首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Life on Jupiter?     
The possibilities of life on Jupiter are discussed from the point view of life as we know it. That is, we assume that any life on Jupiter would not involve new principles foreign to us. Proteins would be a constituent as would fats and the other building blocks of living organisms on Earth. This leads us to a set of limiting parameters, such as pressure. Studies in the laboratory have shown that proteins and other essential molecules are denatured by pressures of 4000 atm and higher. Thus, we must not expect life in the great depths of the Jovian atmosphere. It could exist only at depths of several hundred kilometers in the atmosphere. Since no solid surface could possibly exist at such altitudes, any organisms present must be small enough to be buoyed up by the turbulent atmospheric currents or must fly or both. Such possibilities, however, seem to be real. The necessary nutrients to preserve life and foster growth could be furnished by the Miller-Urey type reactions of lonizing radiation on the reducing atmosphere undoubtedly present. There can, of course, be no possibility of oxygen on Jupiter, and so the life forms, if they exist, must be anaerobic. Such possibilities are real and have often been cited in connection with the origin of life on Earth.  相似文献   

2.
The biochemical activation of amino acids by adenosine triphosphate (ATP) drives the synthesis of proteins that are essential for all life. On the early Earth, before the emergence of cellular life, the chemical condensation of amino acids to form prebiotic peptides or proteins may have been activated by inorganic polyphosphates, such as tri metaphosphate (TP). Plausible volcanic and other potential sources of TP are known, and TP readily activates amino acids for peptide synthesis. But de novo peptide synthesis also depends on pH, temperature, and processes of solvent drying, which together define a varied range of potential activating conditions. Although we cannot replay the tape of life on Earth, we can examine how activator, temperature, acidity and other conditions may have collectively shaped its prebiotic evolution. Here, reactions of two simple amino acids, glycine and alanine, were tested, with or without TP, over a wide range of temperature (0–100 °C) and acidity (pH 1–12), while open to the atmosphere. After 24 h, products were analyzed by HPLC and mass spectrometry. In the absence of TP, glycine and alanine readily formed peptides under harsh near-boiling temperatures, extremes of pH, and within dry solid residues. In the presence of TP, however, peptides arose over a much wider range of conditions, including ambient temperature, neutral pH, and in water. These results show how polyphosphates such as TP may have enabled the transition of peptide synthesis from harsh to mild early Earth environments, setting the stage for the emergence of more complex prebiotic chemistries.  相似文献   

3.
How life on Earth began remains an unexplained scientific problem. This problem is nuanced in its practical details and the way attempted explanations feedback with questions and developments in other areas of science, including astronomy, biology, and planetary science. Prebiotic chemistry attempts to address this issue theoretically, experimentally, and observationally. The ease of formation of bioorganic compounds under plausible prebiotic conditions suggests that these molecules were present in the primitive terrestrial environment. In addition to synthesis in the Earth's primordial atmosphere and oceans, it is likely that the infall of comets, meteorites, and interplanetary dust particles, as well as submarine hydrothermal vent synthesis, may have contributed to prebiotic organic evolution. The primordial organic soup may have been quite complex, but it did not likely include all of the compounds found in modern organisms. Regardless of their origin, organic compounds would need to be concentrated and complexified by environmental mechanisms. While this review is by no means exhaustive, many of the issues central to the state of the art of prebiotic chemistry are reviewed here.  相似文献   

4.
The outer solar system contains many environments of interest for studies of the origin of life. Recent observations support the idea that Jupiter and Saturn have retained the mixture of elements originally present in the solar nebula. Subsequent low temperature chemistry has produced the expected array of simple molecules giving characteristic absorption bands in the spectra of these planets. Microwave and infrared observations show that the lower atmospheres are at temperatures above 300 K. Sources of energy for non-equilibrium chemistry seem available at least on Jupiter and the presence of an array of colored materials in the Jovian cloud belts has often been cited as evidence for the existence of complex abiogenic organic molecules. Further study of both planets in an exobiological context seems well worthwhile; potentially productive methods of investigation (including planned space missions) can be described and evaluated from this point of view. Uranus and Neptune are clearly deficient in light gases, but otherwise little is known with certainty about these distant planets. Again unusually high temperatures have been reported, but not above 273 K. Pluto and many of the outer planet satellites appear to represent a class of small bodies very unlike our neighbors in the inner solar system. Titan, Saturn's largest satellite, is especially interesting for our purposes because of its atmosphere. Methane and hydrogen are both present, and Titan's unusually reddish color again suggests the presence of organic compounds. The hydrogen-methane ratio is likely to be more similar to that of a primitive reducing terrestrial atmosphere than the ratios for Jupiter and Saturn, suggesting that in some respects this satellite may provide an even better model for early organic synthesis on the Earth. The problem of Titan's heat balance and atmospheric composition are currently under active investigation.  相似文献   

5.
Thirty years ago it was suggested that comets impacting on the primitive Earth may have represented a significant source of terrestrial volatiles, including some important precursors for prebiotic synthesis (Oró, 1961,Nature 190: 389). This possibility is strongly supported not only by models of the collisional history of the early Earth, but also by astronomical evidence that suggests that frequent collisions of comet-like bodies from the circumstellar disk around the star Pictoris are taking place. Although a significant fraction of the complex organic compounds that appear to be present in cometary nuclei were probably destroyed during impact, it is argued that cometary collisions with the primitive Earth represented an important source of both free-energy and volatiles, and may have created transient, gaseous environments in which prebiotic synthesis may have taken place.  相似文献   

6.
We investigated the synthesis of α-amino acids under possible prebiotic terrestrial conditions in the presence of dissolved iron (II) in a simulated prebiotic ocean. An aerosol-liquid cycle with a prebiotic atmosphere is shown to produce amino acids via Strecker synthesis with relatively high yields. However, in the presence of iron, the HCN was captured in the form of a ferrocyanide, partially inhibiting the formation of amino acids. We showed how HCN captured as Prussian Blue (or another complex compound) may, in turn, have served as the HCN source when exposed to UV radiation, allowing for the sustained production of amino acids in conjunction with the production of oxyhydroxides that precipitate as by-products. We conclude that ferrocyanides and related compounds may have played a significant role as intermediate products in the prebiotic formation of amino acids and oxyhydroxides, such as those that are found in iron-containing soils and that the aerosol cycle of the primitive ocean may have enhanced the yield of the amino acid production.  相似文献   

7.
A search for fluorescent emission due to the presence of possible organic molecules in the Jovian atmosphere is described. We first consider natural Jovian fluorescent emission excited by precipitating auroral particles. Due to our lack of knowledge of the Jovian precipitating particle energies and fluxes we nest consider fluorescent emission excited by a laser system aboard a Jupiter spacecraft. Laser-induced fluorescence is routinely used to monitor trace constituents and pollutants in the terrestrial atmosphere. Several spacecraft laser systems are currently under development. Our calculations indicate that laser-induced fluorescent detection is approximately two orders of magnitude more sensitive than rocket ultraviolet measurements of possible Jovian absorption features at 2600 Å that have been attributed to the presence of adenine or benzene.  相似文献   

8.
In 1959, Miller and Urey (Science 130, 245) published their classic compilation of energy sources for indigenous prebiotic organic synthesis on the early Earth. Much contemporary origins of life research continues to employ their original estimates for terrestrial energy dissipation by lightning and coronal discharges, 2 × 1019 J yr–1 and 6 × 1019 J yr–1, respectively. However, more recent work in terrestrial lightning and point discharge research suggests that these values are overestimates by factors of about 20 and 120, respectively. Calculated concentrations of amino acids (or other prebiotic organic products) in the early terrestrial oceans due to electrical discharge sources may therefore have been equally overestimated. A review of efficiencies for those experiments that provide good analogues to naturally-occurring lightning and coronal discharges suggests that lightning energy yields for organic synthesis (nmole J–1) are about one order of magnitude higher than those for coronal discharge. Therefore organic production by lightning may be expected to have dominated that due to coronae on early Earth. Limited data available for production of nitric oxide in clouds suggests that coronal emission within clouds, a source of energy heretofore too uncertain to be included in the total coronal energy inventory, is insufficient to change this conclusion. Our recommended valves for lightning and coronal discharge dissipation rates on the early Earth are, respectively, 1 × 1018 J yr–1 and 5 × 1017 J yr–1.  相似文献   

9.
Prebiotic chemistry in clouds   总被引:1,自引:0,他引:1  
Summary In the traditional concept for the origin of life as proposed by Oparin and Haldane in the 1920s, prebiotic reactants became slowly concentrated in the primordial oceans and life evolved slowly from a series of highly protracted chemical reactions during the first billion years of Earth's history. However, chemical evolution may not have occurred continuously because planetesimals and asterioids impacted the Earth many times during the first billion years, may have sterilized the Earth, and required the process to start over. A rapid process of chemical evolution may have been required in order that life appeared at or before 3.5 billion years ago. Thus, a setting favoring rapid chemical evolution may be required. A chemical evolution hypothesis set forth by Woese in 1979 accomplished prebiotic reactions rapidly in droplets in giant atmospheric reflux columns. However, in 1985 Scherer raised a number of objections to Woese's hypothesis and concluded that it was not valid. We propose a mechanism for prebiotic chemistry in clouds that satisfies Scherer's concerns regarding the Woese hypothesis and includes advantageous droplet chemistry.Prebiotic reactants were supplied to the atmosphere by comets, meteorites, and interplanetary dust or synthesized in the atmosphere from simple compounds using energy sources such as ultraviolet light, corona discharge, or lightning. These prebiotic monomers would have first encountered moisture in cloud drops and precipitation. We propose that rapid prebiotic chemical evolution was facilitated on the primordial Earth by cycles of condensation and evaporation of cloud drops containing clay condensation nuclei and nonvolatile monomers. For example, amino acids supplied by, or synthesized during entry of, meteorites, comets, and interplanetary dust would have been scavenged by cloud drops containing clay condensation nuclei. Polymerization would have occurred within cloud systems during cycles of condensation, freezing, melting, and evaporation of cloud drops. We suggest that polymerization reactions occurred in the atmosphere as in the Woese hypothesis, but life originated in the ocean as in the Oparin-Haldane hypothesis. The rapidity with which chemical evolution could have occurred within clouds accommodates the time constraints suggested by recent astrophysical theories.  相似文献   

10.
A search for fluorescent emission due to the presence of possible organic molecules in the Jovian atmosphere is described. We first consider natural Jovian fluorescent emission excited by precipitating auroral particles. Due to our lack of knowledge of the Jovian precipitation particle energies and fluxes we next consider fluorescent emission excited by a laser system aboard a Jupiter spacecraft. Laser-induced fluorescence is routinely used to monitor trace constituents and pollutants in the terrestrial atmosphere. Several spacecraft laser systems are currently under development. Our calculations indicate that laser-induced fluorescent detection is approximately two orders of magnitude more sensitive than rocket ultraviolet measurements of possible Jovian absorption features at 2600 A that have been attributed to the presence of adenine or benzene.  相似文献   

11.
In the presence of a base such as ammonia liquid HCN (bp 25 °C) polymerizes readily to a black solid from which a yellow-brown powder can be extracted by water and further hydrolyzed to yield-amino acids. These macromolecules could be major components of the dark matter observed on many bodies in the outer solar system. The non-volatile black crust of comet Halley, for example, may consist largely of such polymers, since the original presence on cometary nuclei of frozen volatiles such as methane, ammonia, and water makes them possible sites for the formation and condensed-phase polymerization of hydrogen cyanide. It seems likely, too, that HCN polymers are among the dark —CN bearing solids identified spectroscopically by Cruikshanket al. in the dust of some other comets, on the surfaces of several asteroids of spectral class D, within the rings of Uranus, and covering the dark hemisphere of Saturn's satellite Iapetus. HCN polymerization could account also for the yellow-orange-brown coloration of Jupiter and Saturn, as well as for the orange haze high in Titan's atmosphere. Implications for prebiotic chemistry are profound. Primitive Earth may have been covered by HCN polymers through cometary bombardment or terrestrial synthesis, producing a proteinaceous matrix that promoted the molecular interactions leading to the emergence of life.  相似文献   

12.
Thirty years ago it was suggested that comets impacting on the primitive Earth may have represented a significant source of terrestrial volatiles, including some important precursors for prebiotic synthesis (Oró, 1961, Nature 190: 389). This possibility is strongly supported not only by models of the collisional history of the early Earth, but also by astronomical evidence that suggests that frequent collisions of comet-like bodies from the circumstellar disk around the star beta Pictoris are taking place. Although a significant fraction of the complex organic compounds that appear to be present in cometary nuclei were probably destroyed during impact, it is argued that cometary collisions with the primitive Earth represented an important source of both free-energy and volatiles, and may have created transient, gaseous environments in which prebiotic synthesis may have taken place.  相似文献   

13.
Models for the origin of Titan's atmosphere, the processing of the atmosphere and surface and its exobiological role are reviewed. Titan has gained widespread acceptance in the origin of life field as a model for the types of evolutionary processes that could have occurred on prebiotic Earth. Both Titan and Earth possess significant atmospheres ( 1 atm) composed mainly of molecular nitrogen with smaller amounts of more reactive species. Both of these atmospheres are processed primarily by solar ultraviolet light with high energy particles interactions contributing to a lesser extent. The products of these reactions condense or are dissolved in other atmospheric species (aerosols/clouds) and fall to the surface. There these products may have been further processed on Titan and the primitive Earth by impacting comets and meteorites. While the low temperatures on Titan ( 72–180 K) preclude the presence of permanent liquid water on the surface, it has been suggested that tectonic activity or impacts by meteors and comets could produce liquid water pools on the surface for thousands of years. Hydrolysis and oligomerization reactions in these pools might form chemicals of prebiological significance. Other direct comparisons between the conditions on present day Titan and those proposed for prebiotic Earth are also presented.  相似文献   

14.
It is generally thought that the terrestrial atmosphere at the time of the origin of life was CO2-rich and that organic compounds such as amino acids would not have been efficiently formed abiotically under such conditions. It has been pointed out, however, that the previously reported low yields of amino acids may have been partially due to oxidation by nitrite/nitrate during acid hydrolysis. Specifically, the yield of amino acids was found to have increased significantly (by a factor of several hundred) after acid hydrolysis with ascorbic acid as an oxidation inhibitor. However, it has not been shown that CO2 was the carbon source for the formation of the amino acids detected after acid hydrolysis with ascorbic acid. We therefore reinvestigated the prebiotic synthesis of amino acids in a CO2-rich atmosphere using an isotope labeling experiment. Herein, we report that ascorbic acid does not behave as an appropriate oxidation inhibitor, because it contributes amino acid contaminants as a consequence of its reactions with the nitrogen containing species and formic acid produced during the spark discharge experiment. Thus, amino acids are not efficiently formed from a CO2-rich atmosphere under the conditions studied.  相似文献   

15.
Miller and Urey suggested in 1959 that lightning and corona on the early Earth could have been the most favorable sources of prebiotic synthesis. In 1991 Chyba and Sagan reviewed the presently prevailing data on electrical discharges on Earth and they raised questions as to whether the electrical sources of prebiotic synthesis were as favorable as was claimed. The proposal of the present paper is that localized lightning sources associated with Archaean volcanoes could have possessed considerable advantages for prebiotic synthesis over the previously suggested global sources.  相似文献   

16.
The Moon and the Earth were bombarded heavily by planetesimals and asteroids that were capable of interfering with chemical evolution and the origin of life. In this paper, we explore the frequency of giant terrestrial impacts able to stop prebiotic chemistry in the probable regions of chemical evolution. The limited time available between impacts disruptive to prebiotic chemistry at the time of the oldest evidence of life suggests the need for a rapid process for chemical evolution of life. The classical hypothesis for the origin of life through the slow accumulation of prebiotic reactants in the primordial soup in the entire ocean may not be consistent with constraints imposed by the impact history of Earth. On the other hand, rapid chemical evolution in cloud systems and lakes or other shallow evaporating water bodies would have been possible because reactants could have been concentrated and polymerized rapidly in this environment. Thus, life probably could have originated near the surface between frequent surface sterilizing impacts. There may not have been continuity of life depending on sunlight because there is evidence that life, existing as early as 3.8 Gyr ago, may have been destroyed by giant impacts. The first such organisms on Earth where probably not the ancestors of present life.  相似文献   

17.
André Brack 《Grana》2013,52(2):505-509
Terrestrial life can be schematically described as organic molecules organized in liquid water. According to Oparin's hypothesis, organic building blocks required for early life were produced from simple organic molecules formed in a primitive reducing atmosphere. Precursors of lipids, nucleic acids and enzymes obtained in the laboratory under simulating conditions are reviewed. Geochemists favor now a less reducing atmosphere dominated by carbon dioxide. In such an atmosphere, very few building blocks are formed under prebiotic conditions. Import of extraterrestrial organic molecules may represent an alternative supply. Experimental support for such an alternative scenario is examined in comets, cosmic dust, meteorites and micrometeorites. Even the prebiotic broth receives today severe criticism for being implausible. In contrast to the classical scenario, a chemoautotrophic origin of life is discussed. Finally, interesting information related to early terrestrial life may be gained from Mars exploration.  相似文献   

18.
Stanley Miller’s 1958 H2S-containing experiment, which included a simulated prebiotic atmosphere of methane (CH4), ammonia (NH3), carbon dioxide (CO2), and hydrogen sulfide (H2S) produced several alkyl amino acids, including the α-, β-, and γ-isomers of aminobutyric acid (ABA) in greater relative yields than had previously been reported from his spark discharge experiments. In the presence of H2S, aspartic and glutamic acids could yield alkyl amino acids via the formation of thioimide intermediates. Radical chemistry initiated by passing H2S through a spark discharge could have also enhanced alkyl amino acid synthesis by generating alkyl radicals that can help form the aldehyde and ketone precursors to these amino acids. We propose mechanisms that may have influenced the synthesis of certain amino acids in localized environments rich in H2S and lightning discharges, similar to conditions near volcanic systems on the early Earth, thus contributing to the prebiotic chemical inventory of the primordial Earth.  相似文献   

19.
Original extracts from an unpublished 1958 experiment conducted by the late Stanley L. Miller were recently found and analyzed using modern state-of-the-art analytical methods. The extracts were produced by the action of an electric discharge on a mixture of methane (CH4), hydrogen sulfide (H2S), ammonia (NH3), and carbon dioxide (CO2). Racemic methionine was formed in significant yields, together with other sulfur-bearing organic compounds. The formation of methionine and other compounds from a model prebiotic atmosphere that contained H2S suggests that this type of synthesis is robust under reducing conditions, which may have existed either in the global primitive atmosphere or in localized volcanic environments on the early Earth. The presence of a wide array of sulfur-containing organic compounds produced by the decomposition of methionine and cysteine indicates that in addition to abiotic synthetic processes, degradation of organic compounds on the primordial Earth could have been important in diversifying the inventory of molecules of biochemical significance not readily formed from other abiotic reactions, or derived from extraterrestrial delivery.  相似文献   

20.
With growing evidence for a heavy bombardment period ending 4–3.8 billion years ago, meteorites and comets may have been an important source of prebiotic carbon, nitrogen, and phosphorus on the early Earth. Life may have originated shortly after the late-heavy bombardment, when concentrations of organic compounds and reactive phosphorus were enough to “kick life into gear”. This work quantifies the sources of potentially prebiotic, extraterrestrial C, N, and P and correlates these fluxes with a comparison to total Ir fluxes, and estimates the effect of atmosphere on the survival of material. We find (1) that carbonaceous chondrites were not a good source of organic compounds, but interplanetary dust particles provided a constant, steady flux of organic compounds to the surface of the Earth, (2) extraterrestrial metallic material was much more abundant on the early Earth, and delivered reactive P in the form of phosphide minerals to the Earth’s surface, and (3) large impacts provided substantial local enrichments of potentially prebiotic reagents. These results help elucidate the potential role of extraterrestrial matter in the origin of life.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号