首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Extracellular microelectrode recordings were made from the auditory cortex of anaesthetized cats during acoustic click stimulation. The microelectrode of low resistance allowed to record evoked field potentials and unit discharges simultaneously. In distant extracellular leads the relation of unit discharges and field potentials was equivocal. Near extracellular leads revealed that the antidromic invasion of the somadendritic membrane by excitation is a frequency dependent process (just as evoked field potentials) while spike potentials can reliably be elicited from the initial segment at high frequencies. It is assumed that the excitation spreading from the initial segment to the soma-dendritic membrane represents an important component of the evoked potentials, and their frequency dependence may be traced back to inhibitions activated by afferent impulses.  相似文献   

2.
Changes in the EEG induced by a single spike were recorded in the hippocampus of an unanesthetized rabbit. Summation of focal electrical activity synchronous with spontaneous single unit discharges at the symmetrical point of contralateral hemisphere revealed no stable potentials which could reflect these changes. In two cases discharges identified as activity of Shaffer's collaterals were recorded in area CA1. Summation of post-spike changes in evoked activity recorded by the same microelectrode showed stable negative waves with an amplitute of 40–60 µV, which could have been evoked by single spikes. The curve of amplitude of the averaged evoked potentials versus near-threshold current strength stimulating the intrahippocampal pathways was not smooth in most experiments but stepwise in character. It is suggested that the minimal evoked potential corresponding to the first step (amplitude 40–80 µV) reflects a response to stimulation of one fiber. After above-threshold tetanization prolonged posttetanic potentiation of the minimal evoked potentials did not arise in CA1 in response to stimulation of Shaffer's collaterals. Minimal evoked potentials recorded in area CA3 in response to stimulation of the dentate fascia showed clear potentiation. The results are in agreement with the hypothesis of the synaptic localization of the mechanisms responsible for prolonged posttetanic potentiation.Brain Institute, Academy of Medical Sciences of the USSR, Moscow. Translated from Neirofiziologiya, Vol. 9, No. 2, pp. 124–134, March–April, 1977.  相似文献   

3.
The carotid body and its own nerve were removed from cats anesthetized with sodium pentobarbital and placed in an air gap system; the carotid body was bathed in modified Locke's solution equilibrated with 50% O2 in N2, pH 7.43 at 35°C. The sensory discharges, changes in “resting” receptor polarization and the mass receptor potential evoked by ACh or NaCN were recorded with nonpolarizable electrodes placed across the gap. Receptor potentials and sensory discharges evoked by ACh showed an appreciable increase in amplitude and frequency when the preparation was bathed in eserinized Locke. Eserine did not change appreciably the responses evoked by NaCN. Excessive depolarization elicited by either ACh or NaCN was accompanied by sensory discharge block. Removal of K+ ions from the bathing solution induced receptor hyperpolarization and an increase in the amplitude of the evoked receptor potentials. An increase of K+ concentration had the opposite effect. Reduction of Na+ or NaCl to one half, or total removal of this salt, induced an initial reduction and later disappearance of the sensory discharges, some receptor hyperpolarization and a reduction in the amplitude of the evoked receptor potentials. Reduction or removal of Ca++ produced receptor depolarization, a marked depression of the evoked receptor potentials, an increase in the frequency of the sensory discharges and a reduction in the amplitude of the nerve action potentials. High Ca++ or Mg++ had little or no effect on action potential amplitude or resting polarization, but decreased sensory discharge frequency and the evoked receptor potentials. Total or partial replacement of Ca++ with Mg++ induced complex effects: (1) receptor depolarization which occurred in low Ca++, was prevented by addition of Mg++ ions; (2) the amplitude of the evoked receptor potentials was depressed; (3) the nerve discharge frequency was reduced as it was in high Mg++ solutions; and (4) the amplitude of the nerve action potentials was reduced as it was in low Ca++ solutions. Temperature had a marked effect on the chemoreceptors since a t high temperatures the receptors were depolarized and the discharge frequency increased. The baseline discharge and responses evoked by ACh or NaCN were depressed at low temperatures. The results are discussed in terms of possible receptor mechanisms influenced by the different ions.  相似文献   

4.
The characteristics of the averaged evoked potentials (AEP) (experiments with awake non-paralysed animals), of the evoked potentials (EP) and of the responses of single sensorimotor cortical neurons (acute experiments) of cats to tone-bursts with frequencies within 0.1-6.0 kHz were studied. Response selectivity to the tone-burst frequencies which are energetically pronounced in some biologically significant sounds for the cat was observed. The averaged curve of the dependence of the amplitude of AEP in the somatosensory cortical region (S1) on the tone-burst frequency has reliable maximum values at the frequencies of 0.8, 1.6 and 2.0-3.0 kHz. Most pronounced changes in the heart rhythm were observed within the tone-burst frequency ranges in which the AEP of the highest amplitudes were recorded. The amplitude of the AEP was found to increase during the conditioned reflex elaboration. The curve of the dependence of the probability of the EP occurrence on the frequency at equal sound pressure levels had maximum values at the frequencies of 1.6 and 3.2 kHz. The highest amplitude values of EP were found at frequencies of 0.8, 1.6 and 3.2 kHz. More than half of the recorded neurons revealed the lowest values of the response thresholds and the maximum values of the occurrence probability under suprathreshold stimulation at frequencies close to 0.8, 1.6, and 3.2 kHz. It is supposed that the above mentioned feature of the input frequency organization in sensorimotor cortex is connected with the selectivity as to the biological significance of acoustic stimuli.  相似文献   

5.
The spatial analysis of the potentials of single motor units of the rat medial gastrocnemius muscle evoked by stimulation of the fibres of split ventral roots was carried out with a bipolar electrode moving in the direction perpendicular to the longitudinal axis of the muscle fibres. During this movement of the electrode a variability was observed in the time of the biphasic potential from its maximum to minimum, and in the peak-to-peak amplitude of these potentials. The potentials recorded outside the territory of the motor unit had a lower amplitude in relation to the potentials from the territory of the unit. This made localization of the motor unit on the cross-section of the muscle possible. Differences in the duration of the potential from maximal to minimal amplitude (maximum-minimum amplitude time--M-MAT) of each investigated motor unit from successive recording sites reflected the number of fibres contributing to the action potential and the distance of the recording surface of the electrode from the zone of the motor end-plates of this motor unit. The greatest diameter of the territory of the observed motor units reached 2.5 mm.  相似文献   

6.
Unit activity was studied in the gigantocellular nucleus of decerebrate cats after injection of tetanus toxin into the nucleus. The toxin was used to disturb inhibition. An increase in amplitude and frequency of unit discharges, a marked increase in integral spontaneous and, in particular, evoked activity, an increase in the number of neurons with a "burst" type of activity, and prolonged maintenance of enhanced evoked activity were recorded in the poisoned nucleus. The increased activity in the part of the poisoned nucleus studied could be temporarily suppressed by injection of glycine into the nucleus or by strong direct electrical stimulation. It can be concluded from the results that a population of neurons with disturbed inhibitory connections forms an excitation generator. The nature of operation of such a generator is discussed and the possibility of simulating neurological syndromes by the creation of such generators in various parts of the CNS is argued.  相似文献   

7.
The role of the lateral reticular nucleus and nuclei of the inferior olive in the formation of cerebellar cortical evoked potentials in response to vagus nerve stimulation was determined in experiments on 28 cats anesthetized with chloralose and pentobarbital. After electrolytic destruction of the lateral reticular nucleus, in response to vagus nerve stimulation, especially ipsilateral, lengthening of the latent period and a decrease in amplitude of evoked potentials were observed; after bilateral destruction of this nucleus, evoked potentials could be completely suppressed. It is concluded that the lateral reticular nucleus relays interoceptive impulses in the vagus nerve system on to the cerebellar cortex. Additional evidence was given by the appearance of spike responses of Purkinje cells, in the form of mainly simple discharges, to stimulation of the vagus nerve. After destruction of the nuclei of the inferior olive, the latent period and the number of components of evoked potentials in response to vagus nerve stimulation remained unchanged but their amplitude was reduced. The role of the nuclei of the inferior olive as a regulator of the intensity of the flow of interoceptive impulses to the cerebellum is discussed.N. I. Pirogov Medical Institute, Vinnitsa. Translated from Neirofiziologiya, Vol. 9, No. 3, pp. 290–299, May–June, 1977.  相似文献   

8.
Two weeks after colchicine nerve treatment the evoked transmitter release was blocked in part of the frog sartorius synapses, with spontaneous activity being absent from some of them. In the synapses with evoked and spontaneous transmitter release preserved within this period of time, the magnitudes of the absolute refractory phase of nerve terminals were significantly higher than the control ones, while in part of synapses, the frequency of miniature end plate potentials (MEPP) was considerably increased. Nerve stimulation (5 imp.s-1) led to a rise of the amplitude of evoked potentials and of MEPP frequency followed by irreversible blockade of synaptic activity. It is concluded that substances transported by rapid axonal flow control the level of membrane potential of nerve terminals and are fairly important for presynaptic membrane integrity.  相似文献   

9.
In vitro studies have supported the occurrence of cerebellar long-term depression (LTD), an interaction between the parallel fibers and Purkinje cells (PCs) that requires the combined activation of the parallel and climbing fibers. To demonstrate the existence of LTD in alert animals, we investigated the plasticity of local field potentials (LFPs) evoked by electrical stimulation of the whisker pad. The recorded LFP showed two major negative waves corresponding to trigeminal (broken into the N2 and N3 components) and cortical responses. PC unitary extracellular recording showed that N2 and N3 occurred concurrently with PC evoked simple spikes, followed by an evoked complex spike. Polarity inversion of the N3 component at the PC level and N3 amplitude reduction after electrical stimulation of the parallel fiber volley applied on the surface of the cerebellum 2 ms earlier strongly suggest that N3 was related to the parallel fiber-PC synapse activity. LFP measurements elicited by single whisker pad stimulus were performed before and after trains of electrical stimuli given at a frequency of 8 Hz for 10 min. We demonstrated that during this later situation, the stimulation of the PC by parallel and climbing fibers was reinforced. After 8-Hz stimulation, we observed long-term modifications (lasting at least 30 min) characterized by a specific decrease of the N3 amplitude accompanied by an increase of the N2 and N3 latency peaks. These plastic modifications indicated the existence of cerebellar LTD in alert animals involving both timing and synaptic modulations. These results corroborate the idea that LTD may underlie basic physiological functions related to calcium-dependent synaptic plasticity in the cerebellum.  相似文献   

10.
The mice diaphragm muscle and microelectrode technique were used to check the influence of ryanodine (0.5 mcM) on spontaneous and evoked mediator release under conditions of potassium depolarization (8-16 mM [K+]ex or rhythmic (4-100 Hz) stimulation of motor nerve terminals. Weak tonic calcium loading (by muscle exposition to 8 mM [K+]ex) caused a two-fold frequency increase if miniature and plate potentials (MEPPs), which was returned to the basal level by subsequent application of ryanodine. This inhibitory effect of ryanodine was blocked by apamin (500 nM) a blocker of K+(Ca)-channels. A greater calcium load of terminals (in solution with 16 mM [K+]ex) caused a 15-fold increase of MEPPs frequency. Subsequent ryanodine application caused an additional 2-3-fold increase of MEPPs frequency. During rhythmic activity of motor synapses, ryanodine was able to decrease the amplitude of EPP by 60% at plateau phase at short low frequency (4 Hz) of discharges and to increase the amplitude of EPP by 60-150% at high frequency (70-100 Hz) of discharges. It is concluded that rynodine induced calcium release from intraterminal Ca2+-stores can influence dual: excitatory or inhibitory, action on spontaneous and evoked mediator release, due to different intraterminal calcium loads and regimen of synaptic activity.  相似文献   

11.
Effects of repetitive stimulation of the locus coeruleus on spinal responses to activation of cortico-, reticulo-, and vestibulospinal tracts were studied in decerebellate cats anesthetized with chloralose. Descending influences of these structures were assessed from changes in amplitude of extensor and flexor monosynaptic discharges or from the magnitude of postsynaptic potentials recorded from the corresponding motoneurons. Stimulation of the motor cortex or modullary reticular formation as a rule evoked two-component inhibitory responses in extensor motoneurons and excitatory-inhibitory responses in flexor motoneurons. Stimulation of locus coeruleus effectively depressed the amplitude of the late component and, to a lesser degree, that of the early component of inhibition arising after stimulation of the cerebral cortex or reticular formation. During stimulation of the locus coeruleus no marked changes were found in inhibitory responses evoked by vestibulospinal influences in flexor motoneurons, and also in excitatory responses arising after stimulation of the above-mentioned descending pathways in both groups of motoneurons.  相似文献   

12.
When the glossopharyngeal (GP) nerve of the frog was stimulated electrically, electropositive slow potentials were recorded from the tongue surface and depolarizing slow potentials from taste cells in the fungiform papillae. The amplitude of the slow potentials was stimulus strength- and the frequency-dependent. Generation of the slow potentials was not related to antidromic activity of myelinated afferent fibers in the GP nerve, but to orthodromic activity of autonomic post-ganglionic C fibers in the GP nerve. Intravenous injection of atropine abolished the positive and depolarizing slow potentials evoked by GP nerve stimulation, suggesting that the slow potentials were induced by the activity of parasympathetic post-ganglionic fibers. The amplitude and polarity of the slow potentials depended on the concentration of adapting NaCl solutions applied to the tongue surface. These results suggest that the slow potentials recorded from the tongue surface and taste cells are due to the liquid junction potential generated between saliva secreted from the lingual glands by GP nerve stimulation and the adapting solution on the tongue surface.  相似文献   

13.
We performed topographical mapping of somatosensory evoked potentials (SEPs) in response to posterior tibial nerve stimulation delivered at 2, 5 and 7.5 Hz in 15 healthy subjects. P37 was significantly attenuated at 5 and 7.5 Hz and the N50 component attenuated only at 5 Hz, its amplitude remaining stable for further increases in stimulus frequency. Frontal N37 and P50 potentials showed no significant decrease when the stimulus repetition frequency was changed from 2 to 7.5 Hz. P60 showed an attenuation of the amplitude only at 7.5 Hz. Latency and scalp topographies of all cortical components examined remained uncharged for the 3 stimulus rates tested The optimal stimulus rate for mapping of tibial nerve SEPs was lower than 5 Hz. The distinct recovery function of the contralateral N37-P50 and ipsilateral P37-N50 responses suggests that these potentials arise from separate generators  相似文献   

14.
Spontaneous and evoked activity of caudate nucleus neurons was recorded extracellularly in acute experiments on cats. Different forms of potentials were found by analysis of the results. The potentials recorded belong to three types: ordinary action potentials; prepotentials or incomplete spikes differing from ordinary action potentials in their lower amplitude and slower decline, and complex discharges in which a spike of somewhat reduced amplitude is followed by a slow positive-negative wave. In the spontaneous activity prepotentials were observed both in complete action potentials and in isolation. The frequency of the complex discharges was 0.5–1 per second. The slow wave of these discharges blocked prepotential and action potential formation. The origin of these forms of potentials in neurons of the caudate nucleus is discussed and they are compared with analogous forms of potentials described for the Purkinje cells of the cerebellum.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukranian SSR, Kiev. Translated from Neirofiziologiya, Vol. 9, No. 2, pp. 149–156, March–April, 1977.  相似文献   

15.
A comparative study of driving activity between normal subjects and neurological patients was performed. Driving activity was considered as the energy of the visual evoked potentials filtered at the same frequency of stimulation (1, 2, 4, 7, 10, 12 and 15 cps) using a CAT 400 C computer as a digital filter. The hemispheric symmetry of the responses was measured by the Pearson product moment correlation coefficient and the signal energy ratio. Each symmetry measure for every patient was compared with the normal values and considered abnormal when differences were greater than 3 SD from the normal mean. Of 25 patients 14 of them with a normal EEG, 23 presented severe alterations in the symmetry of the filtered visual evoked responses. Each patient showed a peculiar pattern of abnormality. It is concluded that the procedure described is a very powerful method in the discrimination of brain lesions.  相似文献   

16.
The effect of the corticosteroid hormone hydrocortisone on electrical activity in the lumbosacral portion of the spinal cord was studied in acute experiments on cats anesthetized with urethane and chloralose and immobilized with succinylcholine. The amplitude of mono- and polysynaptic discharges arising in the ventral roots in response to stimulation of various afferents of the animal's hind limb was increased by a statistically significant degree after intravenous injection of the hormone. The potentiating action of the hormone was strongest and most stable with respect to early and late postsynaptic potentials of the spinal cord. The dorsal cord potentials were not significantly changed by hydrocortisone. Spontaneous unit activity in the intermediate nucleus of the spinal cord rose sharply after administration of hydrocortisone. Before the action of the hormone the mean frequency of spontaneous discharges of 46 neurons was 7.91/sec, rising to 20/sec after the injection. The number of neurons with a high spontaneous firing rate also was increased. Prolonged extracellular recording of the spontaneous activity of the same neuron before and after administration of hydrocortisone also revealed a marked increase in the frequency of its discharges. The results are evidence of the activating effect of hydrocortisone on spinal interneuronal activity.  相似文献   

17.
The influence of electrical stimulation of deep layers of the somatosensory zones CI and CII on unit responses and intercortical evoked potentials (IEP) in the motor cortical zone MI in projection areas of the anterior contralateral limb was studied in cats anaesthetized with Nembutal and immobilized with diplacine. Latencies of the main IEP components and their different behaviour during repeated stimulation, experimental hypoxia and Nembutal administration suggested the presence of intercortical connections of an oligo- and polysynaptic nature. Only 22% of the MI zone units proved to be responsive to CI and CII stimulation; the latencies of the unit discharges varied from 4.3 to 35 msec. A relatively smaller effectiveness of short-latency inputs from CI and CII to MI was recorded as compared with long latency ones.  相似文献   

18.
实验在66只麻醉、制动,断双侧颈迷走神经和人工通气的家兔上进行。通过微量注射神经元胞体兴奋剂谷氨酸钠和神经元胞体抑制剂甘氨酸,改变孤束核腹外侧区神经元兴奋活动,探讨对下丘脑弓状核诱发电位的影响及其可能的机制和意义。实验结果如下:(1)孤束核腹外侧区微量注射谷氨酸钠,可使膈神经放电显著增加和使弓状核诱发电位P2及N2波幅显著降低;而微量注射甘氨酸则使膈神经放电显著减少和使弓状核诱发电位P2及N2波幅显著增大。(2)静脉注射纳洛酮对谷氨酸钠引起的膈神经放电兴奋效应无明显影响,但能翻转谷氨酸钠对弓状核诱发电位P2及N2波幅的抑制效应。提示:孤束核腹外侧区呼吸神经元的兴奋活动可扩散至弓状核,并对弓状核诱发电位产生影响,此影响可能是由内源性阿片系统参与而实现的。  相似文献   

19.
Synaptic response to single (2 Hz) and regular (30–50 Hz) stimuli applied to the pontine inhibitory site were recorded in decerebrate cats. A change to regular stimulation was usually accompanied by a rise in the firing index of synaptic discharges and raised amplitude of inhibitory and (to a lesser extent) excitatory postsynaptic potentials. Suppression of background spike activity was observed in some neurons. It was deduced that frequency potentiation makes a considerable contribution to the functional effect of stimulating the inhibitory site, i.e., terminating evoked locomotion.Institute for Information Transmission Studies, Academy of Sciences of the USSR, Moscow. Translated from Neirofiziologiya, Vol. 20, No. 2, pp. 172–180, March–April, 1988.  相似文献   

20.
Evoked potentials to electrical stimulation of the spinal cord, its dorsal roots and the superficial orbital branch of the facial nerve were recorded in the tectum opticum of the Black Sea piked dogfishSqualus acanthias L. The distribution of evoked potentials over the surface and in the depth of the tectal lamina and also dependence of the parameters of the responses on the strength and frequency of the stimuli and intervals between them in the case of paired stimulation were studied. Evoked potentials were shown to be tectal in origin, to be recorded mainly contralaterally, and to exhibit specific dynamics of changes in response components under the influence of the various procedures and specific dependence of the responses on the location of the recording point. Significant differences were found between the characteristics of evoked potentials generated in superficial and deep layers of the tectum opticum. The nature and physiological role of nonvisual projections to this structure and also its role in the integrative function of the ichthyopsid brain are discussed.M. V. Lomonosov Moscow State University. Translated from Neirofiziologiya, Vol. 12, No. 2, pp. 182–191, March–April, 1980.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号