首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 26 毫秒
1.
2.
Recombination between two different deletion alleles of a gene (neo) for neomycin and kanamycin resistance was studied in an Escherichia coli sbcA- recB-C- strain. The two homologous regions were in an inverted orientation on the same plasmid molecule. Kanamycin-resistant plasmids were selected and analyzed. The rate of recombination to form kanamycin-resistant plasmids was decreased by mutations in the recE, recF and recJ genes, but was not decreased by a mutation in the recA gene. It was found that these plasmids often possessed one wild-type kanamycin-resistant allele (neo+) while the other neo allele was still in its original (deletion) form. Among kanamycin-resistant plasmids with one wild-type and one parental allele it was often found that the region between the inverted repeats had been flipped (turned around) with respect to sites outside the inverted repeats. These results were interpreted as follows. Gene conversion, analogous to gene conversion in eukaryotic meiosis, is responsible for a unidirectional transfer of information from one neo deletion allele to the other. The flipping of the region between the inverted repeats is interpreted as analogous to the crossing over associated with gene conversion in eukaryotic meiosis. In contrast with a rec+ strain, these products cannot be explained by two rounds of reciprocal crossing over involving a dimeric form as an intermediate. In the accompanying paper we present evidence that gene conversion by double-strand gap repair takes place in the same E. coli strain.  相似文献   

3.
The sodium channel gene Scn8a encodes the channel NaV1.6, which is widely distributed in the central and peripheral nervous system. NaV1.6 is the major channel at the nodes of Ranvier in myelinated axons. Mutant alleles of mouse Scn8a result in neurological disorders including ataxia, tremor, paralysis, and dystonia. We generated a floxed allele of Scn8a by inserting loxP sites around the first coding exon. The initial targeted allele containing the neo-cassette was a severe hypomorph. In vivo deletion of the neo-cassette by Flp recombinase produced a floxed allele that generates normal expression of NaV1.6 protein. Ubiquitous deletion of the floxed exon by Cre recombinase in ZP3-Cre transgenic mice produced the Scn8a(del) allele. The null phenotype of Scn8a(del) homozygotes confirms the in vivo inactivation of Scn8a. Conditional inactivation of the floxed allele will make it possible to circumvent the lethality that results from complete loss of Scn8a in order to investigate the physiologic role of NaV1.6 in subpopulations of neurons.  相似文献   

4.
Autism is caused, in part, by inheritance of multiple interacting susceptibility alleles. To identify these inherited factors, linkage analysis of multiplex families is being performed on a sample of 105 families with two or more affected sibs. Segregation patterns of short tandem repeat polymorphic markers from four chromosomes revealed null alleles at four marker sites in 12 families that were the result of deletions ranging in size from 5 to >260 kb. In one family, a deletion at marker D7S630 was complex, with two segments deleted (37 kb and 18 kb) and two retained (2,836 bp and 38 bp). Three families had deletions at D7S517, with each family having a different deletion (96 kb, 183 kb, and >69 kb). Another three families had deletions at D8S264, again with each family having a different deletion, ranging in size from <5.9 kb to >260 kb. At a fourth marker, D8S272, a 192-kb deletion was found in five families. Unrelated subjects and additional families without autism were screened for deletions at these four sites. Families screened included 40 families from Centre d'Etude du Polymorphisme Humaine and 28 families affected with learning disabilities. Unrelated samples were 299 elderly control subjects, 121 younger control subjects, and 248 subjects with Alzheimer disease. The deletion allele at D8S272 was found in all populations screened. For the other three sites, no additional deletions were identified in any of the groups without autism. Thus, these deletions appear to be specific to autism kindreds and are potential autism-susceptibility alleles. An alternative hypothesis is that autism-susceptibility alleles elsewhere cause the deletions detected here, possibly by inducing errors during meiosis.  相似文献   

5.
The recessive visible faswb allele in Drosophila is an interband deletion between salivary band 3C5, 6 and 7. Heterozygosity for the deletion does not suppress recombination between faswb and mutant sites at Notch adjacent to it.--Df(1)w67k30, deficient for salivary bands 3C2 to 6, is the left of faswb. By crossing over within the homologous bit of interband retained in w67k30 and faswb, the two deficiencies can be linked. Cytologically, 3C7, "fused" to 3C5,6 in faswb, becomes "fused" to 3C1 when the two are coupled. In the double deletion, the recessive visible phenotype of the faswb "allele* is suppressed. Both w67k30 and faswb can be recovered by uncoupling the two deficiencies.--The data suggest that the mutant faswb does not represent a lesion at Notch; the entire gene or locus seems to be present. The interband deletion in faswb has secondarily moved an intact Notch locus to a foreign environment that interferes with its normal function. When faswb is linked to w67k30, the interference is eliminated and normal Notch functions resume.--The position of Notch on the salivary gland chromosome is reviewed in relation to the information obtained in these experiments.  相似文献   

6.
We have constructed a convenient new vector, YEp-DE, for the construction of gene libraries and the expression of heterologous genes in Saccharomyces cerevisiae. The vector contains the yeast LEU2 gene, the 2 mu origin of replication, and a region from pUC18 that includes the ampr gene, the Escherichia coli origin of replication (ori), and the LacZ gene with multiple cloning sites. Five sites (Sac1, Sma1, BamH1, Sal1, Sph1) in this region are unique. This vector has advantages over similar yeast-E. coli shuttle vectors: small size (7291 bp, entirely sequenced), convenient cloning sites, and lacZ selection for detecting recombinant plasmids.  相似文献   

7.
Matched normal/tumor DNA pairs from sporadic colon carcinoma patients were examined for chromosome 5 allele loss using a probe for a functional gene (glucocorticoid receptor = GRL) locus. This locus maps (5q11-q13) close to one of two alternative sites recently reported for a constitutional deletion in a familial adenomatous polyposis (FAP) patient. Tumor-specific allele loss of at least 27% at GRL supports the hypothesis that both hereditary and sporadic forms of colon cancer result from mutations of the same gene. The proximity of the GRL locus to the region of 5q affected in FAP and the observed tumor-specific allele loss at this locus suggest that further research is needed regarding whether genetic alterations in the glucocorticoid receptor may be associated with colon carcinogenesis.  相似文献   

8.
We used colony probe hybridization and polymerase chain reaction/DNA sequence analysis to determine the mutations in ~2,400 4-aminobiphenyl (4-AB) +S9-induced revertants of the -1 frameshift allele hisD3052 and of the base-substitution allele hisG46 of Salmonella typhimurium. Most of the mutations occurred at sites containing guanine, which is the primary base at which 4-AB forms DNA adducts. A hotspot mutation involving the deletion of a CG or GC within the sequence CGCGCGCG accounted for 100 and 99.9%, respectively, of the reversion events at the hisD3052 allele in the pKM101 plasmid-minus strains TA1978 (uvr(+)) and TA1538 (δuvrB). In strain TA98 (δuvrB, pKM101), which contained the SOS DNA repair system provided by the pKM101 plasmid, ~85% of the revertants also contained the hotspot deletion; the remaining ~15% contained one of two types of mutations: (1) complex frameshifts that can be described as a -2 or + 1 frameshift and an associated base substitution and (2) deletions of the CC or GG sequences that flank the hotspot site (CCGCGCGCGG). We propose a misincorporation/slippage model to account for these mutations in which (1) pKM101-mediated misincorporation and translesion synthesis occurs across a 4-AB-adducted guanine; (2) the instability of such a mispairing and/or the presence of the adduct leads to strand slippage in a run of repeated bases adjacent to the adducted guanine; and (3) continued DNA synthesis from the slipped intermediate produces a frameshift associated with a base substitution. This model readily accounts for the deletion of the CC or GG sequences flanking the hotspot site, indicating that these mutations are, in fact, complex mutations in disguise (i.e., cryptic complex frameshifts). The inferred base-substitution specificity associated with the complex frameshifts at the hisD3052 allele (primarily G·C -> T·A transversions) is consistent with the finding that 4-AB induced primarily G·C -> T·A transversions at the hisG46 base-substitution allele. The model also provides a framework for understanding the different relative mutagenic potencies of 4-AB at the two alleles in the various DNA repair backgrounds of Salmonella.  相似文献   

9.
10.
We describe three extensions of the method of site-specific genomic (SSG) mutagenesis. These three extensions of SSG mutagenesis were used to generate precise insertion, deletion, and allele substitution mutations in the genome of the budding yeast, Saccharomyces cerevisiae. These mutations are termed precise because no attached sequences (e.g., marker genes or recombination sites) are retained once the method is complete. Because the method is PCR-based, neither DNA cloning nor synthesis of long oligonucleotides is required. We demonstrated the efficacy of these methods by deleting an ORF, inserting the tandem affinity purification (TAP) tag, and replacing a wild-type allele with a mutant allele.  相似文献   

11.
12.
C. R. Giver  A. J. Grosovsky 《Genetics》1997,146(4):1429-1439
Two polymorphic sites are located within the heterozygous TK1 locus in the human lymphoblastoid cell line TK6: an inactivating frameshift in exon 4 of the nonfunctional allele and a phenotypically silent frameshift in exon 7 of the functional allele. Through the use of these intragenic polymorphisms and microsatellite markers that flank TK1, we demonstrate that partial gene conversion accounts for 3/75 (0.04) spontaneous and 9/163 (0.06) X-ray-induced TK1(-) mutants, thus comprising a significant component of forward mutations at this locus. In all cases, the conversion tract is <1 cM, rendering double exchange a remote alternate explanation for these results. Sequence analysis of full length TK1 cDNA provides rigorous exclusion of deletion events as a mechanism for generation of these allelotypes. Detailed examination of allelotypes in TK1(-) mutants identified two mechanisms for the generation of coincident sequence alterations that sometimes accompanied gene conversions. Mutations within the conversion tract were attributed to either error-prone gap filling synthesis during recombinational repair or mismatch repair within a heteroduplex region following branch migration. These findings suggest that a proportion of point mutations may not be targeted to sites of DNA base damage, but rather may arise as secondary consequences from the repair of DNA strand breaks.  相似文献   

13.
Recessive allelic variations were investigated at 3 microsatellite (SSR) sites within theO2 gene by using 14 inbredo2 lines and a wild-type line in maize. Among the 15 lines, allelic variations were observed at umc1066, phi057, and phi112 sites. Two alleles were found at the umc1066 site—a recessive allele with 2 perfect GCCAGA repeats and a dominant allele with 3 perfect repeats. Three alleles were found at the phi057 site—2 recessive alleles with 3 and 5 perfect GCC repeats, respectively, and another with 4 perfect repeats consistent with a dominant allele. At least 4 alleles exist at the phi112 site—among which 1 recessive allele has a 1-bp deletion, another has a 15-bp deletion, and other has no PCR products compared to the dominant allele; all the alleles have unchanged AG repeats. The phi057 site in exon 6 was identified to be a hypervariable region in the coding sequence of the02 gene, in addition to the 2 hypervariable regions in exon 1 previously reported. The primary mechanisms underlying the variations in repeat numbers and regions flanking the SSR within theO2 gene appear to be unequal crossing over and replication slippage. Furthermore, base substitution of SSR motif can create heteroalleles and modify the repeat number of SSR. The lysine content of kernel in theO2 ando2 lines correlates to a considerable extent with nucleotide variations at the umc1066, phi057, and phi112 sites. Our study suggests that it is best to use the 3 markers together in molecular marker-assisted selection for high-lysine maize materials.  相似文献   

14.
15.
A sample of 52 mixed-breed dairy cattle (Holstein Friesian and Jersey) and 51 beef cattle (Hereford) from south-east Queensland was studied. The second exon of BoLA-DRB3 was amplified by polymerase chain reaction (PCR), and polymorphisms were detected by heteroduplex analysis. A large number of different heteroduplex patterns indicated extensive sequence polymorphism. Direct sequencing of PCR products from 17 homozygotes and cloning and sequencing of PCR product from two heterozygotes resulted in the identification and characterization of four novel alleles. The previously described allele BoLA-DRB3 * 2A is characterized by an amino acid deletion at position 65. We have identified three animals that are homozygous for this amino acid deletion, indicating that the deletion is unlikely to result in loss of function. Two of these animals had allele BoLA-DRB3 * 2A, and one had a novel allele with codon 65 deleted but differing from BoLA-DRB3 * 2A at a number of other amino acid positions. In conclusion, heteroduplex analysis allows rapid discrimination between homozygotes and heterozygotes, and enables rapid identification of new BoLA-DRB3 alleles.  相似文献   

16.
17.
18.
Acute intermittent porphyria (AIP), the most common acute hepatic porphyria, is a low-penetrant autosomal dominant disorder caused by mutations in the porphobilinogen deaminase (PBGD) or hydroxymethylbilane synthase (HMBS) gene. Although AIP has been identified in all the main ethnic groups, little is known about PBGD gene defects in Africans, Afro-Caribbean and Afro-Americans. We have carried out PBGD gene screening among seven unrelated AIP families and 98 controls belonging to the Afro-Caribbean (French West Indies) and the sub-Saharan African (Morocco, Algeria, Cameroon, Mali, and Burkina Faso) populations. Using denaturing-gradient gel electrophoresis (DGGE) and direct sequencing we characterized six different mutations, including four novel, from the seven AIP families: three splicing defects (IVS 5+2 Ins G; IVS 7+1 G to A in two families; IVS 10-1 G to T); a small deletion (1004 Del G); and two missense mutations (R116 W; A270G). The allele frequencies of the 14 polymorphic sites, previously known in the normal Caucasian population, were similar in Africans and Afro-Caribbean control populations. Interestingly, two common new intragenic polymorphic sites, close to intron/junction boundaries, were identified only in blacks: 1) in intron 2, a single base-pair G deletion at position 3167 (G:0.88; delG:0.12); 2) in intron 10, a A/G dimorphism at position 7052 (A:0.56; G:0.44). These two single nucleotide polymorphisms (SNPs) were never encountered in 750 unrelated Caucasian subjects. The allele frequency distributions of populations within black ethnic groups (Africans and Afro-Caribbean) are similar. This study highlights differences both in PBGD gene mutations causing AIP and in SNPs between white and black peoples; the allele frequencies provided contribute to a better knowledge of the variability of these markers among the major population groups, especially in sub-Saharan West African and Afro-Caribbean populations.  相似文献   

19.
M. Kurkulos  J. M. Weinberg  D. Roy    S. M. Mount 《Genetics》1994,136(3):1001-1011
We have isolated and characterized deletions arising within a P transposon, P[hsw(a)], in the presence of P transposase. P[hsw(a)] carries white-apricot (w(a)) sequences, including a complete copia element, under the control of an hsp70 promoter, and resembles the original w(a) allele in eye color phenotype. In the presence of P transposase, P[hsw(a)] shows a high overall rate (approximately 3%) of germline mutations that result in increased eye pigmentation. Of 234 derivatives of P[hsw(a)] with greatly increased eye pigmentation, at least 205 carried deletions within copia. Of these, 201 were precise deletions between the directly repeated 276-nucleotide copia long terminal repeats (LTRs), and four were unique deletions. High rates of transposase-induced precise deletion were observed within another P transposon carrying unrelated 599 nucleotide repeats (yeast 2μ FLP; recombinase target sites) separated by 5.7 kb. Our observation that P element-mediated deletion formation occurs preferentially between direct repeats suggests general methods for controlling deletion formation.  相似文献   

20.
alpha 1-Antitrypsin (alpha 1AT) deficiency, a common hereditary disorder responsible for emphysema in Caucasians of northern European descent, is caused by single base substitutions, deletions, or additions in the seven exons (IA-IC and II-V), of the 12.2-kb alpha 1AT gene located on chromosome 14 at q31-32.3. Of the five known representatives of the "null" group of alpha 1AT-deficiency alleles (alpha 1AT genes incapable of producing alpha 1AT protein detectable in serum) evaluated at the gene level, all result from mutations causing the formation of stop codons in coding exons of the alpha 1AT gene. The present study identifies an alpha 1AT allele (referred to as "Null(isola di procida")) caused by complete deletion of the alpha 1AT coding exons. The Null(isola di procida) allele was identified in an individual with heterozygous inheritance of M(procida) (an allele associated with alpha 1AT deficiency) and a null allele. Although results of karyotypic analysis were normal, quantification of the copies of alpha 1AT genes in this individual revealed that the index case had only half the normal copies of alpha 1AT genes. Cloning and mapping of the Null(isola di procida) gene demonstrated a deletion of a 17-kb fragment that included exons II-V of the alpha 1AT structural gene. As a consequence of the deletion, the normal noncoding exons (IA-IC) were followed by exons II-V of the downstream alpha 1AT-like gene. Sequence analysis of the deletion demonstrated a 7-bp repeat sequence (GAGGACA) both 5' to the deletion and at the 3' end of the deletion, a 4-bp palindromic sequence (ACAG vs. CTGT) bracketing the deletion, and a novel inserted 4-bp sequence (CCTG) at the breakpoint, suggesting that the mechanism of the deletion may have been "slipped mispairing."  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号