首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
2.
Changes in the activity of a number of enzymes concerned with amino acid synthesis and metabolism were recorded for the endosperm, testa pericarp, and embryo of developing barley (Hordeum distichum L.) grains. Both glutamate-pyruvate transaminase and glutamate-oxaloacetate transaminase activities were present in all tissues and at all ages examined. Glutamate dehydrogenase activity was largely confined to endosperm while glutamine synthetase activity was mainly in the testa pericarp.  相似文献   

3.
Seed Transmission of Maize Dwarf Mosaic Virus in Sweet Corn   总被引:1,自引:0,他引:1  
Sweet corn seed from several maize dwarf mosaic virus (MDMV)-infected hybrids grown in the field were tested for transmission of MDMV through the seed. Seeds collected in 1979, 1980, 1981, and 1982, were germinated in the greenhouse the following winters. Only one seedling of 22,189 was MDMV-infected During the last three years, seed were dissected at different maturities and the seed parts tested for the presence of MDMV by both infectivity and enzyme-linked immunosorbent assay (ELISA). At 21 days after pollination, MDMV always was detected in the pericarp, but rarely in the endosperm or embryo. No MDMV was detected in the embryo of mature kernels, but virus occasionally was detected in the endosperm and pericarp. MDMV was regularly detected in unfertilized kernels and whole silks, but not in pollen by infectivity, ELISA or serological specific electron microscopy. MDMV was detected in glumes and whole anthers.  相似文献   

4.
The growth of the fruit of two varieties of almond (Prunus dulcis(Mill.) D. A. Webb) was studid from anthesis (week 0) to maturity(week 32). The dimensions, fresh weight, moisture content, anatomyand chemical composition of the pericarp, testa, embryo, endospermand nucellus are recorded diagrarnmatically, graphically andby micrographs for one variety. Of the two ovules present atflowering only one normally developed further. By 12 weeks afterflowering the whole fruit had reached full size. The space encloscdby the pericarp was filled by nuallus until weck 10, with subsequentenlargement of both endosperm and embryo. From week 16 to week20 the embryo increased to full size with a concumnt decreasein the size of the endosperm. Sixteen weeks after flowering,the embryo began to accumulate protein and lipid, little ofwhich originated from either the nucellus or endosperm. Theembryo contained no starch or reducing sugar but up to 3% sucrosein the early stags which dtcreascd as lipid and protein increased.Starch and sucrose levels were high in the testa at week 16but subsbquently dropped, starch more rapidly than sucrose.The role of the testa in transport of metabolites to the embryois discussed. Prunus dulcis, almond, fruit development, anatomy, embryo, endosperm  相似文献   

5.
Fruit structure and development is examined in species of Dinochloaand Ochlandra, in the context of bamboo systematics. In bothgenera there is a thick pericarp, and at maturity the endospermhas become compressed by the massive scutellum, although bothembryo and endosperm initially follow the normal pattern fordevelopment for grasses. The scutellum, endosperm and pericarpcontain food reserves in the form of starch granules. Thereare some differences between the two genera, notably the structureof the mature pericarp and the position of the embryo, and theseare discussed in relation to vivipary and the lack of a dormancyor dispersal phase in these genera Gramineae, Bambusoideac, Dinochloa, Ochlandra, Melocanna, fleshy fruits, fruit wall  相似文献   

6.
By the carrot-assay method it has been shown that the wateryendosperm of coconut contains the growth-promoting coconut-milkfactor at all stages of development. Some activity is shownby the parts of the immature embryo but not by the solid endosperm. Sources of analogous activity are in the endosperm of Zea maysin the milk stage, the gelatinous content of immature fruitsof Fuglans regia, and the young gametophyte of Ginkgo biloba.The data for other cases examined suggest that the materialdevelops best in nutritive tissues associated with delayed embryodevelopment.  相似文献   

7.
An alkali maceration technique has been developed to detect internally seed-borne inoculum of Peronosclerospora sorghi in sorghum seeds. Optimum period for maceration was found to be 36 h. Oospores in the glumes and mycelia in the pericarp and endosperm were clearly demonstrated. Mycelium was found in the pericarp of 40 % of the seeds tested and in the endosperm of 5 % of seeds. The possibility of using this technique to detect seed-borne downy mildew infection has been emphasized.  相似文献   

8.
9.
In maize (Zea mays L.), GSp1, the predominant GS isozyme of the developing kernel, is abundant in the pedicel and pericarp, but absent from the endosperm and embryo. Determinations of GSp1 tissue distribution in vegetative tissues have been limited thus far to root and leaves, where the isozyme is absent. However, the promoter from the gene encoding GSp1 has been shown to drive reporter gene expression not only in the maternal seed-associated tissues in transgenic maize plants, but also in the anthers, husks and pollen (Muhitch et al. 2002, Plant Sci 163: 865-872). Here we report chromatographic evidence that GSp1 resides in immature tassels, dehiscing anthers, kernel glumes, ear husks, cobs and stalks of maize plants, but not in mature, shedding pollen grains. RNA blot analysis confirmed these biochemical data. In stalks, GSp1 increased in the later stages of ear development, suggesting that it plays a role in nitrogen remobilization during grain fill.  相似文献   

10.
Ethylene biosynthesis in tissues of young and mature avocado fruits   总被引:1,自引:0,他引:1  
Sitrit, Y., Blumenfeld, A. and Riov, J. 1987. Ethylene biosynthesis in tissues of young and mature avocado fruits.
Avocado (Persea americana Mill.) fruit tissues differ greatly in their capability to pro duce wound ethylene. In fruitlets, the endosperm lacks the ability to produce ethylene because no 1-aminocyclopropane-1-carboxylic acid (ACC) is synthesized and no activity of the ethylene-forming enzyme (EFE) is present. The cotyledons (embryo) do not produce significant amounts of ethylene at any of the developmental stages of the fruits, although in both young and mature fruits they contain a relatively high level of ACC synthase (EC 4.4.1.-) activity. Because of the very low EFE activity present in the cotyledons, most of the ACC formed in this tissue is conjugated. Of the various fruitlet tissues, the seed coat has the highest potential to produce ethylene. This is due to a high ACC synthase activity and particularly a high EFE activity. Also, the seed coat is very sensitive to the autocatalytic effect of ethylene. Fruitletpericarp possesses a lower potential to produce ethylene than the seed coat. Towardruit maturiy, the endosperm disappears and the seed coat shrivels and dies so that the pericarp and the cotyledons remain as the only active tissues in the mature fruit. At this stage, the pericarp is the only tissue producing ethylene. Mature precli macteric pericarp has a lower potential to produce ethylene than fruitlet pericarpThe role of ethylene in regulating various physiological processes at different stages of fruit maturation is discussed.  相似文献   

11.
小麦种子成熟和萌发过程中的假萌发素活性   总被引:1,自引:0,他引:1  
用SDS-PAGE方法研究了假萌发素(ψG)在小麦种子成熟和萌发过程中活性的变化.结果表明:在种子成熟过程中只有ψG表达,扬花后10 d,在颖壳、内外桴、种皮和果皮中皆可检测到ψG的草酸氧化酶活性,随着发育进程的推进,ψG的活性增大.在种子萌发过程中,在小麦品种中育5号的维管束过渡区中除了萌发素G和G'外,还可检测到ψG的草酸氧化酶活性.由于ψG在种子成熟过程中主要存在于颖壳、内外桴、果皮及种皮这些保护组织中,且开始大量表达的时间正是生长接近停止时,于是推测ψG很可能通过降解草酸产生H2O2而推动这些组织细胞壁的木质化.  相似文献   

12.
Sucrose metabolism and the role of sucrose synthase were investigated in the fruit tissues (pericarp, perisperm, and endosperm) of Coffea arabica during development. Acid invertase, sucrose phosphate synthase, and sucrose synthase activities were monitored and compared with the levels of sucrose and reducing sugars. Among these enzymes, sucrose synthase showed the highest activities during the last stage of endosperm and pericarp development and this activity paralleled closely the accumulation of sucrose in these tissues at this stage. Carbon partitioning in fruits was studied by pulse-chase experiments with (14)C-sugars and revealed high rates of sucrose turnover in perisperm and endosperm tissues. Additional feeding experiments with (14)CO(2) showed that leaf photosynthesis contributed more to seed development than the pericarp in terms of photosynthate supply to the endosperm. Sugar analysis, feeding experiments, and histological studies indicated that the perisperm plays an important role in this downloading process. It was observed that the perisperm presents a transient accumulation of starch which is degraded as the seed develops. Two full-length cDNAs (CaSUS1 and CaSUS2) and the complete gene sequence of the latter were also isolated. They encode sucrose synthase isoforms that are phylogenetically distinct, indicating their involvement in different physiological functions during cherry development. Contrasting expression patterns were observed for CaSUS1 and CaSUS2 in perisperm, endosperm, and pericarp tissues: CaSUS1 mRNAs accumulated mainly during the early development of perisperm and endosperm, as well as during pericarp growing phases, whereas those of CaSUS2 paralleled sucrose synthase activity in the last weeks of pericarp and endosperm development. Taken together, these results indicate that sucrose synthase plays an important role in sugar metabolism during sucrose accumulation in the coffee fruit.  相似文献   

13.
The activity of sodium hypochlorite solution in relieving thermo-inhibitionof germination of lettuce seed is shown to be due to its chlorinecontent. Results of experiments in which the pericarp, and pericarpand endosperm were removed, together with direct measurementsof penetration forces, suggest that the relief of thermo-inhibitionresults from weakening of the pericarp by the hypochlorite.Differences between the cultivars ‘Cobham Green’and ‘Grand Rapids’ in the contributions made bypericarp and endosperm to germination control at 35 °C aredemonstrated. Key words: Lactuca sativa L, Chlorine, Thermo-inhibition  相似文献   

14.
The role of fructan metabolism in the assimilate relations of the grain of wheat (Triticum aestivum L.) was investigated by determination of the dry matter and fructan content of grain components at short intervals during grain filling. During the initial phase of rapid expansion, most of the assimilates entering the grain were partitioned to the outer pericarp. A large fraction of these assimilates were used for the synthesis of fructan. Dry matter deposition and fructan synthesis in the outer pericarp ceased at about 5d after anthesis. At the same time, the endosperm and the inner pericarp and testa started to accumulate dry matter at a fast rate. This was also associated with significant fructan synthesis in the latter tissues. The outer pericarp lost about 45% of its former maximum dry weight between 9 and 19 d after anthesis. This loss was due almost entirely to the near complete disappearance of water-soluble carbohydrates, most of which was fructan. The inner pericarp and testa accumulated dry matter until about mid-grain filling. The fructan contents of the inner pericarp and testa and the endosperm decreased slowly towards the end of grain filling. Most of the fructans in the inner pericarp and testa and the endosperm had a low molecular weight, whereas higher molecular weight fructans predominated in the outer pericarp. The embryo did not contain fructan. The presence of low molecular weight fructans in the endosperm cavity at mid-grain filling was confirmed. It is suggested that fructan synthesis is closely linked to growth-related water deposition in the different tissues of the wheat grain and serves to sequester the surplus of imported sucrose.  相似文献   

15.
BRIGGS  C. L. 《Annals of botany》1996,78(3):295-304
The early developmental sequences in the formation of the Zoneof Separation and Secretion in a hexaploid species of Solanumnigrum L. are described. Ultrastructural changes which occurredduring the development of the embryo/endosperm interface couldbe related to the different stages in the embryo's development.The first step was the completion of the cell wall around thechalazal end of the zygote; a thin wall was formed along theendosperm cell(s) abutting the zygote. From the mature zygotestage to the quadrant stage, minute plasmalemma invaginationsoccurred along the endosperm wall facing the zygote. These invaginationsenlarged, and from the mid-globular stage onwards became filledwith a fine fibrillar material; this material accumulated betweenthe endosperm cell wall and the plasmalemma before being releasedinto the developing periembryonic and intercellular spaces tobecome the extracellular matrix. Cell wall development in theendosperm cells abutting the embryo followed an unusual path.During the quadrant stage, whilst the outer embryo wall increasedin thickness due to vesicle fusion, the endosperm cell wallfacing the embryo showed a loosening of the wall fibrils aswell as partial separation of these same endosperm cells fromeach other. From the early-globular stage, the endosperm cellwalls opposite the embryo became electron-translucent, disappearinginto the extracellular matrix. Enzymic secretions by the embryomay account for the alteration in the abutting endosperm cellwalls. Enzymic activity may also explain the development ofa homogenous electron-opaque layer over the outer embryo wallas well as the differences in the width of the fibrillar layerwhich accumulated around the cotyledons as the embryo grew throughthe Zone of Separation and Secretion. The potential roles ofthe extracellular matrix are briefly discussed. Solanum nigrum L.; embryo/endosperm interface; Zone of Separation and Secretion; embryo development; cellular endosperm  相似文献   

16.
Imbibition and germination experiments were conducted on the caryopses of wild oats (Avena fatua L.). The embryo envelopes, pericarp and aleurone layer, which completely cover the embryo-endosperm, do not form barriers against water uptake. The initial uptake of water is passive and the water moves across the pericarp with ease as it contains cracks; it is, however, transported across the aleurone layer through its cell walls into the endosperm and embryo of the caryopsis. The starchy endosperm enlarges due to water uptake causing the pericarp to rupture, thus exposing the aleuronelayer-covered seed. The aleurone layer is structurally heterogenous consistings of radially compressed irregular cells and cuboidal or radiallys tretched cells; the latter contains thicker walls. The former type is present along the abaxial side of the embryo and in the crease on the adaxial side of the caryopsis; the latter type covers the endosperm. The physical distention of the endosperm due to water uptake causes the rupture of the pericarp and the aleurone layer, and facilitates the emergence of the radicle and coleorhiza of the embryo during caryopsis germination.  相似文献   

17.
Abstract

GROWTH OF PERICARP, SEED, ENDOSPERM, AND EMBRYO IN PRUNUS AMYGDALUS STOKES. — The fruits of an almond-tree growing at Bari were collected weekly from February 22nd to July 11th and on August 16th 1960. The material was kept in fixative; the growth of the various organs was studied both from a morphological and a quantitative point of view. Special attention was given to growth of the endosperm, especially during the nuclear stage and at the beginning of cellularisation (Figg. 1-14), and to the developement of the embryo until it reaches the « heart-shaped » stage (Figg. 15–22). From a quantitative point of view, the volume and main diameters of pericarp and seed, and whenever possible endosperm and embryo, were measured for each fruit. Most of the data are given in Tables I to V and Figg. 23 and 24.

If reference is made to the 3 phases of fruit growth established for other species (notably peaches and cherries), the main conclusions are that:
  1. phase I (growth of pericarp, testa and nucellus) is clearly recognisable; it ends after the micropylar portion of the endosperm has become cellular and the embryo heart shaped;

  2. phase II is also present: during this phase most of the growth of endosperm and embryo takes place; while the seed has reached its definite size at the end of phase I, the pericarp undergoes a period of greatly reduced growth;

  3. two weeks after the beginning of phase II the pericarp seems to resume growth just for a very short period, judging at least by the weekly values of the ratio pericarp volume to seed volume (see Fig. 23); this seems to indicate the existence of a new phase, that is phase III, which in fleshy fruits of the genus Prunus corresponds to a much longer and important process of pericarp growth than in the almond;

  4. as in the peaches and cherries therefore a crisis in pericarp growth occurs during the period of maximum rate of growth of the cellular endosperm and embryo;

  5. the sequence: cellularisation of the endosperm, growth of endosperm and embryo, ceasing of seed growth, and reduction in pericarp growth is very clear, particularly if we take into account growth in length rather than in volume; both morphological and quantitative data would indicate the importance of the endosperm not only for the beginning of embryo development, but also for the control of pericarp growth.

  相似文献   

18.
High specific activity [3H]-zeatin riboside (ZR) was suppliedto germinating seed and developing seedlings of Zea mays tostudy its metabolism and translocation The major metabolitesof ZR in endosperm, embryo, and first leaves were adenosine,adenine, and adenine nucleotide When ZR was supplied to theradicle tip a significant proportion of the radioactivity extractedfrom the radicle was identified as zeatin-9-glucoside (Z9G).However, some ZR was also transported to the shoot and vestigialembryo During the initial stage of germination, movement ofzeatin riboside from the embryo to the endosperm was pronouncedbut little movement occurred in the reverse direction Key words: Zea mays cytokinin, zeatin riboside, metabolism, translocation  相似文献   

19.
The embryo envelope tissues in both mature dry seed and duringearly germination of Phacelia tanacetifolia were investigatedby bright-field and fluorescence light microscopy and scanningelectron microscopy. The ruminate seed had an irregularly reticulatesurface owing to the presence of polygonal areas, correspondingto the cells of the seed coat. The raised margins of these cellsjoined at the lobe tips, where radially arranged thickeningsoccurred. The unitegmic seed coat was made up of three distinctlayers: the frayed outer layer, the middle layer with portionsrising outwards to form the radial thickenings, and the innerlayer, the thickness of which was greatest in the micropylarzone. The endosperm tissue had two regions, the micropylar andthe lateral endosperm, which differed in polysaccharide composition,thickness and metachromasy intensity, and presence (in the lateralendosperm) or absence (in the micropylar endosperm) of birefringenceof the cell walls. Moreover, in the micropylar region, wherethe embryo suspensor remnant was found, Ca-oxalate crystalswere scarce or absent. The presence of a partially permeablecuticle covering the seed endosperm was observed. Incubationof seeds in Lucifer Yellow CH indicated that water was ableto penetrate quickly into the seed coat along the pathway formedby the radial thickenings, the raised margins of the polygonalcells and the middle layer. Afterwards, LY-CH readily infiltratedthe apical portions of the seed lobes and then the whole endosperm.Following imbibition, morphological changes were found in themicropylar endosperm, such as the initial digestion of proteinbodies. In addition, both in the seed coat and in the endosperm,a weaker fluorescence, probably due to leaching of polyphenolicsubstances, was observed. Once the seed coat was broken at themicropylar end of the seed, the endosperm cap surrounding theradicle tip had to be punctured by it so that complete germinationcould occur. Weakening and rupture of the micropylar endospermare briefly discussed. Copyright 2000 Annals of Botany Company Phacelia tanacetifolia, seed coat, micropylar endosperm, endosperm cap, early germination, structure, histochemistry  相似文献   

20.
The three areas of food reserves in quinoa seeds are: a largecentral perisperm, a peripheral embryo and a one to two-celllayered endosperm surrounding the hypocotyl-radicle axis ofthe embryo. Cytochemical and ultrastructural analysis revealedthat starch grains occupy the cells of the perisperm, whilelipid bodies, protein bodies with globoid crystals of phytin,and proplastids with deposits of phytoferritin are the storagecomponents of the cells of the endosperm and embryo tissues.EDX analysis of the endosperm and embryo protein bodies revealedthat globoid crystals contain phosphorus, potassium and magnesium.These results are compared with studies on other perispermousseeds published to date.Copyright 1998 Annals of Botany Company Chenopodium quinoa,EDX analysis, phytoferritin, phytin, protein bodies, quinoa, seed structure, seed reserves, starch grains.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号