首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Previous studies using a murine model of coinhalation of Legionella pneumophila and Hartmannella vermiformis have shown a significantly enhanced intrapulmonary growth of L. pneumophila in comparison to inhalation of legionellae alone (J. Brieland, M. McClain, L. Heath, C. Chrisp, G. Huffnagle, M. LeGendre, M. Hurley, J. Fantone, and C. Engleberg, Infect. Immun. 64:2449-2456, 1996). In this study, we introduce an in vitro coculture model of legionellae, Mono Mac 6 cells (MM6) and Acanthamoeba castellanii, using a cell culture chamber system which separates both cell types by a microporous polycarbonate membrane impervious to bacteria, amoebae, and human cells. Whereas L. pneumophila has shown a maximal 4-log-unit multiplication within MM6, which could not be further increased by coculture with Acanthamoeba castellanii, significantly enhanced replication of L. gormanii, L. micdadei, L. steigerwaltii, L. longbeachae, and L. dumoffii was seen after coculture with amoebae. This effect was seen only with uninfected amoebae, not with Legionella-infected amoebae. The supporting effect for intracellular multiplication in MM6 could be reproduced in part by addition of a cell-free coculture supernatant obtained from a coincubation experiment with uninfected A. castellanii and Legionella-infected MM6, suggesting that amoeba-derived effector molecules are involved in this phenomenon. This coculture model allows investigations of molecular and biochemical mechanisms which are responsible for the enhancement of intracellular multiplication of legionellae in monocytic cells after interaction with amoebae.  相似文献   

2.
O-antigen-proficient and defined O-antigen-deficient mutants of Salmonella enterica serovar Typhimurium were compared for intracellular replication and induction of nitric oxide (NO) expression in the murine macrophage-like cell line J774-A.1. While O-antigen-proficient bacteria replicated and provoked induction of host cell NO synthesis to expected levels, DeltawaaK, DeltawaaL and DeltawaaKL mutants displayed increased growth yields and induction of significantly lower levels of macrophage NO production. The downregulation of NO production did not involve suppression of inducible nitric oxide synthase (iNOS) expression, yet it depended on bacterial protein synthesis during infection of J774-A.1 cells. In contrast, when inhibitor substances were used to block iNOS activity, the growth yield of the wild type significantly exceeded that of the DeltawaaL mutant bacteria. Inactivation of the Salmonella pathogenicity island 1 (SPI1)-associated bacterial type III secretion system did not affect intracellular replication in the wild type or the DeltawaaL background. However, inactivation of the SPI2-associated type III secretion strongly abrogated bacterial intracellular replication, and the DeltawaaLDeltassaV double mutant lost the ability to suppress NO expression. The results imply that a lack of O-antigen may increase bacterial fitness in J774-A.1 cells through suppression of iNOS activity, and that the O-antigen may protect against NO-independent restriction of bacterial intracellular replication.  相似文献   

3.
Previous studies using a murine model of coinhalation of Legionella pneumophila and Hartmannella vermiformis have shown a significantly enhanced intrapulmonary growth of L. pneumophila in comparison to inhalation of legionellae alone (J. Brieland, M. McClain, L. Heath, C. Chrisp, G. Huffnagle, M. LeGendre, M. Hurley, J. Fantone, and C. Engleberg, Infect. Immun. 64:2449–2456, 1996). In this study, we introduce an in vitro coculture model of legionellae, Mono Mac 6 cells (MM6) and Acanthamoeba castellanii, using a cell culture chamber system which separates both cell types by a microporous polycarbonate membrane impervious to bacteria, amoebae, and human cells. Whereas L. pneumophila has shown a maximal 4-log-unit multiplication within MM6, which could not be further increased by coculture with Acanthamoeba castellanii, significantly enhanced replication of L. gormanii, L. micdadei, L. steigerwaltii, L. longbeachae, and L. dumoffii was seen after coculture with amoebae. This effect was seen only with uninfected amoebae, not with Legionella-infected amoebae. The supporting effect for intracellular multiplication in MM6 could be reproduced in part by addition of a cell-free coculture supernatant obtained from a coincubation experiment with uninfected A. castellanii and Legionella-infected MM6, suggesting that amoeba-derived effector molecules are involved in this phenomenon. This coculture model allows investigations of molecular and biochemical mechanisms which are responsible for the enhancement of intracellular multiplication of legionellae in monocytic cells after interaction with amoebae.  相似文献   

4.
Legionella pneumophila is the etiologic agent of Legionnaires' disease. This bacterium contains a single monopolar flagellum, of which the FlaA subunit is a major protein constituent. The murine macrophage resistance against this bacterium is controlled by the Birc1e/Naip5 gene, which belongs to the NOD family. We evaluated the intracellular growth of the flaA mutant bacteria as well as another aflagellated fliA mutant, within bone marrow-derived macrophages from mice with an intact (C57BL/6, BALB/c) or mutated (A/J) Birc1e/Naip5 gene. The flaA mutant L. pneumophila multiplied within C57BL/6 and BALB/c macrophages while the wild-type strain did not. Cell viability was not impaired until 3 days after infection when the flaA mutant bacteria replicated 10(2-3)-fold in macrophages, implying that L. pneumophila inhibited host cell death during the early phase of intracellular replication. The addition of recombinant interferon-gamma (IFN-gamma) to the infected macrophages restricted replication of the flaA mutant within macrophages; these treated cells also showed enhanced nitric oxide production, although inhibition of nitric oxide production did not affect the IFN-gamma induced inhibition of Legionella replication. These findings suggested that IFN-gamma activated macrophages to restrict the intracellular growth of the L. pneumophila flaA mutant by a NO independent pathway.  相似文献   

5.
The infectious agent of Legionnaires' disease, Legionella (L) pneumophila, multiplies intracellularly in eukaryotic cells. This study has been performed to explore the nutrient requirements of L. pneumophila during intracellular replication. In human monocytes, bacterial replication rate was reduced by 76% in defined medium lacking L-cysteine, L-glutamine or L-serine. SLC1A5 (hATB(0,+)), a neutral amino acid transporter, was upregulated in the host cells after infection with L. pneumophila. Inhibition of SLC1A5 by BCH, a competitive inhibitor of amino acid uptake as well as siRNA silencing of the slc1a5 gene blocked intracellular multiplication of L. pneumophila without compromising viability of host cells. These observations suggest that replication of L. pneumophila depends on the function of host cell SLC1A5.  相似文献   

6.
Several murine and human monocytic cell lines and monocyte-derived macrophages (MDM) from healthy volunteers were studied to compare their production of nitric oxide (NO) and induction of iNOS following endotoxin treatment. Although the human cells were sensitive to endotoxin and responded well by producing TNF-alpha and matrix metalloproteases (MMP), there was no induction of iNOS expression or NO production by any of these cells. Murine cells, however, produced large amounts of NO and expressed iNOS following similar endotoxin stimulation. We investigated the expression of PKC isotypes in all human and murine cell lines as well as in MDM, and found that the human cells lacked PKC-eta while the murine counterparts lacked PKC-beta1. Subsequently, human cells that were transfected with PKC-eta were found to make large quantities of NO following endotoxin exposure, an observation not seen in untransfected cells. We propose that PKC-eta is essential for the development of the iNOS positive phenotype in human monocytic cells, and may be responsible for the development of a number of inflammatory related conditions. As such it may be a suitable target for therapeutic intervention.  相似文献   

7.
We have previously shown that human umbilical vein endothelial cells (HUVEC) can be activated by IFNgamma plus TNFalpha to kill intracellular (IC) Pseudomonas aeruginosa through production of reactive oxygen intermediate, but the cumulative effects of cytokine activation and bacterial infection on host cells has not been extensively addressed. In this study we investigated the fate of IFNgamma plus TNFalpha-activated HUVEC that have harboured IC bacteria for up to 24 h. At 10 h, the endothelial cell killing of P. aeruginosa isolates exceeded 90%. IC bacteria enhanced the expression of inducible nitric oxide synthase (iNOS) and induced overproduction of NO and superoxide by infected HUVEC. P. aeruginosa IC infection also induced a slight decrease in the cellular level of reduced glutathione (GSH). Overproduction of NO correlated with a marked peroxidation of plasma membrane lipids and decline in HUVEC viability. Treatment of cells with the antioxidant alpha-lipoic acid significantly increased the survival of infected cells. Our data suggest that with the failure of adequate scavenger mechanisms, oxidant radicals overproduced in response to bacterial infection were highly toxic to host cells. Therefore, instead of contributing to defence against infectious agents, the upregulation of free radicals production by endothelial cells in response to cytokine activation would be detrimental to the host.  相似文献   

8.
Macrophages are suspected to play a major role in human immunodeficiency virus (HIV) infection pathogenesis, not only by their contribution to virus dissemination and persistence in the host but also through the dysregulation of immune functions. The production of NO, a highly reactive free radical, is thought to act as an important component of the host immune response in several viral infections. The aim of this study was to evaluate the effects of HIV type 1 (HIV-1) Ba-L replication on inducible nitric oxide synthase (iNOS) mRNA expression in primary cultures of human monocyte-derived macrophages (MDM) and then examine the effects of NO production on the level of HIV-1 replication. Significant induction of the iNOS gene was observed in cultured MDM concomitantly with the peak of virus replication. However, this induction was not accompanied by a measurable production of NO, suggesting a weak synthesis of NO. Surprisingly, exposure to low concentrations of a NO-generating compound (sodium nitroprusside) and L-arginine, the natural substrate of iNOS, results in a significant increase in HIV replication. Accordingly, reduction of L-arginine bioavailability after addition of arginase to the medium significantly reduced HIV replication. The specific involvement of NO was further demonstrated by a dose-dependent inhibition of viral replication that was observed in infected macrophages exposed to N(G)-monomethyl L-arginine and N(G)-nitro-L-arginine methyl ester (L-NAME), two inhibitors of the iNOS. Moreover, an excess of L-arginine reversed the addition of L-NAME, confirming that an arginine-dependent mechanism is involved. Finally, inhibitory effects of hemoglobin which can trap free NO in culture supernatants and in biological fluids in vivo confirmed that endogenously produced NO could interfere with HIV replication in human macrophages.  相似文献   

9.
To examine the potential and strategies of the facultative intracellular pathogen Salmonella typhimurium to increase its fitness in host cells, we applied a selection that enriches for mutants with increased bacterial growth yields in murine J774-A.1 macrophage-like cells. The selection, which was based on intracellular growth competition, rapidly yielded isolates that out-competed the wild-type strain during intracellular growth. J774-A.1 cells responded to challenge with S. typhimurium by mounting an inducible nitric oxide synthase (iNOS) mRNA and protein expression and a concomitant nitric oxide (NO) production. Inhibition of NO production with the use of the competitive inhibitor N-monomethyl-L-arginine (NMMA) resulted in a 20-fold increase in bacterial growth yield, suggesting that the NO response prevented bacterial intracellular growth. In accordance with this observation, five out of the nine growth advantage mutants isolated inhibited production of NO from J774-A.1 cells, despite an induction of iNOS mRNA and iNOS protein. Accompanying bacterial phenotypes included alterations in lipopolysaccharide structure and in the profiles of proteins secreted by invasion-competent bacteria. The results indicate that S. typhimurium has the ability to mutate in several different ways to increase its host fitness and that inhibition of iNOS activity may be a major adaptation.  相似文献   

10.
11.
NAIP and Ipaf control Legionella pneumophila replication in human cells   总被引:2,自引:0,他引:2  
In mice, different alleles of the mNAIP5 (murine neuronal apoptosis inhibitory protein-5)/mBirc1e gene determine whether macrophages restrict or support intracellular replication of Legionella pneumophila, and whether a mouse is resistant or (moderately) susceptible to Legionella infection. In the resistant mice strains, the nucleotide-binding oligomerization domain (Nod)-like receptor (NLR) family member mNAIP5/mBirc1e, as well as the NLR protein mIpaf (murine ICE protease-activating factor), are involved in recognition of Legionella flagellin and in restriction of bacterial replication. Human macrophages and lung epithelial cells support L. pneumophila growth, and humans can develop severe pneumonia (Legionnaires disease) after Legionella infection. The role of human orthologs to mNAIP5/mBirc1e and mIpaf in this bacterial infection has not been elucidated. Herein we demonstrate that flagellin-deficient L. pneumophila replicate more efficiently in human THP-1 macrophages, primary monocyte-derived macrophages, and alveolar macrophages, and in A549 lung epithelial cells compared with wild-type bacteria. Additionally, we note expression of the mNAIP5 ortholog hNAIP in all cell types examined, and expression of hIpaf in human macrophages. Gene silencing of hNAIP or hIpaf in macrophages or of hNAIP in lung epithelial cells leads to an enhanced bacterial growth, and overexpression of both molecules strongly reduces Legionella replication. In contrast to experiments with wild-type L. pneumophila, hNAIP or hIpaf knock-down affects the (enhanced) replication of flagellin-deficient Legionella only marginally. In conclusion, hNAIP and hIpaf mediate innate intracellular defense against flagellated Legionella in human cells.  相似文献   

12.
To investigate the biological activity of epithelial cells in view of host defense, we analyzed the mRNA expression of inducible NOS (iNOS) as well as NO production by human gingival epithelial cells (HGEC) stimulated with IL-15. RT-PCR analysis revealed that HGEC expressed IL-15 receptor alpha-chain mRNA. In addition, stimulation with IL-15 enhanced iNOS expression by HGEC through an increase of both mRNA and protein levels. Moreover, IL-15 up-regulated the production of NO(2)(-)/NO(3)(-), a NO-derived stable end product, from HGEC. The enhanced NO production by IL-15 was inhibited by AMT, an iNOS-specific inhibitor. These results suggest that IL-15 is a potent regulator of iNOS expression by HGEC and involved in innate immunity in the mucosal epithelium.  相似文献   

13.
14.
Legionella pneumophila is an intracellular bacterium that causes an acute form of pneumonia called Legionnaires' disease. After infection of human macrophages, the Legionella-containing phagosome (LCP) avoids fusion with the lysosome allowing intracellular replication of the bacterium. In macrophages derived from most mouse strains, the LCP is delivered to the lysosome resulting in Legionella degradation and restricted bacterial growth. Mouse macrophages lacking the NLR protein Ipaf or its downstream effector caspase-1 are permissive to intracellular Legionella replication. However, the mechanism by which Ipaf restricts Legionella replication is not well understood. Here we demonstrate that the presence of flagellin and a competent type IV secretion system are critical for Legionella to activate caspase-1 in macrophages. Activation of caspase-1 in response to Legionella infection also required host Ipaf, but not TLR5. In the absence of Ipaf or caspase-1 activation, the LCP acquired endoplasmic reticulum-derived vesicles, avoided fusion with the lysosome, and allowed Legionella replication. Accordingly a Legionella mutant lacking flagellin did not activate caspase-1, avoided degradation, and replicated in wild-type macrophages. The regulation of phagosome maturation by Ipaf occurred within 2 h after infection and was independent of macrophage cell death. In vivo studies confirmed that flagellin and Ipaf play an important role in the control of Legionella clearance. These results reveal that Ipaf restricts Legionella replication through the regulation of phagosome maturation, providing a novel function for NLR proteins in host defense against an intracellular bacterium.  相似文献   

15.
Survival and distribution of legionellae in the environment are assumed to be associated with their multiplication in amoebae, whereas the ability to multiply in macrophages is usually regarded to correspond to pathogenicity. Since most investigations focused on Legionella pneumophila serogroup 1, we examined the intracellular multiplication of different Legionella species in Mono Mac 6 cells, which express phenotypic and functional features of mature monocytes, and in Acanthamoeba castellanii, an environmental host of Legionella spp. According to the bacterial doubling time in Mono Mac 6 cells and in A. castellanii, seven clusters of legionellae could be defined which could be split further with regard to finer differences. L. longbeachae serogroup 1, L. jordanis, and L. anisa were not able to multiply in either A. castellanii or Mono Mac 6 cells and are members of the first cluster. L. dumoffi did not multiply in Mono Mac 6 cells but showed a delayed multiplication in A. castellanii 72 h after infection and is the only member of the second cluster. L. steigerwaltii, L. gormanii, L. pneumophila serogroup 6 ATCC 33215, L. bozemanii, and L. micdadei showed a stable bacterial count in Mono Mac 6 cells after infection but a decreasing count in amoebae. They can be regarded as members of the third cluster. As the only member of the fourth cluster, L. oakridgensis was able to multiply slight in Mono Mac 6 cells but was killed within amoebae. A strain of L. pneumophila serogroup 1 Philadelphia obtained after 30 passages on SMH agar and a strain of L. pneumophila serogroup 1 Philadelphia obtained after intraperitoneal growth in guinea pigs are members of the fifth cluster, which showed multiplication in Mono Mac 6 cells but a decrease of bacterial counts in A. castellanii. The sixth cluster is characterized by intracellular multiplication in both host cell systems and consists of several strains of L. pneumophila serogroup 1 Philadelphia, a strain of L. pneumophila serogroup 2, and a fresh clinical isolate of L. pneumophila serogroup 6. Members of the seventh cluster are a strain of agar-adapted L. pneumophila serogroup 1 Bellingham and a strain of L. pneumophila serogroup 1 Bellingham which was passaged fewer than three times on BCYE alpha agar after inoculation and intraperitoneal growth in guinea pigs. In comparison to members of the sixth cluster, both strains showed a slightly enhanced multiplication in Mono Mac 6 cells but a reduced multiplication in amoebae. From our investigations, we could demonstrate a correlation between prevalence of a given Legionella species and their intracellular multiplication in Mono Mac 6 cells. Multiplication of members of the genus Legionella in A. castellanii seems to be dependent on mechanisms different from those in monocytes.  相似文献   

16.
17.
Balamuthia mandrillaris is a free-living ameba and an opportunistic agent of granulomatous encephalitis in humans and other mammalian species. Other free-living amebas, such as Acanthamoeba and Hartmannella, can provide a niche for intracellular survival of bacteria, including the causative agent of Legionnaires' disease, Legionella pneumophila. Infection of amebas by L. pneumophila enhances the bacterial infectivity for mammalian cells and lung tissues. Likewise, the pathogenicity of amebas may be enhanced when they host bacteria. So far, the colonization of B. mandrillaris by bacteria has not been convincingly shown. In this study, we investigated whether this ameba could host L. pneumophila bacteria. Our experiments showed that L. pneumophila could initiate uptake by B. mandrillaris and could replicate within the ameba about 4 to 5 log cycles from 24 to 72 h after infection. On the other hand, a dotA mutant, known to be unable to propagate in Acanthamoeba castellanii, also did not replicate within B. mandrillaris. Approaching completion of the intracellular cycle, L. pneumophila wild-type bacteria were able to destroy their ameboid hosts. Observations by light microscopy paralleled our quantitative data and revealed the rounding, collapse, clumping, and complete destruction of the infected amebas. Electron microscopic studies unveiled the replication of the bacteria in a compartment surrounded by a structure resembling rough endoplasmic reticulum. The course of intracellular infection, the degree of bacterial multiplication, and the ultrastructural features of a L. pneumophila-infected B. mandrillaris ameba resembled those described for other amebas hosting Legionella bacteria. We hence speculate that B. mandrillaris might serve as a host for bacteria in its natural environment.  相似文献   

18.
Legionella pneumophila, the causative agent of Legionnaires' disease, is able to survive and multiply efficiently in a variety of mammalian cells. By using in vitro assays, the uptake of L. pneumophila into monocytes has shown to be mediated, at least in part, through attachment of complement-coated bacteria to complement receptors, but complement-independent phagocytosis could also be demonstrated. Since complement levels in the human lung are normally low, the role of complement-dependent phagocytosis in the pathogenesis of Legionnaires' disease is doubtful. However, the contribution of other potential phagocytosis-related host cell surface molecules to the phagocytosis of L. pneumophila has never been investigated. We therefore analyzed the role of complement receptors 1 (CD35) and 3 (CD11b/18), the lipopolysaccharide (LPS) receptor (CD14), the beta(1)-integrin chain of the fibronectin receptor (CD29), the intercellular adhesion molecule 1 (ICAM-1, CD54) and the transferrin receptor (CD71) in the complement-independent uptake of L. pneumophila. To exclude any influence of culture conditions onto phagocytosis rates, we compared a fresh clinical isolate with an agar-adapted isolate of L. pneumophila. In addition, we used three different host cell types (MM6, HeLa and Jurkat cells) expressing different rates of complement receptors. We could show that both strains of L. pneumophila were phagocytized by the three host cell lines to the same extent, but intracellular multiplication was only found in MM6 and, although to a much lesser degree, in Jurkat cells. Preincubation of MM6 cells with monoclonal antibodies directed against the above cited phagocytosis-related receptors did not result in inhibition of L. pneumophila uptake. We therefore conclude that typical phagocytosis-related cell surface receptors are not involved in the complement-independent phagocytosis of L. pneumophila.  相似文献   

19.
In neurodegenerative disorders, activated glial cells overproduce nitric oxide (NO), which causes neurotoxicity. Inducible NO synthase (iNOS) is a potential therapeutic target in neurodegenerative diseases. Here, we examined the action of fucoidan, a high-molecular-weight sulfated polysaccharide, on tumor necrosis factor-α (TNF-α)- and interferon-γ (IFN-γ)-induced NO production in C6 glioma cells. Fucoidan suppressed TNF-α- and IFN-γ-induced NO production and iNOS expression. In addition, fucoidan inhibited TNF-α- and IFN-γ-induced AP-1, IRF-1, JAK/STAT and p38 mitogen-activated protein kinase (MAPK) activation and induced scavenger receptor B1 (SR-B1) expression. Blocking of SR-B1 did not reverse the inhibitory effect of fucoidan on TNF-α- and IFN-γ- stimulated NO production. However, inhibition of SR-B1 expression by siRNA increased iNOS expression and p38 phosphorylation in TNF-α- and IFN-γ-stimulated C6 cells.Overall, p38 MAPK, AP-1, JAK/STAT and IRF-1 play an important role in the inhibitory effect of fucoidan on TNF-α- and IFN-γ-stimulated NO production, and intracellular SR-B1 expression may be related to the inhibition of iNOS expression by fucoidan via regulation of p38 phosphorylation. The present results also suggest that fucoidan could be a potential therapeutic agent for treating inflammatory-related neuronal injury in neurological disorders.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号