首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Forest soils play a critical role in the sequestration of atmospheric CO2 and subsequent attenuation of global warming. The nature and properties of organic matter in soils have an influence on the sequestration of carbon. In this study, soils were collected from representative forestlands, including a subtropical evergreen broad-leaved forest (EBF), a coniferous forest (CF), a subalpine dwarf forest (DF), and alpine meadow (AM) along an elevation gradient on Wuyi Mountain, which is located in a subtropical area of southeastern China. These soil samples were analyzed in the laboratory to examine the distribution and speciation of organic carbon (OC) within different size fractions of water-stable soil aggregates, and subsequently to determine effects on carbon sequestration. Soil aggregation rate increased with increasing elevation. Soil aggregation rate, rather than soil temperature, moisture or clay content, showed the strongest correlation with OC in bulk soil, indicating soil structure was the critical factor in carbon sequestration of Wuyi Mountain. The content of coarse particulate organic matter fraction, rather than the silt and clay particles, represented OC stock in bulk soil and different soil aggregate fractions. With increasing soil aggregation rate, more carbon was accumulated within the macroaggregates, particularly within the coarse particulate organic matter fraction (250–2000 μm), rather than within the microaggregates (53–250μm) or silt and clay particles (< 53μm). In consideration of the high instability of macroaggregates and the liability of SOC within them, further research is needed to verify whether highly-aggregated soils at higher altitudes are more likely to lose SOC under warmer conditions.  相似文献   

2.
Soil structure depends on the association between mineral soil particles (sand, silt, and clay) and organic matter, in which aggregates of different size and stability are formed. Although the chemistry of organic materials, total microbial biomass, and different enzyme activities in different soil particle size fractions have been well studied, little information is available on the structure of microbial populations in microhabitats. In this study, topsoil samples of different fertilizer treatments of a long-term field experiment were analyzed. Size fractions of 200 to 63 μm (fine sand fraction), 63 to 2 μm (silt fraction), and 2 to 0.1 μm (clay fraction) were obtained by a combination of low-energy sonication, wet sieving, and repeated centrifugation. Terminal restriction fragment length polymorphism analysis and cloning and sequencing of 16S rRNA genes were used to compare bacterial community structures in different particle size fractions. The microbial community structure was significantly affected by particle size, yielding higher diversity of microbes in small size fractions than in coarse size fractions. The higher biomass previously found in silt and clay fractions could be attributed to higher diversity rather than to better colonization of particular species. Low nutrient availability, protozoan grazing, and competition with fungal organisms may have been responsible for reduced diversities in larger size fractions. Furthermore, larger particle sizes were dominated by α-Proteobacteria, whereas high abundance and diversity of bacteria belonging to the Holophaga/Acidobacterium division were found in smaller size fractions. Although very contrasting organic amendments (green manure, animal manure, sewage sludge, and peat) were examined, our results demonstrated that the bacterial community structure was affected to a greater extent by the particle size fraction than by the kind of fertilizer applied. Therefore, our results demonstrate specific microbe-particle associations that are affected to only a small extent by external factors.  相似文献   

3.
4.
Cell size is a key ecological trait of soil microorganisms that determines a wide range of life history attributes, including the efficiency of nutrient acquisition. However, because of the methodological issues associated with determining cell sizes in situ, we have a limited understanding of how cell abundances vary across cell size fractions and whether certain microbial taxa have consistently smaller cells than other taxa. In this study, we extracted cells from three distinct soils and fractionated them into seven size ranges (5 μm to 0.2 μm) by filtration. Cell abundances in each size fraction were determined by direct microscopy, with the taxonomic composition of each size fraction determined by high-throughput sequencing of the 16S rRNA gene. Most of the cells were smaller than cells typically grown in culture, with 59 to 67% of cells <1.2 μm in diameter. Furthermore, each size fraction harbored distinct bacterial and archaeal communities in each of the three soils, and many of the taxa exhibited distinct size distribution patterns, with the smaller size fractions having higher relative abundances of taxa that are rare or poorly characterized (including Acidobacteria, Gemmatimonadetes, Crenarchaeota, Verrucomicrobia, and Elusimicrobia). In general, there was a direct relationship between average cell size and culturability, with those soil taxa that are poorly represented in culture collections tending to be smaller. Size fractionation not only provides important insight into the life history strategies of soil microbial taxa but also is a useful tool to enable more focused investigations into those taxa that remain poorly characterized.  相似文献   

5.
This research was designed to examine the presence of mutagenic/carcinogenic compounds in airborne pollutants in the rubber industry using an integrated chemical/biological approach. Inhalable airborne particulate matter (PM-10: <10 μm) was collected in four rubber factories using a high-volume sampler equipped with a cascade impactor for particle fractionation. The organic extracts of two different fractions (0.5–10 μm and <0.5 μm) were examined for mutagenicity with the Ames test and for in vitro DNA-damaging activity in human leukocytes by single-cell microgel electrophoresis (Comet assay). The extracts were also studied by gas chromatography/mass spectrometry (GC/MS) for polycyclic aromatic hydrocarbon (PAH) content. Nitrosamines in ambient air were sampled on cartridges and analysed by GC with a thermal energy analyser (TEA) detector. Airborne volatile genotoxins were monitored in situ using a clastogenicity plant test (Tradescantia/micronuclei test). The results showed that airborne particulates were mainly very fine (<0.5 μm) and that trace amounts of genotoxic nitrosamines (N-nitrosodimethylamine: 0.10–0.98 μg/m3; N-nitrosomorpholine: 0.77–2.40 μg/m3) and PAH (total PAH: 0.34–11.35 μg/m3) were present in air samples. Some extracts, particularly those obtained from the finest fractions, were mutagenic with the Ames test and genotoxic with the Comet assay. In situ monitoring of volatile mutagens using the Tradescantia/micronuclei test gave positive results in two working environments. The results showed the applicability of this integrated chemical–biological approach for detecting volatile and non-volatile genotoxins and for monitoring genotoxic hazards in the rubber industry.  相似文献   

6.
Marine oxygen minimum zones (OMZs) support diverse microbial communities with roles in major elemental cycles. It is unclear how the taxonomic composition and metabolism of OMZ microorganisms vary between particle-associated and free-living size fractions. We used amplicon (16S rRNA gene) and shotgun metagenome sequencing to compare microbial communities from large (>1.6 μm) and small (0.2–1.6 μm) filter size fractions along a depth gradient in the OMZ off Chile. Despite steep vertical redox gradients, size fraction was a significantly stronger predictor of community composition compared to depth. Phylogenetic diversity showed contrasting patterns, decreasing towards the anoxic OMZ core in the small size fraction, but exhibiting maximal values at these depths within the larger size fraction. Fraction-specific distributions were evident for key OMZ taxa, including anammox planctomycetes, whose coding sequences were enriched up to threefold in the 0.2–1.6 μm community. Functional gene composition also differed between fractions, with the >1.6 μm community significantly enriched in genes mediating social interactions, including motility, adhesion, cell-to-cell transfer, antibiotic resistance and mobile element activity. Prokaryotic transposase genes were three to six fold more abundant in this fraction, comprising up to 2% of protein-coding sequences, suggesting that particle surfaces may act as hotbeds for transposition-based genome changes in marine microbes. Genes for nitric and nitrous oxide reduction were also more abundant (three to seven fold) in the larger size fraction, suggesting microniche partitioning of key denitrification steps. These results highlight an important role for surface attachment in shaping community metabolic potential and genome content in OMZ microorganisms.  相似文献   

7.
The purpose of the current experiment was to investigate the impacts of grinding and pelleting procedures applied to wheat in a wheat–rapeseed meal diet on the coefficients of standardized ileal digestibility, i.e., apparent digestibility corrected for basal endogenous losses (CSID), and true ileal digestibility, i.e., apparent digestibility corrected for total endogenous losses (CTID), of nitrogen (N) and amino acids (AA) in pigs. Ileal digestibility was measured by collecting digesta from pigs fitted with ileorectal anastomoses. Four diets, involving four technological treatments applied to wheat, were compared in vivo according to a 4 × 4 Latin square design (four pigs each fed four diets during four successive periods of 1 week). The technological treatments of wheat were two grinding procedures and two pelleting processes. Wheat was ground to obtain mean flour particle sizes of 1000 and 500 μm, leading after mixing with rapeseed meal and minerals-vitamins premix to the first and second diets named “coarse” and “fine”, respectively. Part of the 500 μm wheat flour was pelleted through dies of same screen diameter (4 mm) but different thicknesses, 16 and 20 mm, inducing a low and high compression ratio, leading after mixing with rapeseed meal and premix to the third and fourth diets named “LCR” and “HCR”, respectively. Basal endogenous losses were determined by feeding a protein-free diet during the 5th week of the experiment. Total endogenous losses were measured by way of the isotopic dilution method using 15N-labeled wheat and rapeseed meal. Decreasing wheat particle size from 1000 to 500 μm improved (P<0.05) the coefficient of ileal digestibility of dietary energy (0.707 versus 0.665), organic matter (0.718 versus 0.677) and dry matter (0.681 versus 0.645), but neither AA CSID nor N retention. The pelleting processes did not further increase (P>0.10) energy or organic matter digestibility but improved (P<0.05) N and AA CSID (0.785 versus 0.759 for N and 0.725 versus 0.679 for lysine, with HCR versus fine diet, respectively). Pelleting wheat flour at higher compression ratio (HCR versus LCR diet) was more efficient to improve dietary N and AA digestibility values due to a significant decrease in ileal specific, i.e., total minus basal, N and AA endogenous losses (P<0.05) associated with an increase in CTID. It is concluded that pelleting wheat fine flour at high compression ratio allows maximizing AA digestibility and availability of a wheat–rapeseed meal diet.  相似文献   

8.
9.
Relative abundance of benthic foraminifera have been analyzed from core V26-145 from the Blake Plateau. The investigated sequence represents the time interval between 1.8 and 4.6 Ma. In order to determine how different sieve sizes influence the relative abundance patterns, three sediment size fractions were studied separately. It becomes difficult to maintain consistent taxonomic concepts in the fraction 63–125 μm, partly because this fraction contains high abundances of juvenile forms. However, the 63–125 μm fraction holds high abundances of the important small speciesEpistominella exigua. Due to these reasons only the two larger fractions (125–250 μm and >250 μm) were considered meaningful to analyze for relative abundance patterns. An analysis of the two larger fractions (>125 μm; >250 μm) shows no consistency in relative abundance patterns.The relative abundance patterns for the 34 most common species in the size fraction >125 μm were analyzed by means of correspondence analysis. Three benthic foraminiferal assemblages (I, II, and III) were recognized and these can be associated with water masses. Assemblage I is associated with the Florida Current and consists of shallow water species (Amphistegina gibbosa, Compressigerina sp. A,Discorbinella biconcavus, Islandiella teretis, Reussella atlantica, andSiphonina pulchra). Assemblage II contains key species for North Atlantic Deep Water (NADW) (Cibicidoides kullenbergi, Epistominella exigua, Globocassidulina subglobosa, Lenticulina peregrina, Oridorsalis umbonatus, andPlanulina wuellerstorfi). The third assemblage (III) contains species associated with the Antilles Current (Bolivina rhomboidalis, Cassidulina obtusa, Cassidulina vortex, andNuttallides umbonifera). The correspondence analysis reveals an alternation in dominance between Assemblage I and Assemblage II prior to 3.3 Ma, suggesting lateral oscillations between the Florida Current and NADW. At about 3.3 Ma Assemblage I disappears and Assemblage III increases in importance, suggesting an increasing influence of the Antilles Current in the upper part of the record.  相似文献   

10.
Grazing exclusion (GE) has been deemed as an important approach to enhance the soil carbon storage of semiarid grasslands in China; however, it remains unclear how different organic carbon (OC) components in soils vary with the duration of GE. Here, we observed the changing trends of different OC components in soils with increased GE duration in five grassland succession series plots, ranging from free grazing to 31-year GE. Specifically, we measured microbial biomass carbon (MBC), easily oxidizable OC (EOC), water-soluble OC (WSOC), and OC in water stable aggregates (macroaggregates [250–2000 μm], microaggregates [53–250 μm], and mineral fraction [< 53 μm]) at 0–20 cm soil depths. The results showed that GE significantly enhanced EOC and WSOC contents in soils, but caused a decline of MBC at the three decade scale. Macroaggregate content (F = 425.8, P < 0.001), OC stored in macroaggregates (F = 84.1, P < 0.001), and the mean weight diameter (MWD) of soil aggregates (F = 371.3, P < 0.001) increased linearly with increasing GE duration. These findings indicate that OC stored in soil increases under three-decade GE with soil organic matter (SOM) stability improving to some extent. Long-term GE practices enhance the formation of soil aggregates through higher SOM input and an exclusion of animal trampling. Therefore, the practice of GE may be further encouraged to realize the soil carbon sequestration potential of semi-arid grasslands, China.  相似文献   

11.
Filtration of ballast water was investigated as a means of minimizing the introduction of nonindigenous zooplankton and phytoplankton by ships visiting the North American Great Lakes-St. Lawrence Seaway system (GLSLSS). An automatic backwash screen filtration (ABSF) system with nominal filtration options of 25, 50 or 100 μm was mounted on the deck of an operating Seaway-sized dry bulk carrier, the MV Algonorth. Water was pumped through the ABSF with a deck mounted pump at 341 m3 hr−1 during routine ship operations in the GLSLSS, and effectiveness of the various screen pore sizes at removing taxonomic categories of zooplankton and phytoplankton was measured using matched treatment and control ballast tanks. The smallest pore sizes (25 and 50 μm) performed better than the 100 μm pore size at removing biological material. There was no difference in the filtration efficiency of the 25 and 50 μm screens relative to macro- or microzooplankton in these tests, but this result was probably due to low densities of macrozooplankton, and soft-bodied (aloricate) characteristics of the microzooplankton present. The 25 and 50 μm pore sizes were subjected to more controlled tests on board a stationary barge platform equipped with triplicate 700 L catchment bins moored in Duluth Harbor of Lake Superior. In these tests, filter pore size, organism size and rigidity influenced zooplankton removal efficiency by the ABSF. The 25 μm screen reduced both macrozooplankton and microzooplankton significantly more than the 50 μm screen. Zooplankton width was more determinative of filtration performance than length, and both filters removed loricate species of rotifers significantly more efficiently than aloricate species of the same length and width size classes. The 25 and 50 μm ABSF also significantly reduced algal densities, with the exception of colonial and filamentous green algae (50 μm only). Filter efficiency relative to algal particles was influenced by filter pore size, organism morphology and structure, and intake density, while algal particle size was not determinative. This research provides compelling evidence that 25 or 50 μm filtration is a potentially powerful means of reducing densities of organisms discharged by ships operating in the Great Lakes but an additional treatment step would be necessary to effectively minimize risk and meet the International Maritime Organization's discharge standards associated with organisms of all sizes in the water column.  相似文献   

12.
The effects of four soil types, soil porosity, particle size, and organic matter were tested on survival and migration of Xiphinema americanum. Survival and migration were significantly greater in silt loam than in clay loam and silty clay soils. Nematode numbers were significantly greater in softs planted with soybeans than in fallow softs. Nematode survival was greatest at the higher of two pore space levels in four softs. Migration of X. americanum through soft particle size fractions of 75-150, 150-250, 250-500, 500-700, and 700-1,000 μ was significantly greater in the middle three fractions, with the least occurring in the smallest fraction. Additions of muck to silt loam and loamy sand soils resulted in reductions in survival and migration of the nematode. The fulvic acid fraction of muck, extracted with sodium hydroxide, had a deleterious effect on nematode activity. I conclude that soils with small amounts of air-filled pore space, extremes in pore size, or high organic matter content are deleterious to the migration and survival of X. americanum, and that a naturally occurring toxin affecting this species may be present in native soft organic matter.  相似文献   

13.
Zymogen granules are obtained in pure form and processed for electron microscopy. Thin sections are photographed and diameters measured with a Zeiss particle size analyzer. Since sectioning cuts any given particle in random way, these diameters are not the true diameters of the particles. The true size distribution is obtained by comparing the observed diameter distribution with a generated diameter distribution. The generated distribution is constructed from an assumed parent distribution (of true diameters) by the Monte-Carlo technique. “Goodness of fit” is judged by the value of “chi-squared” resulting from the comparison. Appropriate adjustments of the parameters of the true distribution are made on the basis of minimizing chi-square. A result of this process is that the zymogen granules follow a normal distribution: mean = 0.984 ±0.005 μm, SD = 0.190 ±0.005 μm. A second preparation of granules was made and diameters were measured directly with a scanning electron microscope. The distribution was again found to be normal, thus supporting the first result.  相似文献   

14.
15.
Many organic pollutants are readily degradable by microorganisms in soil, but the importance of soil organic matter for their transformation by specific microbial taxa is unknown. In this study, sorption and microbial degradation of phenol and 2,4-dichlorophenol (DCP) were characterized in three soil variants, generated by different long-term fertilization regimes. Compared with a non-fertilized control (NIL), a mineral-fertilized NPK variant showed 19% and a farmyard manure treated FYM variant 46% more soil organic carbon (SOC). Phenol sorption declined with overall increasing SOC because of altered affinities to the clay fraction (soil particles <2 mm in diameter). In contrast, DCP sorption correlated positively with particulate soil organic matter (present in the soil particle fractions of 63–2000 μm). Stable isotope probing identified Rhodococcus, Arthrobacter (both Actinobacteria) and Cryptococcus (Basidiomycota) as the main degraders of phenol. Rhodococcus and Cryptococcus were not affected by SOC, but the participation of Arthrobacter declined in NPK and even more in FYM. 14C-DCP was hardly metabolized in the NIL variant, more efficiently in FYM and most in NPK. In NPK, Burkholderia was the main degrader and in FYM Variovorax. This study demonstrates a strong effect of SOC on the partitioning of organic pollutants to soil particle size fractions and indicates the profound consequences that this process could have for the diversity of bacteria involved in their degradation.  相似文献   

16.
A trial was conducted to test the effect of fine grinding (micronization) of soya bean meal (SBM) and full-fat soya bean (FFSB) on coefficient of ileal apparent digestibility (CIAD) and coefficient of ileal true digestibility (CITD) of amino acids in 23-day-old broilers. A completely randomized block design with four treatments arranged factorially (SBM and FFSB; micronized and ground) and six replicates (eight broilers per treatment) was used. Mean particle size (MPS) was 47 and 41 μm for micronized SBM and FFSB and 881 and 778 μm for ground SBM and FFSB, respectively. The four diets were based on maize starch and sucrose with the soya product tested as the sole source of dietary crude protein (CP, 200 g/kg). In addition, a nitrogen-free diet was formulated to estimate the basal ileal endogenous losses of the amino acids. Broilers were fed a commercial pelleted maize-SBM diet from 1 to 19 days of age and, then, their respective experimental diets in mash form from 20 to 23 days of age. Broilers fed SBM had higher CIAD of organic matter, CP, arginine, leucine, methionine and valine (P<0.05) and tended to have higher CIAD of threonine (P<0.10) than broilers fed FFSB. In addition, broilers fed SBM had higher CITD of CP (P<0.05), leucine, methionine and valine (P<0.01) than broilers fed FFSB. Particle size did not affect the ileal digestibility of CP or of any of the essential amino acids. It is concluded that broilers fed soya bean meal had higher ileal digestibility of amino acids than broilers fed full-fat soya bean and that fine grinding of the soya products did not affect amino acid digestibility.  相似文献   

17.
Magnetic beads were prepared via suspension polymerization of glycidyl methacrylate (GMA) and methyl methacrylate (MMA) in the presence of ferric ions. Following polymerization, thermal co-precipitation of the Fe(III) ions in the beads with Fe(II) ions under alkaline condition resulted in encapsulation of Fe3O4 nano-crystals within the polymer matrix. The magnetic beads were activated with glutaraldehyde, and tyrosinase enzyme was covalently immobilized on the support via reaction of amino groups under mild conditions. The immobilized enzyme was used for the synthesis of l-Dopa (1-3,4-dihydroxy phenylalanine) which is a precursor of dopamine. The immobilized enzyme was characterized by temperature, pH, operational and storage stability experiments. Kinetic parameters, maximum velocity of the enzyme (Vmax) and Michaelis–Menten constant (Km) values were determined as 1.05 U/mg protein and 1.0 mM for 50–75 μm and 2.00 U/mg protein and 4.0 mM for 75–150 μm beads fractions, respectively. Efficiency factor and catalytic efficiency were found to be 1.39 and 0.91 for 75–150 μm beads and 0.73 and 0.75 for 50–75 μm beads fractions, respectively. The catalytic efficiency of the soluble tyrosinase was 0.37. The amounts of immobilized protein were on the 50–75 μm and 75–150 μm fractions were 2.7 and 2.8 mg protein/g magnetic beads, respectively.  相似文献   

18.
The objective of this study was to examine the responsiveness of chemically cross-linked κ-carrageenan microspheres to different types of neutral salt electrolytes as well as to surfactants of varying chain lengths. In the presence of increasing salt concentration microsphere size changed radically from D[4,3] values of 320 μm to approximately 160 μm. The level of salt concentration needed to bring about this change varied depending on electrolyte type. This common behaviour was attributed to the difference in free cationic counter-ions concentration between the inside and outside of the microsphere and can be explained due to the effect of the Donnan equilibrium. The rheological properties of these microgels in their swollen and collapsed states were also explored with results showing that the collapsed microspheres had a greater impact on the viscosity of the system probably as a result of some aggregation of the collapsed microgels at rest due to surface charge screening at these high salt concentrations. The effect of surfactant on microsphere size showed a dramatic drop in D[4,3] values from 320 μm to approximately 120 μm for BAC, DoTAB, MTAB and CTAB at specific critical concentrations. This critical aggregation concentration was found to increase linearly on a log–log scale with the critical micelle concentration of these surfactants in water, indicating that the alkyl chain length of the surfactants had an effect on the critical aggregation concentration.  相似文献   

19.
Total DNA concentration in 0.2-μm-pore-size Nuclepore filter filtrates (<0.2-μm fraction) of Tokyo Bay water was estimated to be 9 to 19 ng/ml by an immunochemical quantification method. Almost 90% of the DNA in the <0.2-μm fraction was found in the size fractions larger than 3.0 × 105 Da and 0.03 μm, and most was not susceptible to DNase digestion, that is, consisted of non-DNase-digestible DNA (coated DNA). A significant amount of DNA was obtained from the <0.2-μm fraction of the seawater by three different methods: polyethylene glycol precipitation, direct ethanol precipitation, and ultrafilter concentration. Gel electrophoresis analysis of the isolated DNAs showed that they consisted mainly of coated DNAs with a similar molecular sizes (20 to 30 kb [1.3 × 107 to 2.0 × 107 Da). The abundance of the ultramicron virus-sized coated DNA in natural seawater suggests that these DNA-rich particles can be attributed to marine DNA virus assemblages and that they may be a significant phosphorus reservoir in the environment.  相似文献   

20.
The objective of this study was to investigate the effect of large granulated lactose carrier particle systems on aerosol performance of dry powder inhaler formulations. Granulated lactose carriers with average sizes ranging from 200 to 1,000 μm were prepared and subsequently fractionated into separate narrow size powders. The fractionated granulated lactose (GL) samples were characterized in terms of size, specific surface area, surface roughness, morphology, density, flowability, and solid-state. The in vitro aerosolization performance was performed on the different size fractions of GL samples from a commercial inhaler device (Aerolizer®) with a model formulation (2% w/w salbutamol sulfate). The cascade impaction parameters employed were 60 or 90 L/min with standard (aperture size, 0.6 mm) or modified piercing holes (aperture size, 1.2 mm) of the inhaler loaded capsules. It was shown that the largest size fraction formulation (850–1000 μm) had a slight improvement in the fine particle fraction (FPF) compared to immediately preceding size fractions, explained by a smaller adhesive force between drug and carrier. Compared to commercial piercing holes, enlarged piercing holes generated a slight decreasing trend of FPF as the lactose powder sizes increased from 200–250 μm to 600–850 μm, perhaps due to the reduced detachment force by flow forces. The size, surface roughness, density, and flowability of lactose carrier as well as device design all contributed to the aerosol dispersion performance of granulated lactose-based adhesive mixtures. It was concluded that poorer or enhanced redispersion performance is not an inherent property to the significantly large size of granulated lactose carriers as previously contended.KEY WORDS: adhesive force, carrier roughness, carrier size, DPI formulations, granulated lactose  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号