps in this process, for example the generation of a proper Ca2+ signal induced by recognition of a specific antigen, are regulated by various ion channel including voltage-gated Kv1.3 and Ca2+-activated KCa3.1 K+ channels, and the interplay between Orai and STIM to produce the Ca2+-release-activated Ca2+ (CRAC) current required for T-cell proliferation and function. Understanding the immune cell subset-specific expression of ion channels along with their particular function in a given cell type, and the role of cancer tissue-dependent factors in the regulation of operation of these ion channels are emerging questions to be addressed in the fight against cancer disease. Answering these questions might lead to a better understanding of the immunosuppression phenomenon in cancer tissue and the development of drugs aimed at skewing the distribution of immune cell types towards killing of the tumour cells.  相似文献   

19.
20.
Colon cancer cells, like other types of cancer cells, undergo the remodeling of the intracellular Ca2+ homeostasis that contributes to cancer cell hallmarks including enhanced cell proliferation, migration, and survival. Colon cancer cells display enhanced store-operated Ca2+ entry (SOCE) compared with their non-cancer counterparts. Colon cancer cells display an abnormal expression of SOCE molecular players including Orai1 and TRPC1 channels, and the stromal interacting molecule (STIM) 1 and 2. Interestingly, upregulation of Orai1 and TRPC1 channels and their contribution to SOCE are associated with cancer malignancy in colon cancer cells. In a specific cellular model of colon cancer, whereas in non-cancer colon cells SOCE is composed of the Ca2+ release activated (CRAC) currents, in colon cancer cells SOCE is composed of CRAC- and cationic, non-selective store operated (SOC) currents. Former SOCs are mediated by TRPC1 channels. Moreover, colon cancer cells also display dysregulation of the expression of 1,4,5-triphosphate receptors (IP3R) that could contribute to the enhanced SOCE. Another important factor underlying the enhanced SOCE is the differential mitochondrial modulation of the CRAC and SOC currents in non-cancer and colon cancer cells. In colon cancer cells, mitochondria take up more Ca2+ that prevent the Ca2+-dependent inactivation of the SOCs, leading to sustained Ca2+ entry. Notably, the inhibition of SOCE in cancer colon cells abolishes their cancer hallmarks. Robust evidence has shown the efficiency of non-steroidal anti-inflammatory drugs (NSAIDs) and difluoromethylornithine (DFMO) to reverse the enhanced cell proliferation, migration, and apoptosis resistance of cancer cells. In colon cancer cells, both NSAIDs and DFMO decrease SOCE, but they target different molecular components of SOCE. NSAIDs decrease the Ca2+ uptake by mitochondria, limiting their ability to prevent the Ca2+-dependent inactivation of the SOCs that underlie SOCE. On the other hand, DFMO inhibits the expression of TRPC1 channels in colon cancer cells, eliminating their contribution to SOCE. The identification of players of SOCE in colon cancer cells may help to better understand the remodeling of the Ca2+ homeostasis in cancer. Importantly, the use of different pharmacological tools that target different SOCE molecular players in colon cancer cells may play a pivotal role in designing better chemoprevention strategies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号