首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In transgenic plants, for many applications it is important that the inserted genes are expressed in a tissue-specific manner. This in turn could help better understanding their roles in plant development. Germin-like proteins (GLPs) play diverse roles in plant development and defense responses. In order to understand the functions and regulation of the GLP13 gene, its promoter (762 bp) was cloned and fused with a β-glucuronidase (GUS) reporter gene for transient expression in Arabidopsis thaliana and tobacco (Nicotiana tabacum cv. K326). Histochemical analysis of the transgenic plants showed that GUS was specifically expressed in vascular bundles predominantly in phloem tissue of all organs in Arabidopsis. Further analyses in transgenic tobacco also identified similar GUS expression in the vascular bundles.  相似文献   

2.
E J Richards  S Chao  A Vongs    J Yang 《Nucleic acids research》1992,20(15):4039-4046
In an effort to learn more about the genomic organization of chromosomal termini in plants we employed a functional complementation strategy to isolate Arabidopsis thaliana telomeres in the yeast, Saccharomyces cerevisiae. Eight yeast episomes carrying A. thaliana telomeric sequences were obtained. The plant sequences carried on two episomes, YpAtT1 and YpAtT7, were characterized in detail. The telomeric origins of YpAtT1 and YpAtT7 insert DNAs were confirmed by demonstrating that corresponding genomic sequences are preferentially degraded during exonucleolytic digestion. The isolated telomeric restriction fragments contain G-rich repeat arrays characteristic of A. thaliana telomeres, as well as subterminal telomere-associated sequences (TASs). DNA sequence analysis revealed the presence of variant telomeric repeats at the centromere-proximal border of the terminal block of telomere repeats. The TAS flanking the telomeric G-rich repeat in YpAtT7 corresponds to a repetitive element present at other A. thaliana telomeres, while more proximal sequences are unique to one telomere. The YpAtT1 TAS is unique in the Landsberg strain of A. thaliana from which the clone originated; however, the Landsberg TAS cross-hybridizes weakly to a second telomere in the strain Columbia. Restriction analysis with cytosine methylation-sensitive endonucleases indicated that both TASs are highly methylated in the genome.  相似文献   

3.
Controlled expression of transgenes in plants is key to the characterization of gene function and the regulated manipulation of growth and development. The alc gene-expression system, derived from the filamentous fungus Aspergillus nidulans, has previously been used successfully in both tobacco and potato, and has potential for use in agriculture. Its value to fundamental research is largely dependent on its utility in Arabidopsis thaliana. We have undertaken a detailed function analysis of the alc regulon in A. thaliana. By linking the alcA promoter to beta-glucuronidase (GUS), luciferase (LUC) and green fluorescent protein (GFP) genes, we demonstrate that alcR-mediated expression occurs throughout the plant in a highly responsive manner. Induction occurs within one hour and is dose-dependent, with negligible activity in the absence of the exogenous inducer for soil-grown plants. Direct application of ethanol or exposure of whole plants to ethanol vapour are equally effective means of induction. Maximal expression using soil-grown plants occurred after 5 days of induction. In the majority of transgenics, expression is tightly regulated and reversible. We describe optimal strategies for utilizing the alc system in A. thaliana.  相似文献   

4.
Characterization of the genome of Arabidopsis thaliana   总被引:35,自引:0,他引:35  
The small crucifer Arabidopsis thaliana has many useful features as an experimental organism for the study of plant molecular biology. It has a four-week life-cycle, only five chromosomes and a genome size less than half that of Drosophila. To characterize the DNA sequence organization of this plant, we have randomly selected 50 recombinant lambda clones containing inserts with an average length of 12,800 base-pairs and analyzed their content of repetitive and unique DNA by various genome blot, restriction digestion and RNA blot procedures. The following conclusions can be drawn. The DNA represented in this random sample is composed predominantly of single-copy sequences. This presumably reflects the organization of the Arabidopsis genome as a whole and supports prior conclusions reached on the basis of kinetics of DNA reassociation. The DNA that encodes the ribosomal RNAs constitutes the only major class of cloned nuclear repetitive DNA. It consists of approximately 570 tandem copies of a heterogeneous 9900-base-pair repeat unit. There is an average of approximately 660 copies of the chloroplast genome per cell. Therefore, the chloroplast genome constitutes the major component of the repetitive sequences found in A. thaliana DNA made from whole plants. The inner cytosine residue in the sequence C-C-G-G is methylated more often than the outer in the tandem ribosomal DNA units, whereas very few differences in the methylation state of these two cytosine residues are detected in unique sequences.  相似文献   

5.
Micro RNAs(mi RNAs) are vital regulators that repress gene expression in the cytoplasm in two main ways: m RNA degradation and translational inhibition. Several animal studies have shown that mi RNAs also target promoters, thereby activating expression.Whether this mi RNA action also occurs in plants is unknown. In this study, we demonstrated that several mi RNAs regulate target promoters in Arabidopsis thaliana. For example, mi R5658 was predominantly present in the nucleus and activated the expression of AT3 G25290 directly by binding to its promoter. Our observations suggest that this mode of action may be a general feature of plant mi RNAs, and thus provide insight into the vital roles of plant mi RNAs in the nucleus.  相似文献   

6.
7.
NICTABA is a carbohydrate-binding protein (also called lectin) that is expressed in several Nicotiana species after treatment with jasmonates and insect herbivory. Analyses with tobacco lines overexpressing the NICTABA gene as well as lines with reduced lectin expression have shown the entomotoxic effect of NICTABA against Lepidopteran larvae, suggesting a role of the lectin in plant defense. Until now, little is known with respect to the upstream regulatory mechanisms that are controlling the expression of inducible plant lectins. Using Arabidopsis thaliana plants stably expressing a promoter-β-glucuronidase (GUS) fusion construct, it was shown that jasmonate treatment influenced the NICTABA promoter activity. A strong GUS staining pattern was detected in very young tissues (the apical and root meristems, the cotyledons and the first true leaves), but the promoter activity decreased when plants were getting older. NICTABA was also expressed at low concentrations in tobacco roots and expression levels increased after cold treatment. The data presented confirm a jasmonate-dependent response of the promoter sequence of the tobacco lectin gene in Arabidopsis. These new jasmonate-responsive tobacco promoter sequences can be used as new tools in the study of jasmonate signalling related to plant development and defense.  相似文献   

8.
Phototropic curvature has been measured for etiolated Arabidopsis thaliana seedlings with and without a preirradiation. A bilateral preirradiation with 450-nm light at a fluence greater than about 0.1 micromole per square meter causes a rapid desensitization to a subsequent 450-nanometer unilateral irradiation at 0.5 micromole per square meter. Following a refractory period, the capacity to respond phototropically recovers to the predesensitization level, and the response is then enhanced. The length of the refractory period is between 10 and 20 minutes. Both the time needed for recovery and the extent of enhancement increase with increasing fluence of the bilateral preirradiation. Based on the relative spectral sensitivities of desensitization and enhancement, these responses can be separated. Desensitization is induced by blue light but not by red light. Enhancement, however, is induced by both blue and red light. Thus, enhancement can be induced without desensitization but not vice versa. Both desensitization and enhancement affect only the magnitude of the response and do not affect the fluence threshold.  相似文献   

9.
Glucosinolates are secondary metabolites involved in pathogen and insect defense of cruciferous plants. Although seeds and vegetative tissue often have very different glucosinolate profiles, few genetic factors that determine seed glucosinolate accumulation have been identified. An HPLC-based screen of 5500 mutagenized Arabidopsis thaliana lines produced 33 glucosinolate mutants, of which 21 have seed-specific changes. Five of these mutant lines, representing three genetic loci, are compromised in the biosynthesis of benzoyloxyglucosinolates, which are only found in seeds and young seedlings of A. thaliana. Genetic mapping and analysis of T-DNA insertions in candidate genes identified BZO1 (At1g65880), which encodes an enzyme with benzoyl-CoA ligase activity, as being required for the accumulation of benzoyloxyglucosinolates. Long-chain aliphatic glucosinolates are elevated in bzo1 mutants, suggesting substrate competition for the common short-chain aliphatic glucosinolate precursors. Whereas bzo1 mutations have seed-specific effects on benzoyloxyglucosinolate accumulation, the relative abundance of 3-benzoyloxypropyl- and 4-benzoyloxybutylglucosinolates depends on the maternal genotype.  相似文献   

10.
Centromere protein C (CENP-C) is a component of the kinetochore essential for correct segregation of sister chromatids in mammals. In Arabidopsis thaliana, a single-copy gene encoding a protein homologous to CENP-C has been found by homology in the whole-genome sequence. To investigate the CENP-C homolog (AtCENP-C), we cloned cDNAs by RT-PCR and determined its full-length coding sequence. Antibodies against the synthetic peptide for the C-terminal residues of AtCENP-C detected a polypeptide in Arabidopsis cell extracts on western blots. Immunofluorescence labeling with the antibodies and fluorescence in situ hybridization demonstrated clearly that AtCENP-C is present at the centromeric regions throughout the cell cycle.  相似文献   

11.
Characterization of two Arabidopsis thaliana glutathione S-transferases   总被引:2,自引:0,他引:2  
Glutathione S-transferases (GST) are multifunctional proteins encoded by a large gene family, divided on the basis of sequence identity into phi, tau, theta, zeta and lambda classes. The phi and tau classes are present only in plants. GSTs appear to be ubiquitous in plants and are involved in herbicide detoxification and stress response, but little is known about the precise role of GSTs in normal plant physiology and during biotic and abiotic stress response. Two cDNAs representing the two plant classes tau and phi, AtGSTF9 and AtGSTU26, were expressed in vitro and the corresponding proteins were analysed. Both GSTs were able to catalyse a glutathione conjugation to 1-chloro-2,4-dinitrobenzene (CDNB), but they were inactive as transferases towards p-nitrobenzylchloride (pNBC). AtGSTF9 showed activity towards benzyl isothiocyanate (BITC) and an activity as glutathione peroxidase with cumene hydroperoxide (CumHPO). AtGSTU26 was not active as glutathione peroxidase and towards BITC. RT-PCR analysis was used to evaluate the expression of the two genes in response to treatment with herbicides and safeners, chemicals, low and high temperature. Our results reveal that AtGSTU26 is induced by the chloroacetanilide herbicides alachlor and metolachlor and the safener benoxacor, and after exposure to low temperatures. In contrast, AtGSTF9 seems not to be influenced by the treatments employed.  相似文献   

12.
The expression of the auxin-inducible Nt103-1 gene of tobacco was studied in Arabidopsis thaliana. For this purpose we introduced a gene fusion between the promoter of the gene and the -glucuronidase reporter gene (GUS) into Arabidopsis thaliana. The expression and location of GUS activity were studied histochemically in time and after incubation of seedlings on medium containing auxins or other compounds. The auxins 2,4-dichlorophenoxyacetic acid (2,4-D), indole-3-acetic acid (IAA), and 1-naphthylacetic acid (1-NAA) were able to induce GUS activity in the root tips of transgenic seedlings. The auxin transport inhibitor 2,3,5-triiodobenzoic acid was able to induce GUS activity not only in the root tip, but also in other parts of the root. Induction by the inactive auxin analog 3,5-dichlorophenoxyacetic acid was much weaker. Compounds like glutathione and the heavy metal CuSO4 were weak inducers. GUS activity observed after induction by glutathione was located in the transition zone. Salicylic acid and compounds increasing the concentration of hydrogen peroxide in the cell were also very well able to induce GUS activity in the roots. The possible involvement of hydrogen peroxide as a second messenger in the pathway leading to the induction of the Nt103-1 promoter is discussed.  相似文献   

13.
14.
Characterization of the GGPP synthase gene family in Arabidopsis thaliana   总被引:1,自引:0,他引:1  
Geranylgeranyl diphosphate (GGPP) is a key precursor of various isoprenoids that have diverse functions in plant metabolism and development. The annotation of the Arabidopsis thaliana genome predicts 12 genes to encode geranylgeranyl diphosphate synthases (GGPPS). In this study we analyzed GGPPS activity as well as the subcellular localization and tissue-specific expression of the entire protein family in A. thaliana. GGPPS2 (At2g18620), GGPPS3 (At2g18640), GGPPS6 (At3g14530), GGPPS7 (At3g14550), GGPPS8 (At3g20160), GGPPS9 (At3g29430), GGPPS10 (At3g32040) and GGPPS11 (At4g36810) showed GGPPS activity in Escherichia coli, similar to activities reported earlier for GGPPS1 (At1g49530) and GGPPS4 (At2g23800) (Zhu et al. in Plant Cell Physiol 38(3):357–361, 1997a; Plant Mol Biol 35(3):331–341, b). GGPPS12 (At4g38460) did not produce GGPP in E. coli. Based on DNA sequence analysis we propose that GGPPS5 (At3g14510) is a pseudogene. GGPPS–GFP (green fluorescent protein) fusion proteins of the ten functional GGPP synthases localized to plastids, mitochondria and the endoplasmic reticulum, with the majority of the enzymes located in plastids. Gene expression analysis using quantitative real time-PCR, GGPPS promoter-GUS (β-glucuronidase) assays and publicly available microarray data revealed a differential spatio-temporal expression of GGPPS genes. The results suggest that plastids and mitochondria are key subcellular compartments for the synthesis of ubiquitous GGPP-derived isoprenoid species. GGPPS11 and GGPPS1 are the major isozymes responsible for their biosynthesis. All remaining paralogs, encoding six plastidial isozymes and two cytosolic isozymes, were expressed in specific tissues and/or at specific developmental stages, suggesting their role in developmentally regulated isoprenoid biosynthesis. Our results show that of the 12 predicted GGPPS encoded in the A. thaliana genome 10 are functional proteins that can synthesize GGPP. Their specific subcellular location and differential expression pattern suggest subfunctionalization in providing GGPP to specific tissues, developmental stages, or metabolic pathways.  相似文献   

15.
The Arabidopsis genome contains four genes that encode proteins similar to both spermidine synthase and spermine synthase of other organisms. Our previous study revealed that one of these genes, designated ACAULIS5 (ACL5), encodes spermine synthase and that its null mutation results in a severe defect in the elongation of stem internodes. Here we report the characterization of the other three genes, designated SPDS1, SPDS2 and SPDS3. Our results showed that SPDS1 and SPDS2 possess spermidine synthase activity in yeast spermidine synthase-deficient mutants, but the enzyme activity of SPDS3 remained to be determined. RNA gel blot analysis revealed that all of these genes are expressed in all plant organs but show different responses to exogenous plant hormones, suggesting that they are involved in different aspects of growth by modulating the contents of polyamines in plant cells.  相似文献   

16.
17.
Cloning of the Arabidopsis thaliana genomic DNA fragment presumably corresponding to the promoter region of the ornithine-delta-aminotransferase (OAT) gene is reported. The reporter-gene construct, containing the Escherichia coli beta-glucouronidase gene under control of the OAT gene promoter was generated. The Nicotian tabacum SR1 transformants carrying this construct were obtained. It was demonstrated that in normal conditions, expression of the reporter gene was associated with the meristems and the zones of intensive shoot growth. Possible role of the OAT gene in nitrogen metabolism and shoot development is discussed.  相似文献   

18.
We show that the tightly regulated tetracycline-sensitive Top10 promoter system (Weinmann et al. Plant J. 1994, 5, 559-569) is functional in Arabidopsis thaliana. A pure breeding A. thaliana line (JL-tTA/8) was generated which expressed a chimeric fusion of the tetracycline repressor and the activation domain of Herpes simplex virus (tTA), from a single transgenic locus. Plants from this line were crossed with transgenics carrying the ER-targeted green fluorescent protein coding sequence (mGFP5) under control of the Top10 promoter sequence. Progeny from this cross displayed ER-targeted GFP fluorescence throughout the plant, indicating that the tTA-Top10 promoter interaction was functional in A. thaliana. GFP expression was repressed by 100 ng ml-1 tetracycline, an order of magnitude lower than the concentration used previously to repress expression in Nicotiana tabacum. Moreover, the level of GFP expression was controlled by varying the concentration of tetracycline in the medium, allowing a titred regulation of transgenic activity that was previously unavailable in A. thaliana. The kinetics of GFP activity were determined following de-repression of the Top10:mGFP5 transgene, with a visible ER-targeted GFP signal appearing from 24 to 48 h after de-repression.  相似文献   

19.
The Arabidopsis thaliana THI1 protein is involved in thiamine biosynthesis and is targeted to both chloroplasts and mitochondria by N-terminal control regions. To investigate thi1 expression, a series of thi1 promoter deletions were fused to the beta-glucuronidase (GUS) reporter gene. Transgenic plants were generated and expression patterns obtained under different environmental conditions. The results show that expression derived from the thi1 promoter is detected early on during development and continues throughout the plant's life cycle. High levels of GUS expression are observed in both shoots and roots during vegetative growth although, in roots, expression is restricted to the vascular system. Deletion analysis of the thi1 promoter region identified a region that is responsive to light. The smallest fragment (designated Pthi322) encompasses 306 bp and possesses all the essential signals for tissue specificity, as well as responsiveness to stress conditions such as sugar deprivation, high salinity, and hypoxia.  相似文献   

20.
Cytogenetics for the model system Arabidopsis thaliana   总被引:2,自引:5,他引:2  
A detailed karyotype of Arabidopsis thaliana is presented using meiotic pachytene cells in combination with fluorescence in situ hybridization. The lengths of the five pachytene bivalents varied between 50 and 80 μm, which is 20–25 times longer than mitotic metaphase chromosomes. The analysis confirms that the two longest chromosomes (1 and 5) are metacentric and the two shortest chromosomes (2 and 4) are acrocentric and carry NORs subterminally in their short arms, while chromosome 3 is submetacentric and medium sized. Detailed mapping of the centromere position further revealed that the length variation between the pachytene bivalents comes from the short arms. Individual chromosomes were unambiguously identified by their combinations of relative lengths, arm-ratios, presence of NOR knobs and FISH signals with a 5S rDNA probe and chromosome specific DNA probes. Polymorphisms were found among six ecotypes with respect to the number and map positions of 5S rDNA loci. All ecotypes contain 5S rDNA in the short arms of chromosomes 4 and 5. Three different patterns were observed regarding the presence and position of a 5S rDNA locus on chromosome 3. Repetitive DNA clones enabled us to subdivide the pericentromeric heterochromatin into a central domain, characterized by pAL1 and 106B repeats, which accommodate the functional centromere and two flanking domains, characterized by the 17 A20 repeat sequences. The upper flanking domains of chromosomes 4 and 5, and in some ecotypes also chromosome 3, contain a 5S rDNA locus. The detection of unique cosmids and YAC sequences demonstrates that detailed physical mapping of Arabidopsis chromosomes by cytogenetic techniques is feasible. Together with the presented karyotype this makes Arabidopsis a model system for detailed cytogenetic mapping.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号