首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
Recent publications defined requirements for inter-subunit contacts in a benzodiazepine-sensitive GABAA receptor (GABAARα1β3γ2). There is strong evidence that the heteropentameric receptor contains two α1, two β3, and one γ2 subunit. However, the available data do not distinguish two possibilities: When viewed clockwise from an extracellular viewpoint the subunits could be arranged in either γ2β3α1β3α1 or γ2α1β3α1β3 configurations. Here we use molecular modeling to thread the relevant GABAAR subunit sequences onto a template of homopentameric subunits in the crystal structure of the acetylcholine binding protein (AChBP). The GABAA sequences are known to have 15-18% identity with the acetylcholine binding protein and nearly all residues that are conserved within the nAChR family are present in AChBP. The correctly aligned GABAA sequences were threaded onto the AChBP template in the γ2β3α1β3α1 or γ2α1β3α1β3  arrangements. Only the γ2α1β3α1β3 arrangement satisfied three known criteria: (1) α1 His102 binds at the γ2 subunit interface in proximity to γ2 residues Thr142, Phe77, and Met130; (2) α1 residues 80-100 bind near γ2 residues 91-104; and (3) α1 residues 58-67 bind near the β3 subunit interface. In addition to predicting the most likely inter-subunit arrangement, the model predicts which residues form the GABA and benzodiazepine binding sites.  相似文献   

2.
Gamma-aminobutyric acid, type A (GABA(A)) receptors are ligand-gated chloride channels and are the major inhibitory transmitter receptors in the central nervous system. The majority of these receptors is composed of two alpha, two beta, and one gamma subunits. To identify sequences important for subunit assembly, we generated C-terminally truncated and chimeric gamma(3) constructs. From their ability to associate with full-length alpha(1) and beta(3) subunits, we concluded that amino acid sequence gamma(3)(70-84) either directly interacts with alpha(1) or beta(3) subunits or stabilizes a contact site elsewhere in the protein. The observation that this sequence contains amino acid residues homologous to gamma(2) residues contributing to the benzodiazepine-binding site at the alpha(1)/gamma(2) interface suggested that in alpha(1)beta(3)gamma(3) receptors the sequence gamma(3)(70-84) is located at the alpha(1)/gamma(3) interface. In the absence of alpha(1) subunits this sequence might allow assembly of beta(3) with gamma(3) subunits. Other experiments indicated that sequences gamma(3)(86-95) and gamma(3)(94-107), which are homologous to previously identified sequences important for assembly of gamma(2) subunits, are also important for assembly of gamma(3) subunits. This indicates that during assembly of the GABA(A) receptor, more than one N-terminal sequence is important for binding to the same neighboring subunit. Whether the three sequences investigated are involved in direct interaction or stabilize other regions involved in intersubunit contacts has to be further studied.  相似文献   

3.
Comparative models of GABA(A) receptors composed of alpha1 beta3 gamma2 subunits were generated using the acetylcholine-binding protein (AChBP) as a template and were used for predicting putative engineered cross-link sites between the alpha1 and the gamma2 subunit. The respective amino acid residues were substituted by cysteines and disulfide bond formation between subunits was investigated on co-transfection into human embryonic kidney (HEK) cells. Although disulfide bond formation between subunits could not be observed, results indicated that mutations studied influenced assembly of GABA(A) receptors. Whereas residue alpha1A108 was important for the formation of assembly intermediates with beta3 and gamma2 subunits consistent with its proposed location at the alpha1(+) side of GABA(A) receptors, residues gamma2T125 and gamma2P127 were important for assembly with beta3 subunits. Mutation of each of these residues also caused an impaired expression of receptors at the cell surface. In contrast, mutated residues alpha1F99C, alpha1S106C or gamma2T126C only impaired the formation of receptors at the cell surface when co-expressed with subunits in which their predicted interaction partner was also mutated. These data are consistent with the prediction that the mutated residue pairs are located close to each other.  相似文献   

4.
GABA(A) receptor function was studied in cerebral cortical vesicles prepared from rats after intracerebroventricular microinjections of antisense oligodeoxynucleotides (aODNs) for alpha1, gamma2, beta1, beta2 subunits. GABA(A) receptor alpha1 subunit aODNs decreased alpha1 subunit mRNA by 59+/-10%. Specific [3H]GABA binding was decreased by alpha1 or beta2 subunit aODNs (to 63+/-3% and 64+/-9%, respectively) but not changed by gamma2 subunit aODNs (94+/-5%). Specific [3H]flunitrazepam binding was increased by alpha1 or beta2 subunit aODNs (122+/-8% and 126+/-11%, respectively) and decreased by gamma2 subunit aODNs (50+/-13%). The "knockdown" of specific subunits of the GABA(A )receptor significantly influenced GABA-stimulated 36Cl- influx. Injection of alpha1 subunit aODNs decreased basal 36Cl- influx and the GABA Emax; enhanced GABA modulation by diazepam; and decreased antagonism of GABA activity by bicuculline. Injection of gamma2 subunit aODNs increased the GABA Emax; reversed the modulatory efficacy of diazepam from enhancement to inhibition of GABA-stimulation; and reduced the antagonist effect of bicuculline. Injection of beta2 subunit aODNs reduced the effect of diazepam whereas treatment with beta1 subunit aODNs had no effect on the drugs studied. Conclusions from our studies are: (1) alpha1 subunits promote, beta2 subunits maintain, and gamma2 subunits suppress GABA stimulation of 36Cl- influx; (2) alpha1 subunits suppress, whereas beta2, and gamma2 subunits promote allosteric modulation by benzodiazepines; (3) diazepam can act as an agonist or inverse agonist depending on the relative composition of the receptor subunits: and (4) the mixed competitive/non-competitive effects of bicuculline result from activity at alpha1 and gamma2 subunits and the lack of activity at beta1 and beta2 subunits.  相似文献   

5.
Rapid neurotransmission is mediated through a superfamily of Cys-loop receptors that includes the nicotinic acetylcholine (nAChR), gamma-aminobutyric acid (GABA(A)), serotonin (5-HT(3)) and glycine receptors. A class of ligands, including galanthamine, local anesthetics and certain toxins, interact with nAChRs non-competitively. Suggested modes of action include blockade of the ion channel, modulation from undefined extracellular sites, stabilization of desensitized states, and association with annular or boundary lipid. Alignment of mammalian Cys-loop receptors shows aromatic residues, found in the acetylcholine or ligand-binding pocket of nAChRs, are conserved in all subunit interfaces of neuronal nAChRs, including those that are not formed by alpha subunits on the principal side of the transmitter binding site. The amino-terminal domain containing the ligand recognition site is homologous to the soluble acetylcholine-binding protein (AChBP) from mollusks, an established structural and functional surrogate. We assess ligand specificity and employ X-ray crystallography with AChBP to demonstrate ligand interactions at subunit interfaces lacking vicinal cysteines (i.e. the non-alpha subunit interfaces in nAChRs). Non-competitive nicotinic ligands bind AChBP with high affinity (K(d) 0.015-6 microM). We mutated the vicinal cysteine residues in loop C of AChBP to mimic the non-alpha subunit interfaces of neuronal nAChRs and other Cys loop receptors. Classical nicotinic agonists show a 10-40-fold reduction in binding affinity, whereas binding of ligands known to be non-competitive are not affected. X-ray structures of cocaine and galanthamine bound to AChBP (1.8 A and 2.9 A resolution, respectively) reveal interactions deep within the subunit interface and the absence of a contact surface with the tip of loop C. Hence, in addition to channel blocking, non-competitive interactions with heteromeric neuronal nAChR appear to occur at the non-alpha subunit interface, a site presumed to be similar to that of modulating benzodiazepines on GABA(A) receptors.  相似文献   

6.
The major isoform of the gamma-aminobutyric acid type A (GABA(A)) receptor is thought to be composed of 2alpha(1), 2beta(2), and 1gamma(2) subunit(s), which surround the ion pore. Definite evidence for the subunit arrangement is lacking. We show here that GABA(A) receptor subunits can be concatenated to a trimer that can be functionally expressed upon combination with a dimer. Many combinations did not result in the functional expression. In contrast, four different combinations of triple subunits with dual subunit constructs, all resulting in the identical pentameric receptor gamma(2)beta(2)alpha(1)beta(2)alpha(1), could be successfully expressed in Xenopus oocytes. We characterized the functional properties of these receptors in respect to agonist, competitive antagonist, and diazepam sensitivity. All properties were similar to those of wild type alpha(1)beta(2)gamma(2) GABA(A) receptors. Thus, together with information on the crystal structure of the homologous acetylcholine-binding protein (Brejc, K., van Dijk, W. J., Klaassen, R. V., Schuurmans, M., van Der Oost, J., Smit, A. B., and Sixma, T. K., (2001) Nature 411, 269-276, we provide evidence for an arrangement gamma(2)beta(2)alpha(1)beta(2)alpha(1), counterclockwise when viewed from the synaptic cleft. Forced subunit assembly will also allow receptors containing different subunit isoforms or mutant subunits to be expressed, each in a desired position. The methods established here should be applicable to the entire ion channel family comprising nicotinic acetylcholine, glycine, and 5HT(3) receptors.  相似文献   

7.
Two invariant tryptophan residues on the N-terminal extracellular region of the rat alpha1 subunit, Trp-69 and Trp-94, are critical for the assembly of the GABA(A) (gamma-aminobutyric acid, type A) receptor into a pentamer. These tryptophans are common not only to all GABA(A) receptor subunits, but also to all ligand-gated ion channel subunits. Converting each Trp residue to Phe and Gly by site-directed mutagenesis allowed us to study the role of these invariant tryptophan residues. Mutant alpha1 subunits, coexpressed with beta2 subunits in baculovirus-infected Sf9 cells, displayed high affinity binding to [(3)H]muscimol, a GABA site ligand, but no binding to [(35)S]t-butyl bicyclophosphorothionate, a ligand for the receptor-associated ion channel. Neither [(3)H]muscimol binding to intact cells nor immunostaining of nonpermeabilized cells gave evidence of surface expression of the receptor. When expressed with beta2 and gamma2 polypeptides, the mutant alpha1 polypeptides did not form [(3)H]flunitrazepam binding sites though wild-type alpha1 polypeptides did. The distribution of the mutant receptors on sucrose gradients suggests that the effects on ligand binding result from the inability of the mutant alpha1 subunits to form pentamers. We conclude that Trp-69 and Trp-94 participate in the formation of the interface between alpha and beta subunits, but not of the GABA binding site.  相似文献   

8.
In alpha1, beta2, and gamma2 subunits of the gamma-aminobutyric acid A (GABA(A)) receptor, a conserved lysine residue occupies the position in the middle of the predicted extracellular loop between the transmembrane M2 and M3 regions. In all three subunits, this residue was mutated to alanine. Whereas the mutation in alpha1 and beta2 subunits resulted each in about a sixfold shift of the concentration-response curve for GABA to higher concentrations, no significant effect by mutation in the gamma subunit was detected. The affinity for the competitive inhibitor bicuculline methiodide was not affected by the mutations in either the alpha1 subunit or the beta2 subunit. Concentration-response curves for channel activation by pentobarbital were also shifted to higher concentrations by the mutation in the alpha and beta subunits. Binding of [3H]Ro 15-1788 was unaffected by the mutation in the alpha subunit, whereas the binding of [3H]muscimol was shifted to lower affinity. Mutation of the residue in the alpha1 subunit to E, Q, or R resulted in an about eight-, 10-, or fivefold shift, respectively, to higher concentrations of the concentration-response curve for GABA. From these observations, it is concluded that the corresponding residues on the alpha1 and beta2 subunits are involved more likely in the gating of the channel by GABA than in the binding of GABA or benzodiazepines.  相似文献   

9.
The gamma-aminobutyric acid, type A (GABA(A)) receptor is a chloride-conducting receptor composed of alpha, beta, and gamma subunits assembled in a pentameric structure forming a central pore. Each subunit has a large extracellular agonist binding domain and four transmembrane domains (M1-M4), with the second transmembrane (M2) domain lining the pore. Mutation of five amino acids in the M1-M2 loop of the beta(3) subunit to the corresponding amino acids of the alpha(7) nicotinic acetylcholine subunit rendered the GABA(A) receptor cation-selective upon co-expression with wild type alpha(2) and gamma(2) subunits. Similar mutations in the alpha(2) or gamma(2) subunits did not lead to such a change in ion selectivity. This suggests a unique role for the beta(3) subunit in determining the ion selectivity of the GABA(A) receptor. The pharmacology of the mutated GABA(A) receptor is similar to that of the wild type receptor, with respect to muscimol binding, Zn(2+) and bicuculline sensitivity, flumazenil binding, and potentiation of GABA-evoked currents by diazepam. There was, however, an increase in GABA sensitivity (EC(50) = 1.3 microm) compared with the wild type receptor (EC(50) = 6.4 microm) and a loss of desensitization to GABA of the mutant receptor.  相似文献   

10.
GABA(A) receptors are chloride ion channels that can be opened by GABA, the most important inhibitory transmitter in the CNS. In the mammalian brain the majority of these pentameric receptors is composed of two alpha, two beta and one gamma subunit. To achieve the correct order of subunits around the pore, each subunit must form specific contacts via its plus (+) and minus (-) side. To identify a sequence on the beta3 subunit important for assembly, we generated various full-length or truncated chimeric beta3 constructs and investigated their ability to assemble with alpha1 and gamma2 subunits. It was demonstrated that replacement of the sequence beta3(76-89) by the homologous alpha1 sequence impaired assembly with alpha1 but not with gamma2 subunits in alpha1beta3gamma2-GABA(A) receptors. Other experiments indicated that assembly was impaired via the beta3(-) side of the chimeric subunit. Within the sequence beta3(76-89) the sequence beta3(85-89) seemed to be of primary importance for assembly with alpha1 subunits. A comparison with the structure of the acetylcholine-binding protein supports the conclusion that the sequence beta3(85-89) is located at the beta3(-) side and indicates that it contains amino acid residues that might directly interact with the (+) side of the neighbouring alpha1 subunit.  相似文献   

11.
The GABA(A) receptors are ligand-gated chloride channels. The subunit stoichiometry of the receptors is controversial; four, five, or six subunits per receptor molecule have been proposed for alphabeta receptors, whereas alphabetagamma receptors are assumed to be pentamers. In this study, alpha-beta and beta-alpha tandem cDNAs from the alpha1 and beta2 subunits of the GABA(A) receptor were constructed. We determined the minimal length of the linker that is required between the two subunits for functional channel expression for each of the tandem constructs. 10- and 23-amino acid residues are required for alpha-beta and beta-alpha, respectively. The tandem constructs either alone or in combination with each other failed to express functional channels in Xenopus oocytes. Therefore, we can exclude tetrameric or hexameric alphabeta GABA(A) receptors. We can also exclude proteolysis of the tandem constructs. In addition, the tandem constructs were combined with single alpha, beta, or gamma subunits to allow formation of pentameric arrangements. In contrast to the combination with alpha subunits, the combination with either beta or gamma subunits led to expression of functional channels. Therefore, a pentameric arrangement containing two alpha1 and three beta2 subunits is proposed for the receptor composed of alpha and beta subunits. Our findings also favor an arrangement betaalphagammabetaalpha for the receptor composed of alpha, beta, and gamma subunits.  相似文献   

12.
Density gradient centrifugation of native and recombinant gamma-aminobutyric acid, type A (GABA(A)) receptors was used to detect assembly intermediates. No such intermediates could be identified in extracts from adult rat brain or from human embryonic kidney (HEK) 293 cells transfected with alpha(1), beta(3), and gamma(2) subunits and cultured at 37 degrees C. However, subunit dimers, trimers, tetramers, and pentamers were found in extracts from the brain of 8-10-day-old rats and from alpha(1)beta(3)gamma(2) transfected HEK cells cultured at 25 degrees C. In both systems, alpha(1), beta(3), and gamma(2) subunits could be identified in subunit dimers, indicating that different subunit dimers are formed during GABA(A) receptor assembly. Co-transfection of HEK cells with various combinations of full-length and C-terminally truncated alpha(1) and beta(3) or alpha(1) and gamma(2) subunits and co-immunoprecipitation with subunit-specific antibodies indicated that even subunits containing no transmembrane domain can assemble with each other. Whereas alpha(1)gamma(2), alpha(1)Ngamma(2), alpha(1)gamma(2)N, and alpha(1)Ngamma(2)N, combinations exhibited specific [(3)H]Ro 15-1788 binding, specific [(3)H]muscimol binding could only be found in alpha(1)beta(3) and alpha(1)beta(3)N, but not in alpha(1)Nbeta(3) or alpha(1)Nbeta(3)N combinations. This seems to indicate that a full-length alpha(1) subunit is necessary for the formation of the muscimol-binding site and for the transduction of agonist binding into channel gating.  相似文献   

13.
A GABA(A) receptor alpha1 subunit epilepsy mutation (alpha1(A322D)) introduces a negatively charged aspartate residue into the hydrophobic M3 transmembrane domain of the alpha1 subunit. We reported previously that heterologous expression of alpha1(A322D)beta2gamma2 receptors in mammalian cells resulted in reduced total and surface alpha1 subunit protein. Here we demonstrate the mechanism of this reduction. Total alpha1(A322D) subunit protein was reduced relative to wild type protein by a similar amount when expressed alone (86 +/- 6%) or when coexpressed with beta2 and gamma2S subunits (78 +/- 6%), indicating an expression reduction prior to subunit oligomerization. In alpha1beta2gamma2S receptors, endoglycosidase H deglycosylated only 26 +/- 5% of alpha1 subunits, consistent with substantial protein maturation, but in alpha1(A322D)beta2gamma2S receptors, endoglycosidase H deglycosylated 91 +/- 4% of alpha1(A322D) subunits, consistent with failure of protein maturation. To determine the cellular localization of wild type and mutant subunits, the alpha1 subunit was tagged with yellow (alpha1-YFP) or cyan (alpha1-CFP) fluorescent protein. Confocal microscopic imaging demonstrated that 36 +/- 4% of alpha1-YFPbeta2gamma2 but only 5 +/- 1% alpha1(A322D)-YFPbeta2gamma2 colocalized with the plasma membrane, whereas the majority of the remaining receptors colocalized with the endoplasmic reticulum (55 +/- 4% alpha1-YFPbeta2gamma2S, 86 +/- 3% alpha1(A322D)-YFP). Heterozygous expression of alpha1-CFPbeta2gamma2S and alpha1(A322D)-YFPbeta2gamma2S or alpha1-YFPbeta2gamma2S and alpha1(A322D)-CFPbeta2gamma2S receptors showed that membrane GABA(A) receptors contained primarily wild type alpha1 subunits. These data demonstrate that the A322D mutation reduces alpha1 subunit expression after translation, but before assembly, resulting in endoplasmic reticulum-associated degradation and membrane alpha1 subunits that are almost exclusively wild type subunits.  相似文献   

14.
Two gamma-aminobutyric acid(A) (GABA(A)) receptor chimeras were designed in order to elucidate the structural requirements for GABA(A) receptor desensitization and assembly. The (alpha1/gamma2) and (gamma2/alpha1) chimeric subunits representing the extracellular N-terminal domain of alpha1 or gamma2 and the remainder of the gamma2 or alpha1 subunits, respectively, were expressed with beta2 and beta2gamma2 in Spodoptera frugiperda (Sf-9) cells using the baculovirus expression system. The (alpha1/gamma2)beta2 and (alpha1/gamma2)beta2gamma2 but not the (gamma2/alpha1)beta2 and (gamma2/alpha1)beta2gamma2 subunit combinations formed functional receptor complexes as shown by whole-cell patch-clamp recordings and [3H]muscimol and [3H]flunitrazepam binding. Moreover, the surface immunofluorescence staining of Sf-9 cells expressing the (alpha1/gamma2)-containing receptors was pronounced, as opposed to the staining of the (gamma2/alpha1)-containing receptors, which was only slightly higher than background. To explain this, the (alpha1/gamma2) and (gamma2/alpha1) chimeras may act like alpha1 and gamma2 subunits, respectively, indicating that the extracellular N-terminal segment is important for assembly. However, the (alpha1/gamma2) chimeric subunit had characteristics different from the alpha1 subunit, since the (alpha1/gamma2) chimera gave rise to no desensitization after GABA stimulation in whole-cell patch-clamp recordings, which was independent of whether the chimera was expressed in combination with beta2 or beta2gamma2. Surprisingly, the (alpha1/gamma2)(gamma2/alpha1)beta2 subunit combination did desensitize, indicating that the C-terminal segment of the alpha1 subunit may be important for desensitization. Moreover, desensitization was observed for the (alpha1/gamma2)beta2gamma2 receptor with respect to the direct activation by pentobarbital. This suggests differences in the mechanism of channel activation for pentobarbital and GABA.  相似文献   

15.
In mitochondria, the hydrolytic activity of ATP synthase is prevented by an inhibitor protein, IF1. The active bovine protein (84 amino acids) is an alpha-helical dimer with monomers associated via an antiparallel alpha-helical coiled coil composed of residues 49-81. The N-terminal inhibitory sequences in the active dimer bind to two F1-ATPases in the presence of ATP. In the crystal structure of the F1-IF1 complex at 2.8 A resolution, residues 1-37 of IF1 bind in the alpha(DP)-beta(DP) interface of F1-ATPase, and also contact the central gamma subunit. The inhibitor opens the catalytic interface between the alpha(DP) and beta(DP) subunits relative to previous structures. The presence of ATP in the catalytic site of the beta(DP) subunit implies that the inhibited state represents a pre-hydrolysis step on the catalytic pathway of the enzyme.  相似文献   

16.
GABA(A) receptors are ligand-gated chloride channels composed of five homologous subunits that specifically recognize one another and assemble around an aqueous pore. To identify domains responsible for the specificity of subunit association, we constructed C-terminal truncated gamma(2) subunits, as well as mutated and chimeric fragments. From their ability to interfere with alpha(1)beta(3)gamma(2) receptor assembly and to associate with full-length subunits, we concluded that amino acid sequences gamma(2)-(91-104) and gamma(2)-(83-90) form the sites mediating assembly with alpha(1) and beta(3) subunits, respectively. Neural network-based secondary structure prediction, Monte Carlo optimization, and hydrophobicity analysis led to the conclusion that these sites also form the intersubunit contacts in the completely assembled receptor and provided important information on the benzodiazepine-binding site and structure of GABA(A) receptors.  相似文献   

17.
Y C Huang  R F Colman 《Biochemistry》1990,29(36):8266-8273
Pig heart NAD-dependent isocitrate dehydrogenase has a subunit structure consisting of alpha 2 beta gamma, with the alpha subunit exhibiting a molecular weight of 39,000 and the beta and gamma each having molecular weights of 41,000. The amino-terminal sequences (33-35 residues) and the cysteinyl peptide sequences have now been determined by using subunits separated by chromatofocusing or isoelectric focusing and electroblotting. Displacement of the N-terminal sequence of the alpha subunit by 11-12 amino acids relative to that of the larger beta and gamma subunits reveals a 17 amino acid region of great similarity in which 10 residues are identical in all three subunits. The complete enzyme has 6.0 free SH groups per average subunit of 40,000 daltons, but yields 15 distinguishable cysteines in isolated tryptic peptides. Six distinct cysteines in sequenced peptides have been located in the alpha subunit. The beta and gamma subunits contain seven and five cysteines, respectively, with tryptic peptides containing three cysteines being common to the beta and gamma subunits. The three subunits appear to be closely related, but beta and gamma are more similar to each other than either is to the alpha subunit. The NAD-specific isocitrate dehydrogenase from pig heart has been shown to have 2 binding sites/enzyme tetramer for isocitrate, manganous ion, NAD+, and the allosteric activator ADP [Colman, R. F. (1983) Pept. Protein Rev. 1, 41-69]. It is proposed that the catalytically active tetrameric enzyme is organized as a dimer of dimers in which the alpha beta and alpha gamma dimers are nonidentical but functionally similar.  相似文献   

18.
Malany S  Osaka H  Sine SM  Taylor P 《Biochemistry》2000,39(50):15388-15398
The alpha-neurotoxins are three-fingered peptide toxins that bind selectively at interfaces formed by the alpha subunit and its associating subunit partner, gamma, delta, or epsilon of the nicotinic acetylcholine receptor. Because the alpha-neurotoxin from Naja mossambica mossambica I shows an unusual selectivity for the alpha gamma and alpha delta over the alpha epsilon subunit interface, residue replacement and mutant cycle analysis of paired residues enabled us to identify the determinants in the gamma and delta sequences governing alpha-toxin recognition. To complement this approach, we have similarly analyzed residues on the alpha subunit face of the binding site dictating specificity for alpha-toxin. Analysis of the alpha gamma interface shows unique pairwise interactions between the charged residues on the alpha-toxin and three regions on the alpha subunit located around residue Asp(99), between residues Trp(149) and Val(153), and between residues Trp(187) and Asp(200). Substitutions of cationic residues at positions between Trp(149) and Val(153) markedly reduce the rate of alpha-toxin binding, and these cationic residues appear to be determinants in preventing alpha-toxin binding to alpha 2, alpha 3, and alpha 4 subunit containing receptors. Replacement of selected residues in the alpha-toxin shows that Ser(8) on loop I and Arg(33) and Arg(36) on the face of loop II, in apposition to loop I, are critical to the alpha-toxin for association with the alpha subunit. Pairwise mutant cycle analysis has enabled us to position residues on the concave face of the three alpha-toxin loops with respect to alpha and gamma subunit residues in the alpha-toxin binding site. Binding of NmmI alpha-toxin to the alpha gamma interface appears to have dominant electrostatic interactions not seen at the alpha delta interface.  相似文献   

19.
Zimmermann JL  Amano T  Sigalat C 《Biochemistry》1999,38(46):15343-15351
The properties of the nucleotide binding sites in the isolated beta and alpha subunits of H(+)-ATPase from Bacillus PS3 (TF1) have been examined by studying the EPR properties of bound VO(2+), which is a paramagnetic probe for the native Mg2+ cation cofactor. The amino acid ligands of the VO2+ complexes with the isolated beta subunit, with the isolated alpha subunit, with different mixtures of both alpha and beta subunits, and with the catalytic alpha 3 beta 3 gamma subcomplex have been characterized by a combination of EPR, ESEEM, and HYSCORE spectroscopies. The EPR spectrum of the isolated beta subunit with bound VO2+ (1 VO2+/beta) is characterized by (51)V hyperfine coupling parameters (A( parallel) = 168 x 10(-)(4) cm(-)(1) and A( perpendicular) = 60 x 10(-)(4) cm(-)(1)) that suggest that VO2+ binds to the isolated beta subunit with at least one nitrogen ligand. Results obtained for the analogous VO2+ complex with the isolated alpha subunit are virtually identical. ESEEM and HYSCORE spectra are also reported and are similar for both complexes, indicating a very similar coordination scheme for VO2+ bound to isolated alpha and beta subunits. In the isolated beta (or alpha) subunit, the bound VO2+ cation is coordinated by one nitrogen ligand with hyperfine coupling parameters A( parallel)((14)N) = 4.44 MHz, and A( perpendicular)((14)N) = 4.3 MHz and quadrupole coupling parameters e(2)()qQ approximately 3.18 MHz and eta approximately 1. These are typical for amine-type nitrogen ligands equatorial to the VO2+ cation; amino acid residues in the TF1 beta and alpha subunits with nitrogen donors that may bind VO2+ are reviewed. VO2+ bound to a mixture of alpha and beta subunits in the presence of 200 mM Na2SO4 to promote the formation of the alpha 3 beta 3 hexamer has a second nitrogen ligand with magnetic properties similar to those of a histidine imidazole. This situation is analogous to that in the alpha 3 beta 3 gamma subcomplex and in the whole TF1 enzyme [Buy, C., Matsui, T., Andrianambinintsoa, S., Sigalat, C., Girault, G., and Zimmermann, J.-L. (1996) Biochemistry 35, 14281-14293]. These data are interpreted in terms of only partially structured nucleotide binding sites in the isolated beta and alpha subunits as compared to fully structured nucleotide binding sites in the alpha 3 beta 3 heterohexamer, the alpha 3 beta 3 gamma subcomplex, and the whole TF1 ATPase.  相似文献   

20.
We have determined the subunit stoichiometry of chicken neuronal nicotinic acetylcholine receptors expressed in Xenopus oocytes by quantitation of the amount of radioactivity in individual subunits of [35S] methionine-labeled receptors. The chicken neuronal nicotinic acetylcholine receptor appears to be a pentamer of two alpha 4 acetylcholine-binding subunits and three beta 2 structural subunits. We also show that these expressed receptors bind L-[3H]nicotine with high affinity, are transported to the surface of the oocyte outer membrane, and cosediment on sucrose gradients with acetylcholine receptors isolated from chicken brain. Using this unique and generally applicable method of determining subunit stoichiometry of receptors expressed in oocytes, we obtained the expected (alpha 1) 2 beta 1 gamma delta stoichiometry for muscle-type acetylcholine receptors assembled from coexpression of either Torpedo alpha 1 or human alpha 1 subunits, with Torpedo beta 1, gamma, and delta subunits.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号