首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Sertoli cell-enriched preparations from testes of 20-day-old rats were cultured in a defined medium in the presence and absence of FSH or dibutyryl cyclic AMP (dcAMP). Androgen-binding activity was assayed in the culture medium, and related to testicular androgen-binding protein (ABP). The production and secretion of ABP by the Sertoli cell-enriched preparation was increased after FSH or dcAMP treatment of the primary culture. It is concluded that ABP is produced by Sertoli cells. The possibility of involvement of other cell types in the testis in ABP production is discussed.  相似文献   

2.
Aromatization of testosterone by cultured Sertoli cells isolated from immature rats was stimulated more than 7-fold by follicle stimulating hormone (FSH) or dcAMP. The effects of FSH and dcAMP could be partly inhibited by epidermal growth factor (EGF) in a dose-dependent manner (ID500.5 nM). The phorbol ester 4 beta-phorbol-12-myristate-13-acetate (PMA) could also inhibit aromatase activity in a fashion similar to EGF. When 3 mM EGTA was present in the culture medium, the inhibitory effect of EGF was abolished but the stimulatory effect of FSH or dcAMP was magnified. These results suggest that EGF exerts a negative control on aromatase via calcium and protein kinase C. The abolishment of the inhibitory effect of EGF and the enhancement of the stimulatory effect of FSH or dcAMP by a calcium deficiency may be an indication that growth factors produced by Sertoli cells negatively controls FSH-induced responses in an autocrine fashion.  相似文献   

3.
J B Yee  J C Hutson 《Life sciences》1989,44(17):1193-1199
Sertoli cells of the testis secrete lactate in response to follicle-stimulating hormone (FSH). It is thought that the developing germ cells use lactate as an energy substrate preferentially over glucose. However, the biochemical mechanism(s) involved in the regulation of lactate secretion in response to FSH are unknown. The purpose of this study was to determine if extracellular calcium was important for the actions of FSH during this response. It was found that the FSH-induced increase in lactate production by Sertoli cells was not dependent upon the presence of extracellular calcium. However, A23187 (a calcium ionophore) stimulated lactate secretion in the presence of extracellular calcium. When FSH and A23187 were tested together at maximal concentrations, more lactate was secreted than when either FSH or A23187 was tested alone. Neither verapamil, nifedipine nor diltiazem (calcium channel "blockers") were able to inhibit the ability of FSH to increase lactate secretion. These results indicate that FSH-induced secretion of lactate by cultured Sertoli cells is not dependent upon extracellular calcium.  相似文献   

4.
Primary cultures of immature rat Sertoli cells, maintained in serum-free medium, secrete two types of plasminogen activator (PA). When cultured under basal conditions, the preparations predominantly produce PA having a relative molecular weight (Mr) of 45,000 to 48,000. This PA activity is inactivated by antiserum against urokinase-type PA. When Sertoli cells are stimulated by follicle-stimulating hormone (FSH) or by dibutyryl cyclic adenosine 3',5'-monophosphate (dbcAMP), PA secretion is increased. The PA produced under these conditions has an Mr of 70,000, and is inactivated by antiserum against tissue-type PA but not by antiserum against urokinase-type PA. We conclude that, under basal conditions, Sertoli cells primarily secrete PA having the characteristics of urokinase-like PA (mu PA), and that Sertoli cells stimulated by FSH or by dbcAMP predominantly produce PA having the properties of tissue-type PA (tPA). Segments of adult rat seminiferous tubules, at defined stages of the cycle of the seminiferous epithelium, also produce and secrete two types of PA into the medium when maintained in organ culture. Segments at all stages examined release primarily mu PA in preparations cultured under basal conditions. In contrast, segments cultured in the presence of FSH synthesize larger amounts of PA, predominantly of the tPA type. An additional protease, which is independent of plasminogen, is secreted by tubule segments stimulated by FSH. The activity of this novel protease is not detectable in cultures maintained under basal conditions. We discuss the data in relation to the possible role of proteases in the restructuring of the seminiferous tubule during spermatogenesis.  相似文献   

5.
Metabolism of radiolabelled energy-yielding substrates by rat Sertoli cells   总被引:2,自引:0,他引:2  
The rates of metabolism in vitro of 3H- or 14C-labelled glucose, pyruvate, glutamine and leucine by Sertoli cells from immature rats were estimated. The overall rate of glucose utilization exceeded by far the rates of oxidation of pyruvate (derived from glucose) via the citric acid cycle and glucose metabolism via the oxidative branch of the pentose phosphate pathway. This pattern of glucose metabolism was not markedly altered after stimulation of glucose metabolism by FSH. The rate of oxidation of exogenous pyruvate indicated that the energy yield from glucose metabolism by Sertoli cells could be dependent on the extracellular concentrations of pyruvate and lactate. There is no evidence that a high rate of aerobic glycolysis is of vital importance for Sertoli cells. In medium containing glucose and all amino acids, 14C-labelled glutamine and leucine were converted to 14CO2 at considerable rates. It was calculated that the oxidation of glutamine and leucine in addition to glucose and fatty acids can yield much of the required energy of Sertoli cells.  相似文献   

6.
Adult rat Leydig cell aromatase activity is stimulated 2.5 fold by LH or dbcAMP. Spent media prepared from seminiferous tubules or Sertoli cells of immature rats depress both the basal and the LH stimulated estradiol syntheses (25 and 20% decreases, respectively). These inhibitory effects are further enhanced when FSH is added to the culture medium of seminiferous tubules or Sertoli cells. Rat serum as well as culture media from other cell lines are ineffective while seminiferous tubule media from other immature animals (mouse, guinea-pig, calf) inhibit the aromatase activity. This Sertoli cell factor is a heat stable protein (molecular weight greater than 10 kDa), different from the LHRH-like Sertoli cell compound, which acts on the aromatase activity at a step beyond the adenylate cyclase.  相似文献   

7.
To define a functional difference in Sertoli cells of animals exposed to different photoperiodic conditions, we isolated Sertoli cells from the testes of juvenile Siberian hamsters and cultured them in serum-free medium. In all age groups studied, Sertoli cells isolated from hamsters with delayed and normal puberty responded to follicle-stimulating hormone (FSH) with an increase in lactate production. The increase in lactate production induced by 1000 ng FSH ml-1 was significantly greater in Sertoli cells isolated from hamsters with delayed puberty than in those with normal puberty. These results suggest that Sertoli cells of Siberian hamsters exposed to short photoperiod in vivo may respond to increases in plasma FSH concentrations associated with photostimulation or spontaneous sexual maturation by an increase in secretory activity that may be critical for the initiation of spermatogenesis.  相似文献   

8.
The influence of the medium collected from cultured rat Sertoli cells on the spontaneous and LHRH-stimulated release of gonadotropins by incubated rat pituitary halves was examined. The homogeneity of the cultured population of Sertoli cells taken from 20-day-old rats ranged up to 98%. The cells in culture responded to FSH stimulation with characteristic morphological changes and with increased secretion of estradiol-17 beta. The hemi-pituitaries obtained from sexually mature male rats were incubated for 5 hours in the presence of Sertoli cell culture medium (SCCM) or its fractions obtained by use of ultrafiltration. The SCCM fraction deprived of MW less than 10 kD compounds exhibited a typical inhibin-like activity, whereas crude SCCM as well as its low-molecular-weight fraction stimulated the basal FSH release to about 150% and 175% of the control values, respectively. These fractions exerted an inhibitory effect on the LHRH-stimulated secretion of both LH and FSH. It is concluded that Sertoli cells cultured in chemically defined medium release, apart from inhibin, a non-steroidal, heat-labile substance of MW less than 10 kD which stimulates the basal secretion of FSH and LH and inhibits the LHRH-stimulated secretion of both gonadotropins from incubated rat hemi-pituitaries.  相似文献   

9.
Pituitary adenylate cyclase-activating peptide (PACAP), a novel hypothalamic peptide that has been shown to exist in several tissues including the testis, was examined for its effects on cultured rat Sertoli cells. PACAP stimulates cAMP accumulation in Sertoli cells cultured from 15-day-old rats in the presence or absence of methylisobutylxanthine, a phosphodiesterase inhibitor, and in the presence of pertussis toxin, a blocker of the adenylate cyclase inhibitory pathway. Maximal stimulation, which is 20-40% of that attainable with FSH, occurs at PACAP concentrations of 10 nM: the ED50 is approximately 100 pM. The ability of PACAP to stimulate Sertoli cell cAMP declines with increasing age of donor animals (15-60 days of age) in a fashion similar to the FSH effect. PACAP stimulation of Sertoli cell cAMP accumulation is additive with submaximal, but not maximal, concentrations of FSH or forskolin. PACAP also stimulates the secretion of lactate, estradiol, and inhibin in a concentration-dependent manner. The stimulation of Sertoli cell cAMP accumulation by PACAP is not altered by a vasoactive intestinal peptide antagonist, and vasoactive intestinal peptide alone does not stimulate cAMP accumulation, indicating that PACAP is not acting via vasoactive intestinal peptide receptors. Further experiments are needed to determine whether PACAP is synthesized within the testis and if so, in which cell types; however, the present data clearly demonstrate that PACAP can modulate Sertoli cell function in vitro.  相似文献   

10.
Class B scavenger receptor type I (SR-BI), a multiligand membrane protein, exists in various organs and cell types. In the testis, SR-BI is expressed in two somatic cell types: Leydig cells and Sertoli cells. Unlike interstitially localized Leydig cells, Sertoli cells present within the seminiferous tubules keep contact with spermatogenic cells and form the tight junction to divide the seminiferous epithelium into the basal and adluminal compartments. In this study, the expression and function of SR-BI in rat Sertoli cells were examined with respect to dependency on the spermatogenic cycle, the plasma membrane polarity, and the pituitary hormone follicle-stimulating hormone (FSH). When the expression of SR-BI was histochemically examined with testis sections, both protein and mRNA were already present in Sertoli cells during the first-round spermatogenesis and continued to be detectable thereafter. The level of SR-BI mRNA expression in Sertoli cells was lower at spermatogenic stages I-VI than at other stages. SR-BI was present and functional (in mediating cellular incorporation of lipids of high density lipoprotein) at both the apical and basolateral surfaces of polarized Sertoli cells. Finally, SR-BI expression at both the protein and mRNA levels was stimulated by FSH in cultured Sertoli cells. These results indicate that SR-BI functions on both the apical and basolateral plasma membranes of Sertoli cells, and that SR-BI expression in Sertoli cells changes during the spermatogenic cycle and is stimulated, at least in cultures, by FSH.  相似文献   

11.
The regulating effect of follicle-stimulating hormone (FSH) on Leydig cell function was studied using a model of immature porcine Leydig and Sertoli cells cultured in a hormone supplemented defined medium. FSH pretreatment for 2 days of Leydig cells cultured alone was with no effect. FSH pretreatment of Leydig cells cocultured with Sertoli cells increases Leydig cell activity in an FSH dose-dependent manner with a maximal effect observed at 50 ng/ml porcine FSH (pFSH). Leydig cells cultured for 2 days in conditioned medium (CM) by FSH stimulated (FSH-CM) Sertoli cells, as compared to CM by unstimulated (control) (C-CM) Sertoli cells show an increase of their activity with a maximal effect observed at 50 ng/ml pFSH. Leydig cells cultured in CM as compared to non CM, show a marked development of organelles (smooth endoplasmic reticulum and mitochondria) involved in the steroidogenic activity. The activity of FSH-CM as compared to C-CM on Leydig cell function was non dialyzable and trypsin sensitive. These data suggest that Sertoli cells exert a regulatory action on Leydig cell steroidogenic activity via FSH dependent secreted proteins.  相似文献   

12.
Transport of 3-O-methyl-D-[14C]glucose by Sertoli cells cultured in plastic dishes, is competitively inhibited by glucose (Ki 4 microM). The glucose analogue was therefore used to study glucose transport in these cells in which it is not metabolized. Addition of follicle-stimulating hormone (FSH) (10 micrograms/ml) or dibutyryl cyclic AMP (1 mM) to the cells, increases transport of methylglucose by Sertoli cells. The increased transport results from increased influx and involves decrease in Km without change in Vmax. These changes in the kinetics of transport are seen with both FSH and dibutyryl cyclic AMP. FSH does not stimulate transport of methylglucose in peritubular fibroblasts nor in germ cells. In view of the importance of lactate as a substrate for spermatids (Mita and Hall, 1982) it is proposed that stimulation of the transport of glucose by Sertoli cells in response to FSH is important in the increased production of lactate by these cells in response to FSH and hence is one mechanism by which the tropic hormone enables the Sertoli cell to promote spermatogenesis.  相似文献   

13.
An approach combining two-dimensional gel electrophoresis and autoradiography was used to correlate patterns of secretory proteins in cultures of Sertoli and peritubular cells with those observed in the incubation medium from segments of seminiferous tubules. Sertoli cells in culture and in seminiferous tubules secreted three proteins designated S70 (Mr 72,000-70,000), S45 (Mr 45,000), and S35 (Mr 35,000). Cultured Sertoli and peritubular cells and incubated seminiferous tubules secreted two proteins designated SP1 (Mr 42,000) and SP2 (Mr 50,000). SP1 and S45 have similar Mr but differ from each other in isoelectric point (pI). Cultured peritubular cells secreted a protein designated P40 (Mr 40,000) that was also seen in intact seminiferous tubules but not in seminiferous tubules lacking the peritubular cell wall. However, a large number of high-Mr proteins were observed only in the medium of cultured peritubular cells but not in the incubation medium of intact seminiferous tubules. Culture conditions influence the morphology and patterns of protein secretion of cultured peritubular cells. Peritubular cells that display a flat-stellate shape transition when placed in culture medium free of serum (with or without hormones and growth factors), accumulate various proteins in the medium that are less apparent when these cells are maintained in medium supplemented with serum. Two secretory proteins stimulated by follicle-stimulating hormone (FSH) (designated SCm1 and SCm2) previously found in the medium of cultured Sertoli cells, were also observed in the incubation medium of seminiferous tubular segments stimulated by FSH. Results of this study show that, although cultured Sertoli and peritubular cells synthesize and secrete proteins also observed in segments of incubated seminiferous tubules anther group of proteins lacks seminiferous tubular correlates. Our observations should facilitate efforts to achieve a differentiated functional state of Sertoli and peritubular cells in culture as well as to select secretory proteins for assessing their possible biological role in testicular function.  相似文献   

14.
Data from several experimental approaches strongly suggest that Sertoli cells exert a paracrine control of the two main testicular functions, androgen secretion and spermatogenesis. Further evidence supporting this role of Sertoli cells was obtained by coculture of Sertoli cells with other testicular cells. Coculture of pig or rat Sertoli cells with pig Leydig cells produces an increase in the hCG receptor number and an increase in the steroidogenic activity of Leydig cells. Pretreatment with FSH further increases the values of these two parameters. These biochemical changes were associated with ultrastructural changes in Leydig cells. The effects of Sertoli cells on Leydig cells depend upon the ratio of the two cells and on the substrate in which the cells are cultured. Moreover, Leydig cells produce an increase in the FSH receptor number and in the FSH stimulation of plasminogen activator production by Sertoli cells. Coculture of rat or pig Sertoli cells with rat germ cells, induces an increase in the RNA and DNA biosynthetic activities of germ cells. Most of the stimulatory effects seemed to be mediated by diffusible factors, secreted by Sertoli cells, but full expression of the stimulatory action was observed when germ cells were in contact with other cells. In this coculture system, a fraction of rat germ cells containing mainly mature forms of spermatocytes inhibited rat Sertoli cell RNA and DNA synthesis, but had no effect on pig Sertoli cells. On the contrary, a fraction of rat germ cells richer in spermatogonias and preleptotene spermatocytes, stimulated rat Sertoli cell DNA synthesis but was without effect on pig Sertoli cells. These results clearly show that the stimulatory effects of Sertoli cells on Leydig and on germ cells which are not species specific are mediated mainly by diffusible factors, the secretion of which is regulates by FSH.  相似文献   

15.
The stimulatory effects of follicle-stimulating hormone (FSH), insulin, and insulin-like growth factor I (IGF-I) on lactate production and hexose uptake by Sertoli cells from immature rats were studied. The time-courses and the maximal stimulatory effects of FSH, insulin, and IGF-I on lactate production were virtually identical. When Sertoli cells were incubated in the presence of FSH in combination with insulin or IGF-I (submaximal doses), additive but no pronounced synergistic effects were observed. The stimulatory effects of FSH and insulin were not dependent on the presence of extracellular calcium. 2-Deoxy-D-glucose (2-DOG), an analogue of D-glucose, was used to investigate the hexose transport system of Sertoli cells. Uptake of 2-DOG was linear in time and virtually all of the intracellular 2-DOG was phosphorylated up to 30 min of incubation; 2-DOG uptake was inhibited by cytochalasin B, but not by cytochalasin E. D-glucose, but not D-galactose, appeared to be an effective competitor of 2-DOG uptake. The Km of 2-DOG uptake was not influenced by FSH, insulin, and IGF-I. FSH had no effect on the Vmax of 2-DOG uptake, whereas insulin and IGF-I caused a 30% stimulation of the Vmax. It is concluded that FSH, insulin, and IGF-I stimulate lactate production by cultured Sertoli cells, but that only insulin and IGF-I stimulate hexose transport. The insulin-like effect of FSH on Sertoli cells may principally involve stimulation of glycolytic enzyme activities.  相似文献   

16.
Transglutaminase (EC 2.3.2.13) (TGase) activity has been localized in homogenates of rat Leydig cells and seminiferous tubules and is present in cytosol and membrane fractions. The enzyme has a requirement for Ca2+ and when the acceptor substrate casein was deleted from the assay mixture, incorporation of [14C]putrescine into cytosolic and membrane fractions occurred. Transglutaminase was also detected in Sertoli cells cultured in serum-free medium. Sertoli cells reside within the seminiferous tubule and are involved in normal spermatogenesis. Sertoli cell TGase has a strict requirement for Ca2+ and is not activated by Mg2+. Activation of the enzyme occurs with as little as 0.3 microM Ca2+; however, consistent with intracellular calcium levels, maximum stimulation occurred at 1.9 mM Ca2+. Sertoli cell TGase activity is markedly stimulated if the cells are cultured in 10% fetal bovine serum rather than in serum-free medium. Inhibition of Sertoli cell TGase by monodansylcadaverine concomitantly decreased the response of the cells to follicle-stimulating hormone (FSH)-induced secretion of cAMP but did not change basal cAMP levels. These data suggest that TGase may play a facilitative rather than an absolute role in activation of Sertoli cells by FSH and the resultant secretion of cellular products. This may occur through modulation of activities of membrane and cytosolic components by TGase.  相似文献   

17.
Sertoli cells are hormonally regulated by follicle-stimulating hormone (FSH) acting upon a G-protein-linked cell surface FSH receptor. FSH increases intracellular cyclic AMP but the involvement of other signal transduction mechanisms including intracellular calcium in FSH action are not proven. Using freshly isolated rat Sertoli cells we measured cytosolic free ionized calcium levels by dual-wavelength fluorescence spectrophotometry using the calcium-sensitive fluorescent dye Fura2-AM. The cytosolic calcium concentration in unstimulated Sertoli cells was 89 +/- 2 nM (n = 151 experiments) and was markedly increased by either calcium channel ionophores (ionomycin, Bay K8644) or plasma membrane depolarization consistent with the presence of voltage-sensitive and -independent calcium channel in Sertoli cell membranes. Ovine FSH stimulated a specific, sensitive (ED50, 5.0 ng of S-16/ml), and dose-dependent (maximal at 20 ng/ml) rise in cytosolic calcium commencing within 60 s to reach levels of 192 +/- 31 nM after 180 s and lasting for at least 10 min. The effect of FSH was replicated by forskolin, cholera toxin, and dibutyryl cyclic AMP, suggesting that cyclic AMP may mediate the FSH-induced rise in cytosolic calcium. The FSH-induced rise in cytosolic calcium required extracellular calcium and was abolished by calcium channel blockers specific for dihydropyridine (verapamil, nicardipine), nonvoltage-gated (ruthenium red) or all calcium channels (cobalt). Thus FSH action on Sertoli cells involves a specific, rapid, and sustained increase in cytosolic calcium which requires extracellular calcium and involves both dihydropyridine-sensitive, voltage-gated calcium channels and voltage-independent, receptor-gated calcium channels in the plasma membranes of rat Sertoli cells. The replication by cyclic AMP of the effects of FSH suggests that calcium may be a signal-amplification or -modulating mechanism rather than an alternate primary signal transduction system for FSH in Sertoli cells.  相似文献   

18.
The levels of cellular retinol-binding protein (CRBP) and cellular retinoic acid-binding protein (CRABP) have been measured in Sertoli cells maintained under different cultural conditions. Sertoli cells were isolated from prepubertal rats and cultured in a chemically defined medium without or with follicle-stimulating hormone (FSH), insulin, retinol or testosterone added individually or in combinations. The additions were made at the beginning of the culture or 24 h before the cells were subjected to determinations of CRBP and CRABP by radioimmunoassay. No differences were observed either after 1 or 4 days of treatment. The results obtained indicated that the levels of the two retinoid-binding proteins were unchanged in Sertoli cells in response to hormone and/or retinol administration. To rule out the possibility that the Sertoli cells used in our study were unresponsive to the hormones, lactate production by the cells cultured in the presence of FSH or insulin was measured. The amount of lactate produced under hormonal stimulation was significantly higher than the amount produced in absence of the hormones, thus indicating the ability of our Sertoli cells to respond to the hormonal stimulation.  相似文献   

19.
Treatment of cultured rat Sertoli cells with FSH or dibutyryl cAMP for 30 min resulted in phosphorylation of the same Sertoli cell proteins. Different Sertoli cell proteins were phosphorylated after calcium ionophore A23187 and 12-O-tetradecanoylphorbol-13-acetate (TPA) treatment. A23187 stimulated the phosphorylation of hsp27, while TPA alone had no effect. TPA plus A23187 resulted in phosphorylation of a 14 kDa protein, in addition to hsp27. The effect of TPA plus A23187 was identical to that of germ cells on Sertoli cell protein phosphorylation. FSH-stimulated cAMP production by Sertoli cells was reduced by prior exposure of Sertoli cells to germ cells. The results indicate that germ cells stimulate Sertoli cells by the inositol trisphosphate/diacylglycerol mediated second messenger pathway. The results also suggest that the germ cell-activated pathway interacts within Sertoli cells to modulate Sertoli cell response to FSH.  相似文献   

20.
Testicular peritubular cells produce a paracrine factor termed PModS that has dramatic effects on Sertoli cell function in vitro. The current study was designed to examine the actions of PModS and hormones on Sertoli cell aromatase activity and plasminogen activator production at various stages of pubertal development. Sertoli cells were isolated from 10-, 20-, and 35-day-old rats (ages correspond to prepubertal, midpubertal, and late-pubertal stages of development). Aromatase activity was found to be high and hormone-responsive in prepubertal Sertoli cells and to decline and be nonresponsive to hormones in late-pubertal Sertoli cells. FSH was the only hormone found to influence aromatase activity and estrogen production. PModS alone was not found to affect aromatase activity at any of the developmental stages examined. Interestingly, PModS was found to suppress the ability of FSH to stimulate aromatase activity and estrogen production in midpubertal Sertoli cells. Results imply that PModS may promote Sertoli cell differentiation to a more adult stage of development that is less responsive to FSH in stimulating aromatase activity. In contrast to aromatase activity, plasminogen activator production was found to increase during pubertal development. Production of Sertoli cell tissue-type plasminogen activator (tPa) was stimulated by FSH at each of the developmental stages examined, whereas production of urokinase-type plasminogen activator (uPa) was influenced by FSH only in prepubertal Sertoli cells. Insulin also stimulated uPa and tPa production by prepubertal Sertoli cells, and retinol significantly suppressed uPa production and the ability of FSH to stimulate tPa production by midpubertal Sertoli cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号