首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Zeng W  Jiang Y L  Li F  Zhou G S 《农业工程》2008,28(6):2504-2510
The effect of drought on plant photosynthetic parameters has not been quantitatively described in the models of plant photosynthetic mechanism, so the seedlings of Quercus mongolica from Northeast China were used to study the responses of the photosynthetic parameters to soil water stresses. The results showed that the relationship between the maximum net leaf photosynthetic rate (Pmax) of Quercus mongolica and soil moisture could be expressed as a quadratic curve (P < 0.01), and Pmax reached the maximum when soil volume moisture was close to 35.45% of the field water holding capacity. The maximum rate of carboxylation (Vcmax), the maximum potential rate of electron transport (Jmax) and triose phosphate utilization (TPU) rate of Quercus mongolica also had quadratic relationships with soil water content (P < 0.01). Namely, Vcmax, Jmax and TPU had similar response curves to soil water, but had different optimal soil water contents. Based on the temperature and responses of plant photosynthetic parameters to water, this function provides researchers with the parameters and methodology for understanding and simulating the responses of plant photosynthetic parameters to drought stress.  相似文献   

2.
Seasonal drought can severely impact leaf photosynthetic capacity. This is particularly important for Mediterranean forests, where precipitation is expected to decrease as a consequence of climate change. Impacts of increased drought on the photosynthetic capacity of the evergreen Quercus ilex were studied for two years in a mature forest submitted to long‐term throughfall exclusion. Gas exchange and chlorophyll fluorescence were measured on two successive leaf cohorts in a control and a dry plot. Exclusion significantly reduced leaf water potential in the dry treatment. In both treatments, light‐saturated net assimilation rate (Amax), stomatal conductance (gs), maximum carboxylation rate (Vcmax), maximum rate of electron transport (Jmax), mesophyll conductance to CO2 (gm) and nitrogen investment in photosynthesis decreased markedly with soil water limitation during summer. The relationships between leaf photosynthetic parameters and leaf water potential remained identical in the two treatments. Leaf and canopy acclimation to progressive, long‐term drought occurred through changes in leaf area index, leaf mass per area and leaf chemical composition, but not through modifications of physiological parameters.  相似文献   

3.

Background and Aims

Deciduous trees have a seasonal carbon dioxide exchange pattern that is attributed to changes in leaf biochemical properties. However, it is not known if the pattern in leaf biochemical properties – maximum Rubisco carboxylation (Vcmax) and electron transport (Jmax) – differ between species. This study explored whether a general pattern of changes in Vcmax, Jmax, and a standardized soil moisture response accounted for carbon dioxide exchange of deciduous trees throughout the growing season.

Methods

The model MAESTRA was used to examine Vcmax and Jmax of leaves of five deciduous trees, Acer rubrum ‘Summer Red’, Betula nigra, Quercus nuttallii, Quercus phellos and Paulownia elongata, and their response to soil moisture. MAESTRA was parameterized using data from in situ measurements on organs. Linking the changes in biochemical properties of leaves to the whole tree, MAESTRA integrated the general pattern in Vcmax and Jmax from gas exchange parameters of leaves with a standardized soil moisture response to describe carbon dioxide exchange throughout the growing season. The model estimates were tested against measurements made on the five species under both irrigated and water-stressed conditions.

Key Results

Measurements and modelling demonstrate that the seasonal pattern of biochemical activity in leaves and soil moisture response can be parameterized with straightforward general relationships. Over the course of the season, differences in carbon exchange between measured and modelled values were within 6–12 % under well-watered conditions and 2–25 % under water stress conditions. Hence, a generalized seasonal pattern in the leaf-level physiological change of Vcmax and Jmax, and a standardized response to soil moisture was sufficient to parameterize carbon dioxide exchange for large-scale evaluations.

Conclusions

Simplification in parameterization of the seasonal pattern of leaf biochemical activity and soil moisture response of deciduous forest species is demonstrated. This allows reliable modelling of carbon exchange for deciduous trees, thus circumventing the need for extensive gas exchange experiments on different species.Key words: Carbon budget, deciduous trees, modelling, MAESTRA, soil moisture, species response, transpiration, Acer rubrum, Betula nigra, Quercus nuttallii, Q. phellos, Paulownia elongata  相似文献   

4.
The temperature dependence of C3 photosynthesis is known to vary with growth environment and with species. In an attempt to quantify this variability, a commonly used biochemically based photosynthesis model was parameterized from 19 gas exchange studies on tree and crop species. The parameter values obtained described the shape and amplitude of the temperature responses of the maximum rate of Rubisco activity (Vcmax) and the potential rate of electron transport (Jmax). Original data sets were used for this review, as it is shown that derived values of Vcmax and its temperature response depend strongly on assumptions made in derivation. Values of Jmax and Vcmax at 25 °C varied considerably among species but were strongly correlated, with an average Jmax : Vcmax ratio of 1·67. Two species grown in cold climates, however, had lower ratios. In all studies, the Jmax : Vcmax ratio declined strongly with measurement temperature. The relative temperature responses of Jmax and Vcmax were relatively constant among tree species. Activation energies averaged 50 kJ mol?1 for Jmax and 65 kJ mol?1 for Vcmax, and for most species temperature optima averaged 33 °C for Jmax and 40 °C for Vcmax. However, the cold climate tree species had low temperature optima for both Jmax(19 °C) and Vcmax (29 °C), suggesting acclimation of both processes to growth temperature. Crop species had somewhat different temperature responses, with higher activation energies for both Jmax and Vcmax, implying narrower peaks in the temperature response for these species. The results thus suggest that both growth environment and plant type can influence the photosynthetic response to temperature. Based on these results, several suggestions are made to improve modelling of temperature responses.  相似文献   

5.
The aim of this work was to study the acclimation of photosynthesis in a boreal grass (Phalaris arundinacea L.) grown in controlled environment chambers under elevated temperature (ambient + 3.5°C) and CO2 (700 μmol mol−1) with varying soil water regimes. More specifically, we studied, during two development stages (early: heading; late: florescence completed), how the temperature response of light-saturated net photosynthetic rate (P sat), maximum rate of ribulose-1,5-bisphosphate carboxylase/oxygenase activity (V cmax) and potential rate of electron transport (J max) acclimatized to the changed environment. During the early growing period, we found a greater temperature-induced enhancement of P sat at higher measurement temperatures, which disappeared during the late stage. Under elevated growth temperature, V cmax and J max at lower measurement temperatures (5–15°C) were lower than those under ambient growth temperature during the early period. When the measurements were done at 20–30°C, the situation was the opposite. During the late growing period, V cmax and J max under elevated growth temperature were consistently lower across measurement temperatures. CO2 enrichment significantly increased P sat with higher intercellular CO2 compared to ambient CO2 treatment, however, elevated CO2 slightly decreased V cmax and J max across measurement temperatures, probably due to down-regulation acclimation. For two growing periods, soil water availability affected the variation in photosynthesis and biochemical parameters much more than climatic treatment did. Over two growing periods, V cmax and J max were on average 36.4 and 30.6%, respectively, lower with low water availability compared to high water availability across measurement temperatures. During the late growing period, elevated growth temperature further reduced the photosynthesis under low water availability. V cmax and J max declined along with the decrease in nitrogen content of leaves as growing period progressed, regardless of climatic treatment and water regime. We suggest that, for grass species, seasonal acclimation of the photosynthetic parameters under varying environmental conditions needed to be identified to fairly estimate the whole-life photosynthesis.  相似文献   

6.
Great uncertainty exists in the global exchange of carbon between the atmosphere and the terrestrial biosphere. An important source of this uncertainty lies in the dependency of photosynthesis on the maximum rate of carboxylation (Vcmax) and the maximum rate of electron transport (Jmax). Understanding and making accurate prediction of C fluxes thus requires accurate characterization of these rates and their relationship with plant nutrient status over large geographic scales. Plant nutrient status is indicated by the traits: leaf nitrogen (N), leaf phosphorus (P), and specific leaf area (SLA). Correlations between Vcmax and Jmax and leaf nitrogen (N) are typically derived from local to global scales, while correlations with leaf phosphorus (P) and specific leaf area (SLA) have typically been derived at a local scale. Thus, there is no global-scale relationship between Vcmax and Jmax and P or SLA limiting the ability of global-scale carbon flux models do not account for P or SLA. We gathered published data from 24 studies to reveal global relationships of Vcmax and Jmax with leaf N, P, and SLA. Vcmax was strongly related to leaf N, and increasing leaf P substantially increased the sensitivity of Vcmax to leaf N. Jmax was strongly related to Vcmax, and neither leaf N, P, or SLA had a substantial impact on the relationship. Although more data are needed to expand the applicability of the relationship, we show leaf P is a globally important determinant of photosynthetic rates. In a model of photosynthesis, we showed that at high leaf N (3 gm−2), increasing leaf P from 0.05 to 0.22 gm−2 nearly doubled assimilation rates. Finally, we show that plants may employ a conservative strategy of Jmax to Vcmax coordination that restricts photoinhibition when carboxylation is limiting at the expense of maximizing photosynthetic rates when light is limiting.  相似文献   

7.
A key weakness in current Earth System Models is the representation of thermal acclimation of photosynthesis in response to changes in growth temperatures. Previous studies in boreal and temperate ecosystems have shown leaf‐scale photosynthetic capacity parameters, the maximum rates of carboxylation (Vcmax) and electron transport (Jmax), to be positively correlated with foliar nitrogen (N) content at a given reference temperature. It is also known that Vcmax and Jmax exhibit temperature optima that are affected by various environmental factors and, further, that N partitioning among the foliar photosynthetic pools is affected by N availability. However, despite the strong recent anthropogenic influence on atmospheric temperatures and N deposition to forests, little is known about the role of foliar N contents in controlling the photosynthetic temperature responses. In this study, we investigated the temperature dependencies of Vcmax and Jmax in 1‐year‐old needles of mature boreal Pinus sylvestris (Scots pine) trees growing under low and high N availabilities in northern Sweden. We found that needle N status did not significantly affect the temperature responses of Vcmax or Jmax when the responses were fitted to a peaked function. If such N insensitivity is a common tree trait it will simplify the interpretation of the results from gradient and multi‐species studies, which commonly use sites with differing N availabilities, on temperature acclimation of photosynthetic capacity. Moreover, it will simplify modeling efforts aimed at understanding future carbon uptake by precluding the need to adjust the shape of the temperature response curves to variation in N availability.  相似文献   

8.
干旱胁迫对蒙古柞表观资源利用率的影响   总被引:11,自引:3,他引:11  
比较研究了模拟干旱及自然水分梯度条件下蒙古柞树种光合生理指标,模拟干旱处理试验土壤含水量分别控制在田间持水量的85%-100%(CK)、65%-85%(MEW)和45%-65%(LW)。结果表明,干旱胁迫对蒙古柞幼树净光合速率、气孔导度、蒸腾速率、水分利用率、表观CO2利用率和表观光能利用率等生理指标均产生明显影响。野外自然条件下水分梯度对蒙古柞大树气孔导度、水分利用率和净光合速率有显著影响,但对蒸腾速率、表观CO2利用率和表观光能利用率的影响不显著,中等水分条件可明显提高蒙古柞大树叶片的气体交换和水分利用率,说明蒙古柞树种叶片气体交换和表观资源利用率对干旱胁迫的响应程度不同。蒙古柞树种是干旱可变植物,长期水分胁迫可提高树种的耐旱能力,特别是中等水分胁迫能保持蒙古柞固有的强劲耐旱能力。  相似文献   

9.
Temperature dependence of two parameters in a photosynthesis model   总被引:7,自引:2,他引:5  
The temperature dependence of the photosynthetic parameters Vcmax, the maximum catalytic rate of the enzyme Rubisco, and Jmax, the maximum electron transport rate, were examined using published datasets. An Arrehenius equation, modified to account for decreases in each parameter at high temperatures, satisfactorily described the temperature response for both parameters. There was remarkable conformity in Vcmax and Jmax between all plants at Tleaf < 25 °C, when each parameter was normalized by their respective values at 25 °C (Vcmax0 and Jmax0), but showed a high degree of variability between and within species at Tleaf > 30 °C. For both normalized Vcmax and Jmax, the maximum fractional error introduced by assuming a common temperature response function is < ± 0·1 for most plants and < ± 0·22 for all plants when Tleaf < 25 °C. Fractional errors are typically < ± 0·45 in the temperature range 25–30 °C, but very large errors occur when a common function is used to estimate the photosynthetic parameters at temperatures > 30 °C. The ratio Jmax/Vcmax varies with temperature, but analysis of the ratio at Tleaf = 25 °C using the fitted mean temperature response functions results in Jmax0/Vcmax0 = 2·00 ± 0·60 (SD, n = 43).  相似文献   

10.
The response of small understory trees to long-term drought is vital in determining the future composition, carbon stocks and dynamics of tropical forests. Long-term drought is, however, also likely to expose understory trees to increased light availability driven by drought-induced mortality. Relatively little is known about the potential for understory trees to adjust their physiology to both decreasing water and increasing light availability. We analysed data on maximum photosynthetic capacity (Jmax, Vcmax), leaf respiration (Rleaf), leaf mass per area (LMA), leaf thickness and leaf nitrogen and phosphorus concentrations from 66 small trees across 12 common genera at the world's longest running tropical rainfall exclusion experiment and compared responses to those from 61 surviving canopy trees. Small trees increased Jmax, Vcmax, Rleaf and LMA (71, 29, 32, 15% respectively) in response to the drought treatment, but leaf thickness and leaf nutrient concentrations did not change. Small trees were significantly more responsive than large canopy trees to the drought treatment, suggesting greater phenotypic plasticity and resilience to prolonged drought, although differences among taxa were observed. Our results highlight that small tropical trees have greater capacity to respond to ecosystem level changes and have the potential to regenerate resilient forests following future droughts.  相似文献   

11.
Q. Han  M. Araki  Y. Chiba 《Photosynthetica》2006,44(4):523-529
In order to quantify the effects of thinning on photosynthetic parameters and associated change in leaf nitrogen (N) contents, half of the trees in a 10-year-old Chamaecyparis obtusa (Sieb. et Zucc.) Endl. stand (36° 3′N, 140°7′E) were removed, giving a final density of 1 500 trees ha−1, in May 2004. Photosynthetic photon flux density (PPFD) and leaf N and carbon (C) contents in the lower (L), middle (M), and upper (U) crowns were monitored one, three, and five months after thinning in both the thinned stand and a non-thinned control stand. In addition, leaves’ photosynthetic responses to CO2 concentration were simultaneously measured in situ to estimate the maximum rates of carboxylation (Vcmax) and electron transport (Jmax). Thinning increased PPFD in the L and M crowns but not in the U crown. Vcmax in both the L and M crowns of the thinned stand increased significantly in comparison with the same crown position of the control stand in the three and five months following thinning. In addition, the thinned stand exhibited an increase in N partitioned to ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBPCO) in the L and M crowns relative to the control stand three and five months after thinning, indicating that N had been redistributed within the photosynthetic machinery. Thinning did not affect N per unit area at any of the crown positions, but significantly increased the content of N as a fraction of the total leaf dry mass in the L and M crowns three and five months after thinning. This was a consequence of a decrease in leaf dry mass due to rapid shoot growth. Thus thinning did not cause a redistribution of N between leaves. Thinning improved irradiance in the L and M crowns of C. obtusa, leading to photosynthetic acclimation. Photosynthetic acclimation in the first year mainly occurred via redistribution of N within but not between leaves.  相似文献   

12.
Extreme climatic events, such as heat waves, cold snaps and drought spells, related to global climate change, have become more frequent and intense in recent years. Acclimation of plant physiological processes to changes in environmental conditions is a key component of plant adaptation to climate change. We assessed the temperature response of leaf photosynthetic parameters in wheat grown under contrasting water regimes and growth temperatures (Tgrowth). Two independent experiments were conducted under controlled conditions. In Experiment 1, two wheat genotypes were subjected to well-watered or drought-stressed treatments; in Experiment 2, the two water regimes combined with high, medium and low Tgrowth were imposed on one genotype. Parameters of a biochemical C3-photosynthesis model were estimated at six leaf temperatures for each factor combination. Photosynthesis acclimated more to drought than to Tgrowth. Drought affected photosynthesis by lowering its optimum temperature (Topt) and the values at Topt of light-saturated net photosynthesis, stomatal conductance, mesophyll conductance, the maximum rate of electron transport (Jmax) and the maximum rate of carboxylation by Rubisco (Vcmax). Topt for Vcmax was up to 40°C under well-watered conditions but 24–34°C under drought. The decrease in photosynthesis under drought varied among Tgrowth but was similar between genotypes. The temperature response of photosynthetic quantum yield under drought was partly attributed to photorespiration but more to alternative electron transport. All these changes in biochemical parameters could not be fully explained by the changed leaf nitrogen content. Further model analysis showed that both diffusional and biochemical parameters of photosynthesis and their thermal sensitivity acclimate little to Tgrowth, but acclimate considerably to drought and the combination of drought and Tgrowth. The commonly used modelling approaches, which typically consider the response of diffusional parameters, but ignore acclimation responses of biochemical parameters to drought and Tgrowth, strongly overestimate leaf photosynthesis under variable temperature and drought.  相似文献   

13.
The ability of silver fir ( Abies alba Mill.) to acclimate to different levels of irradiance was tested with 3-year-old seedlings, grown for 2 years in a nursery close to Nancy (eastern France) under 100, 48, 18 and 8% of incident irradiance (neutral shade nets). Growth, total nutrients in needles, maximal carboxylation rate ( V cmax), maximal light driven electron flow ( J max) and the relative amount of nitrogen allocated to photosynthetic processes (carboxylation, bioenergetics, light harvesting) were investigated. The sensitivity to drought stress was assessed among the phenotypes resulting from light acclimation. Leader-shoot and branch elongation were greatest under 18% irradiance. Total seedling biomass, root-to-total biomass ratio, total leaf area, leaf mass-to-area ratio and needle-area based nitrogen content responded positively to increasing irradiance while leaf area ratio decreased. Both V cmax and J max increased by a factor of 1.6 and 1.8, respectively, from the lowest to the highest irradiance but the ratio J max/ V cmax remained stable. All these parameters, expressed on a projected needle area basis, remained within the lower range of values measured for broadleaved trees. Relative allocation of needle N to the different components of the photosynthetic apparatus was very low: 12, 3 and 7% of total nitrogen were invested in carboxylation, bioenergetics and light harvesting, respectively. The relative allocation of nitrogen to carboxylation and bioenergetics remained stable while that to light harvesting decreased with increasing irradiance. During drought, seedlings pre-acclimated to shade closed their stomata at higher predawn needle water potential than those which were grown under higher irradiance. Critical temperature for PSII photochemistry in needles was unaffected by irradiance and was close to 47°C. Drought significantly increased the critical temperature up to 51°C. In general, the amplitude of responses of silver fir to changing irradiance (phenotypic plasticity) was smaller than that recorded in broadleaved species.  相似文献   

14.
A strong correlation between the photosynthetic parameters Jmaxand Vcmax was found by Wullschleger (1993) in a survey of 109plant species. Measurements were made at various leaf temperatures,but the temperature dependence of Jmax and Vcmax differ. Oncevalues for Jmax and Vcmax in Wullschleger's analysis were adjustedto a common temperature, using an equation for the temperaturedependence of these parameters, the slope of the linear regressionfor Jmax versus Vcmax forced through the origin increased from1.97 to 2.68, and r2 increased from 0.79 to 0.87. Key words: Temperature, photosynthesis parameters  相似文献   

15.
Responses of plant processes to temperature may vary according to the time scale on which they are measured. In this study, both short‐term and seasonal responses of photosynthesis to temperature were examined. A field study of seasonal changes in the temperature response of photosynthesis was conducted on two provenances, French and Moroccan, of mature maritime pine (Pinus pinaster Ait.). Measurements were made every 2 months over a 1‐year period and used to parameterize a mechanistic model of photosynthesis. Temperature responses of maximum Rubisco activity, Vcmax, and potential electron transport rate, Jmax, were obtained for each measurement period, as was the response of stomatal conductance, gs, to water vapour pressure deficit (VPD). Absolute values of Vcmax and Jmax at 25 °C were related to needle nitrogen content, Narea.Narea, and thus Vcmax and Jmax, were negatively correlated with the mean minimum temperature in the month preceding measurements. The ratio of Jmax : Vcmax at 25 °C varied between 1 and 1·7 but did not show any seasonal trend. Nor was there any seasonal trend in the relative temperature response of Vcmax, which had an activation energy Ha of approximately 57 kJ mol?1 throughout the experiment. The activation energy of Jmax was also close to constant throughout the experiment, averaging 39 kJ mol?1. For the French provenance, the optimal temperature of Jmax was positively correlated with the maximum temperature of the previous day, but no such correlation was found for the Moroccan provenance. The response of gs to VPD also varied seasonally, with much stronger stomatal closure in winter months. Taken together, these results implied a translational shift downwards of the photosynthetic temperature response curve with increasing Tprev, and a shift in the temperature optimum of photosynthesis of 5–10 °C between summer and winter. These results illustrate that the short‐term temperature response of photosynthesis varies significantly on a seasonal basis.  相似文献   

16.
Needle morphological, chemical and physiological characteristics of Norway spruce were studied in a forest chronosequence in Järvselja Experimental Forest, Estonia. Current‐year shoots were sampled from upper canopy positions in five stands, ranging in height from 1.8 to 33.0 m (corresponding age range was 10–85 years). A/Ci curves were determined to obtain maximum carboxylation rates (Vcmax) and maximum rates of electron transport (Jmax). Needle nitrogen (N) partitioning into photosynthetic functions was calculated from the values of Vcmax, Jmax and leaf chlorophyll concentration. All needle size parameters (length, width, thickness, volume and cross‐sectional areas of mesophyll and xylem) increased significantly with tree height. The needles of taller trees had lower mass‐based N and chlorophyll concentrations (21% and 43% difference between shortest and tallest stands, respectively), but higher dry mass per area (35%), dry mass per volume (18%), number of cells per mesophyll cross‐section area (40%) and partitioning of N into non‐photosynthetic functions (12%). Light saturated net assimilation rate, Vcmax, Jmax and stomatal conductance decreased with tree age (35%, 16%, 12% and 29% difference, respectively). A path analysis model describing tree age‐related reduction of photosynthetic capacity as a result of sink limitation provided the best fit to our data. However, since the path model corresponding to source limitation, where photosynthetic reduction derives from changes in needle structure and chemistry was not rejected, we conclude that the decline in photosynthesis with tree age results from several mechanisms (limited sink strength, stomatal and N limitation) operating simultaneously and sequentially.  相似文献   

17.
Increased temperature, atmospheric CO2 and change in precipitation patterns affect plant physiological and ecosystem processes. In combination, the interactions between these effects result in complex responses that challenge our current understanding. In a multi-factorial field experiment with elevated CO2 (CO2, FACE), nighttime warming (T) and periodic drought (D), we investigated photosynthetic capacity and PSII performance in the evergreen dwarf shrub Calluna vulgaris and the grass Deschampsia flexuosa in a temperate heath ecosystem. Photosynthetic capacity was evaluated using A/Ci curves, leaf nitrogen content and chlorophyll-a fluorescence OJIP induction curves. The PSII performance was evaluated via the total performance index PItotal, which integrates the function of antenna, reaction centers, electron transport and end-acceptor reduction according to the OJIP-test.The PSII performance was negatively influenced by high air temperature, low soil water content and high irradiance dose. The experimental treatments of elevated CO2 and prolonged drought generally down-regulated Jmax, Vcmax and PItotal. Recovery from these depressions was found in the evergreen shrub after rewetting, while post-rewetting up-regulation of these parameters was observed in the grass. Warming effects acted indirectly to improve early season Jmax, Vcmax and PItotal. The responses in the multi-factorial experimental manipulations demonstrated complex interactive effects of T × CO2, D × CO2 and T × D × CO2 on photosynthetic capacity and PSII performance. The impact on the O-J, J-I and I-P phases which determine the response of PItotal are discussed. The single factor effects on PSII performance and their interactions could be explained by parallel adjustments of Vcmax, Jmax and leaf nitrogen in combination. Despite the highly variable natural environment, the OJIP-test was very robust in detecting the impacts of T, D, CO2 and their interactions.This study demonstrates that future climate will affect fundamental plant physiological processes in a way that is not predictable from single factor treatments. The interaction effects that were observed depended upon both the growth strategy of the species considered, and their ability to adjust during drought and rewetting periods.  相似文献   

18.
Worldwide measurements of nearly 130 C3 species covering all major plant functional types are analysed in conjunction with model simulations to determine the effects of mesophyll conductance (gm) on photosynthetic parameters and their relationships estimated from A/Ci curves. We find that an assumption of infinite gm results in up to 75% underestimation for maximum carboxylation rate Vcmax, 60% for maximum electron transport rate Jmax, and 40% for triose phosphate utilization rate Tu. Vcmax is most sensitive, Jmax is less sensitive, and Tu has the least sensitivity to the variation of gm. Because of this asymmetrical effect of gm, the ratios of Jmax to Vcmax, Tu to Vcmax and Tu to Jmax are all overestimated. An infinite gm assumption also limits the freedom of variation of estimated parameters and artificially constrains parameter relationships to stronger shapes. These findings suggest the importance of quantifying gm for understanding in situ photosynthetic machinery functioning. We show that a nonzero resistance to CO2 movement in chloroplasts has small effects on estimated parameters. A non‐linear function with gm as input is developed to convert the parameters estimated under an assumption of infinite gm to proper values. This function will facilitate gm representation in global carbon cycle models.  相似文献   

19.
土壤水分梯度对灰胡杨光合作用与抗逆性的影响   总被引:1,自引:0,他引:1  
以塔里木盆地珍稀渐危种灰胡杨(Populus pruinosa Schrenk)幼苗为材料,采用盆栽方法研究土壤水分梯度对灰胡杨光合特征及抗逆性的影响。结果表明:(1)灰胡杨净光合速率(P_n)、蒸腾速率、气孔导度、胞间CO_2浓度和光能利用率均随土壤水分递减而降低,重度干旱比适宜水分依次降低了35.53%、25.32%、48.18%、15.62%和40.92%;而光合午休程度则明显增强,P_n下降主要是由非气孔因素限制造成。轻度干旱能够提高灰胡杨水分利用效率(WUE)3.05%,维持相对较高的P_n和WUE。(2)随土壤水分递降,灰胡杨光照生态幅缩窄,CO_2补偿点升高,RuBP再生受限,光与CO_2利用效率、Rubisco活性和光合效率降低。与适宜水分相比,中度与重度干旱下最大净光合速率(P_(nmax))、表观量子效率、光饱和点、羧化效率、光合能力(A_(max))、光呼吸速率、最大羧化效率、最大电子传递速率和磷酸丙糖利用率均显著降低(P0.05),其中P_(nmax)、A_(max)和生化参数分别降低了42.65%、38.26%、57.10%;63.01%、65.88%、73.43%。(3)土壤干旱显著降低了灰胡杨的枝水势和光合色素含量(P0.01),并且改变了光系统反应中心色素的组成比例,膜脂过氧化程度显著增强(P0.01)。灰胡杨主要通过积累大量脯氨酸和可溶性蛋白质参与渗透调节来减轻土壤干旱对光合机构的损伤。重度干旱对灰胡杨叶片光合系统造成了不可逆的伤害,严重抑制了其正常生长和光合作用。综上所述,塔里木干旱荒漠区灰胡杨生长适宜的土壤相对含水量为60%—65%符合极端干旱区植被恢复与高效节水的管理原则。  相似文献   

20.
李月灵  金则新  李钧敏  郭素民  管铭 《生态学报》2015,35(12):3926-3937
采用框栽试验方法,模拟Cu胁迫条件下,探讨接种土壤微生物对海州香薷(Elsholtzia splendens)生长和光合生理的影响。结果表明:(1)在Cu胁迫下,海州香薷株数、株高、基径、生物量、茎重比均显著低于对照;与Cu胁迫相比,接种土壤微生物能显著缓解Cu胁迫对海州香薷生长的抑制作用,使植株的株数、株高、生物量、茎重比显著提高。Cu胁迫下,接种土壤微生物均降低了植株体内不同器官Cu含量,茎和叶Cu的累积量显著减少,但对其它器官的Cu含量影响不显著。(2)秋季,各处理的海州香薷的净光合速率(Pn)日变化均呈"单峰"曲线,接种土壤微生物显著提高了Cu胁迫下海州香薷的日均Pn、日均蒸腾速率(Tr),而日均气孔导度(Gs)、日均胞间CO2浓度(Ci)显著降低。(3)Cu胁迫下,接种土壤微生物显著提高了植株的最大净光合速率(Pnmax)、光饱和点(LSP)、表观量子效率(AQY)、最大羧化速率(Vcmax)、最大电子传递速率(Jmax)、磷酸丙糖利用率(TPU),且使光补偿点(LCP)显著降低。表明接种土壤微生物通过提高光能利用率、利用弱光和碳同化能力来增强光合作用能力及有机物的积累,缓解Cu胁迫对海州香薷的毒害。因此,接种土壤微生物可促进Cu胁迫下海州香薷的生长,在重金属污染土壤的植物修复中具有较好的应用潜力。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号