首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The Price equation partitions total evolutionary change into two components. The first component provides an abstract expression of natural selection. The second component subsumes all other evolutionary processes, including changes during transmission. The natural selection component is often used in applications. Those applications attract widespread interest for their simplicity of expression and ease of interpretation. Those same applications attract widespread criticism by dropping the second component of evolutionary change and by leaving unspecified the detailed assumptions needed for a complete study of dynamics. Controversies over approximation and dynamics have nothing to do with the Price equation itself, which is simply a mathematical equivalence relation for total evolutionary change expressed in an alternative form. Disagreements about approach have to do with the tension between the relative valuation of abstract versus concrete analyses. The Price equation's greatest value has been on the abstract side, particularly the invariance relations that illuminate the understanding of natural selection. Those abstract insights lay the foundation for applications in terms of kin selection, information theory interpretations of natural selection and partitions of causes by path analysis. I discuss recent critiques of the Price equation by Nowak and van Veelen.  相似文献   

2.
3.
Time series of rapid phenotypic change have been documented in age-structured populations living in the wild. Researchers are often interested in identifying the processes responsible for such change. We derive an equation to exactly decompose change in the mean value of a phenotypic trait into contributions from fluctuations in the demographic structure and age-specific viability selection, fertility selection, phenotypic plasticity, and differences between offspring and parental trait values. We treat fitness as a sum of its components rather than as a scalar and explicitly consider age structure by focusing on short time steps, which are appropriate for describing phenotypic change in species with overlapping generations. We apply the method to examine stasis in birth weight in a well-characterized population of red deer. Stasis is achieved because positive viability selection for an increase in birth weight is countered by parents producing offspring that are, on average, smaller than they were at birth. This is one of many ways in which equilibria in the mean value of a phenotypic trait can be maintained. The age-structured Price equation we derive has the potential to provide considerable insight into the processes generating now frequently reported cases of rapid phenotypic change.  相似文献   

4.
5.
This paper provides a philosophical analysis of the Price equation and its role in evolutionary theory. Traditional models in population genetics postulate simplifying assumptions in order to make the models mathematically tractable. On the contrary, the Price equation implies a very specific way of theorizing, starting with assumptions that we think are true and then deriving from them the mathematical rules of the system. I argue that the Price equation is a generalization-sketch, whose main purpose is to provide a unifying framework for researchers, helping them to develop specific models. The Price equation plays this role because, like other scientific principles, shows features as abstractness, unification and invariance. By underwriting this special role for the Price equation some recent disputes about it could be diverted.  相似文献   

6.
7.
Gong T  Shuai L  Tamariz M  Jäger G 《PloS one》2012,7(3):e33171
Language change takes place primarily via diffusion of linguistic variants in a population of individuals. Identifying selective pressures on this process is important not only to construe and predict changes, but also to inform theories of evolutionary dynamics of socio-cultural factors. In this paper, we advocate the Price equation from evolutionary biology and the Pólya-urn dynamics from contagion studies as efficient ways to discover selective pressures. Using the Price equation to process the simulation results of a computer model that follows the Pólya-urn dynamics, we analyze theoretically a variety of factors that could affect language change, including variant prestige, transmission error, individual influence and preference, and social structure. Among these factors, variant prestige is identified as the sole selective pressure, whereas others help modulate the degree of diffusion only if variant prestige is involved. This multidisciplinary study discerns the primary and complementary roles of linguistic, individual learning, and socio-cultural factors in language change, and offers insight into empirical studies of language change.  相似文献   

8.
Transmitted culture can be viewed as an inheritance system somewhat independent of genes that is subject to processes of descent with modification in its own right. Although many authors have conceptualized cultural change as a Darwinian process, there is no generally agreed formal framework for defining key concepts such as natural selection, fitness, relatedness and altruism for the cultural case. Here, we present and explore such a framework using the Price equation. Assuming an isolated, independently measurable culturally transmitted trait, we show that cultural natural selection maximizes cultural fitness, a distinct quantity from genetic fitness, and also that cultural relatedness and cultural altruism are not reducible to or necessarily related to their genetic counterparts. We show that antagonistic coevolution will occur between genes and culture whenever cultural fitness is not perfectly aligned with genetic fitness, as genetic selection will shape psychological mechanisms to avoid susceptibility to cultural traits that bear a genetic fitness cost. We discuss the difficulties with conceptualizing cultural change using the framework of evolutionary theory, the degree to which cultural evolution is autonomous from genetic evolution, and the extent to which cultural change should be seen as a Darwinian process. We argue that the nonselection components of evolutionary change are much more important for culture than for genes, and that this and other important differences from the genetic case mean that different approaches and emphases are needed for cultural than genetic processes.  相似文献   

9.
10.
The distribution of allelic effects under mutation and selection   总被引:2,自引:0,他引:2  
The Price (1970, 1972) equation is applied to the problem of describing the changes in the moments of allelic effects caused by selection, mutation and recombination at loci governing a quantitative genetic character. For comparable assumptions the resulting equations are the same as those obtained by different means by Barton & Turelli (1987; Turelli & Barton, 1989). The Price equation provides a natural framework within which to examine certain kinds of non-additive allelic effects, recombination and assortative mating. The use of the Price equation is illustrated by finding the equilibrium genetic variance under multiplicative dominance and epistasis and under assortative mating at an additive locus. The limitations of the use of recursion equations for the moments of allelic effects are also discussed.  相似文献   

11.
This paper distinguishes two categories of questions that the Price equation can help us answer. The two different types of questions require two different disciplines that are related, but nonetheless move in opposite directions. These disciplines are probability theory on the one hand and statistical inference on the other. In the literature on the Price equation this distinction is not made. As a result of this, questions that require a probability model are regularly approached with statistical tools. In this paper, we examine the possibilities of the Price equation for answering questions of either type. By spending extra attention on mathematical formalities, we avoid the two disciplines to get mixed up. After that, we look at some examples, both from kin selection and from group selection, that show how the inappropriate use of statistical terminology can put us on the wrong track. Statements that are 'derived' with the help of the Price equation are, therefore, in many cases not the answers they seem to be. Going through the derivations in reverse can, however, be helpful as a guide how to build proper (probabilistic) models that do give answers.  相似文献   

12.
Interest in eco‐evolutionary dynamics is rapidly increasing thanks to ground‐breaking research indicating that evolution can occur rapidly and can alter the outcome of ecological processes. A key challenge in this sub‐discipline is establishing how important the contribution of evolutionary and ecological processes and their interactions are to observed shifts in population and community characteristics. Although a variety of metrics to separate and quantify the effects of evolutionary and ecological contributions to observed trait changes have been used, they often allocate fractions of observed changes to ecology and evolution in different ways. We used a mathematical and numerical comparison of two commonly used frameworks – the Price equation and reaction norms – to reveal that the Price equation cannot partition genetic from non‐genetic trait change within lineages, whereas the reaction norm approach cannot partition among‐ from within‐lineage trait change. We developed a new metric that combines the strengths of both Price‐based and reaction norm metrics, extended all metrics to analyse community change and also incorporated extinction and colonisation of species in these metrics. Depending on whether our new metric is applied to populations or communities, it can correctly separate intraspecific, interspecific, evolutionary, non‐evolutionary and interacting eco‐evolutionary contributions to trait change.  相似文献   

13.
The breeder's equation, which predicts evolutionary change when a phenotypic covariance exists between a heritable trait and fitness, has provided a key conceptual framework for studies of adaptive microevolution in nature. However, its application requires strong assumptions to be made about the causation of fitness variation. In its univariate form, the breeder's equation assumes that the trait of interest is not correlated with other traits having causal effects on fitness. In its multivariate form, the validity of predicted change rests on the assumption that all such correlated traits have been measured and incorporated into the analysis. Here, we (i) highlight why these assumptions are likely to be seriously violated in studies of natural, rather than artificial, selection and (ii) advocate wider use of the Robertson–Price identity as a more robust, and less assumption‐laden, alternative to the breeder's equation for applications in evolutionary ecology.  相似文献   

14.
When competitive exclusion between lineages and genetic adaptation within lineages occur on the same timescale, the two processes have the potential to interact. I use experimental microbial evolution where strains of a photosynthetic microbe that differ in their physiological response to CO2 enrichment are grown either alone or in communities for hundreds of generations under CO2 enrichment. After about 300 generations of growth, strains that experienced competition while adapting to environmental change are both less productive and less fit than corresponding strains that adapted to that same environmental change in the absence of competitors. In addition, I find that excluding competitors not only limits that strain''s adaptive response to abiotic change, but also decreases community productivity; I quantify this effect using the Price equation. Finally, these data allow me to empirically test the common hypothesis that phytoplankton that are most able to take advantage of carbon enrichment in single-strain populations over the short term will increase in frequency within multi-strain communities over longer timescales.  相似文献   

15.
Organisms construct their own environments and phenotypes through the adaptive processes of habitat choice, habitat construction, and phenotypic plasticity. We examine how these processes affect the dynamics of mean fitness change through the environmental change term of the Price Equation. This tends to be ignored in evolutionary theory, owing to the emphasis on the first term describing the effect of natural selection on mean fitness (the additive genetic variance for fitness of Fisher's Fundamental Theorem). Using population genetic models and the Price Equation, we show how adaptive niche constructing traits favorably alter the distribution of environments that organisms encounter and thereby increase population mean fitness. Because niche-constructing traits increase the frequency of higher-fitness environments, selection favors their evolution. Furthermore, their alteration of the actual or experienced environmental distribution creates selective feedback between niche constructing traits and other traits, especially those with genotype-by-environment interaction for fitness. By altering the distribution of experienced environments, niche constructing traits can increase the additive genetic variance for such traits. This effect accelerates the process of overall adaption to the niche-constructed environmental distribution and can contribute to the rapid refinement of alternative phenotypic adaptations to different environments. Our findings suggest that evolutionary biologists revisit and reevaluate the environmental term of the Price Equation: owing to adaptive niche construction, it contributes directly to positive change in mean fitness; its magnitude can be comparable to that of natural selection; and, when there is fitness G × E, it increases the additive genetic variance for fitness, the much-celebrated first term.  相似文献   

16.
17.
This paper is a commentary on the focal article by Grafen and on earlier papers of his on which many of the results of this focal paper depend. Thus it is in effect a commentary on the “formal Darwinian project”, the focus of this sequence of papers. Several problems with this sequence are raised and discussed. The first of these concerns fitness maximization. It is often claimed in these papers that natural selection leads to a maximization of fitness and that this view is claimed in Fisher’s “fundamental theorem of natural selection”. These claims are refuted, and various incorrect statements about the meaning and interpretation of the fundamental theorem of natural selection, in this sequence and in other papers by other authors, are discussed. Next, much of the work in this sequence rests on the first Price equation. In the deterministic (infinite population) case this equation is no more than the standard classical equation relating to changes in gene frequencies. In the stochastic case the equation gives the change in gene frequencies as the sum of two terms (the second of which vanishes in the deterministic case). These two terms are of essentially equal importance in the situation considered in the focal article, yet one of Grafen’s results ignores the second term in the stochastic analysis. This is associated with a wavering between deterministic and stochastic analyses and the use of the Price fitness concept and the classical fitness concept. These comments cast doubts on Grafen’s optimization theory.  相似文献   

18.
The life of George Price (1922–1975), the eccentric polymath genius and father of the Price equation, is used as a prism and counterpoint through which to consider an age-old evolutionary conundrum: the origins of altruism. This biographical project, and biography and history more generally, are considered in terms of the possibility of using form to convey content in particular ways. Closer to an art form than a science, this approach to scholarship presents both a unique challenge and promise.  相似文献   

19.
Although the prisoner's dilemma (PD) has been used extensively to study reciprocal altruism, here we show that the n-player prisoner's dilemma (NPD) is also central to two other prominent theories of the evolution of altruism: inclusive fitness and multilevel selection. An NPD model captures the essential factors for the evolution of altruism directly in its parameters and integrates important aspects of these two theories such as Hamilton's rule, Simpson's paradox, and the Price covariance equation. The model also suggests a simple interpretation of the Price selection decomposition and an alternative decomposition that is symmetrical and complementary to it. In some situations this alternative shows the temporal changes in within- and between-group selection more clearly than the Price equation. In addition, we provide a new perspective on strong vs. weak altruism by identifying their different underlying game structures (based on absolute fitness) and showing how their evolutionary dynamics are nevertheless similar under selection (based on relative fitness). In contrast to conventional wisdom, the model shows that both strong and weak altruism can evolve in periodically formed random groups of non-conditional strategies if groups are multigenerational. An integrative approach based on the NPD helps unify different perspectives on the evolution of altruism.  相似文献   

20.
We investigate a class of evolutionary models, encompassing many established models of well-mixed and spatially structured populations. Models in this class have fixed population size and structure. Evolution proceeds as a Markov chain, with birth and death probabilities dependent on the current population state. Starting from basic assumptions, we show how the asymptotic (long-term) behavior of the evolutionary process can be characterized by probability distributions over the set of possible states. We then define and compare three quantities characterizing evolutionary success: fixation probability, expected frequency, and expected change due to selection. We show that these quantities yield the same conditions for success in the limit of low mutation rate, but may disagree when mutation is present. As part of our analysis, we derive versions of the Price equation and the replicator equation that describe the asymptotic behavior of the entire evolutionary process, rather than the change from a single state. We illustrate our results using the frequency-dependent Moran process and the birth–death process on graphs as examples. Our broader aim is to spearhead a new approach to evolutionary theory, in which general principles of evolution are proven as mathematical theorems from axioms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号