首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Dysfunction of CFTR in cystic fibrosis (CF) airway epithelium perturbs the normal regulation of ion transport, leading to a reduced volume of airway surface liquid (ASL), mucus dehydration, decreased mucus transport, and mucus plugging of the airways. CFTR is normally expressed in ciliated epithelial cells of the surface and submucosal gland ductal epithelium and submucosal gland acinar cells. Critical questions for the development of gene transfer strategies for CF airway disease are what airway regions require CFTR function and how many epithelial cells require CFTR expression to restore normal ASL volume regulation and mucus transport to CF airway epithelium? An in vitro model of human CF ciliated surface airway epithelium (CF HAE) was used to test whether a human parainfluenza virus (PIV) vector engineered to express CFTR (PIVCFTR) could deliver sufficient CFTR to CF HAE to restore mucus transport, thus correcting the CF phenotype. PIVCFTR delivered CFTR to >60% of airway surface epithelial cells and expressed CFTR protein in CF HAE approximately 100-fold over endogenous levels in non-CF HAE. This efficiency of CFTR delivery fully corrected the basic bioelectric defects of Cl and Na+ epithelial ion transport and restored ASL volume regulation and mucus transport to levels approaching those of non-CF HAE. To determine the numbers of CF HAE surface epithelial cells required to express CFTR for restoration of mucus transport to normal levels, different amounts of PIVCFTR were used to express CFTR in 3%–65% of the surface epithelial cells of CF HAE and correlated to increasing ASL volumes and mucus transport rates. These data demonstrate for the first time, to our knowledge, that restoration of normal mucus transport rates in CF HAE was achieved after CFTR delivery to 25% of surface epithelial cells. In vivo experimentation in appropriate models will be required to determine what level of mucus transport will afford clinical benefit to CF patients, but we predict that a future goal for corrective gene transfer to the CF human airways in vivo would attempt to target at least 25% of surface epithelial cells to achieve mucus transport rates comparable to those in non-CF airways.  相似文献   

2.
Dysfunction of CFTR in cystic fibrosis (CF) airway epithelium perturbs the normal regulation of ion transport, leading to a reduced volume of airway surface liquid (ASL), mucus dehydration, decreased mucus transport, and mucus plugging of the airways. CFTR is normally expressed in ciliated epithelial cells of the surface and submucosal gland ductal epithelium and submucosal gland acinar cells. Critical questions for the development of gene transfer strategies for CF airway disease are what airway regions require CFTR function and how many epithelial cells require CFTR expression to restore normal ASL volume regulation and mucus transport to CF airway epithelium? An in vitro model of human CF ciliated surface airway epithelium (CF HAE) was used to test whether a human parainfluenza virus (PIV) vector engineered to express CFTR (PIVCFTR) could deliver sufficient CFTR to CF HAE to restore mucus transport, thus correcting the CF phenotype. PIVCFTR delivered CFTR to >60% of airway surface epithelial cells and expressed CFTR protein in CF HAE approximately 100-fold over endogenous levels in non-CF HAE. This efficiency of CFTR delivery fully corrected the basic bioelectric defects of Cl and Na+ epithelial ion transport and restored ASL volume regulation and mucus transport to levels approaching those of non-CF HAE. To determine the numbers of CF HAE surface epithelial cells required to express CFTR for restoration of mucus transport to normal levels, different amounts of PIVCFTR were used to express CFTR in 3%–65% of the surface epithelial cells of CF HAE and correlated to increasing ASL volumes and mucus transport rates. These data demonstrate for the first time, to our knowledge, that restoration of normal mucus transport rates in CF HAE was achieved after CFTR delivery to 25% of surface epithelial cells. In vivo experimentation in appropriate models will be required to determine what level of mucus transport will afford clinical benefit to CF patients, but we predict that a future goal for corrective gene transfer to the CF human airways in vivo would attempt to target at least 25% of surface epithelial cells to achieve mucus transport rates comparable to those in non-CF airways.  相似文献   

3.
Male cystic fibrosis (CF) patients survive longer than females and lung exacerbations in CF females vary during the estrous cycle. Estrogen has been reported to reduce the height of the airway surface liquid (ASL) in female CF bronchial epithelium. Here we investigated the effect of 17β-estradiol on the airway surface liquid height and ion transport in normal (NuLi-1) and CF (CuFi-1) bronchial epithelial monolayers. Live cell imaging using confocal microscopy revealed that airway surface liquid height was significantly higher in the non-CF cells compared to the CF cells. 17β-estradiol (0.1–10 nM) reduced the airway surface liquid height in non-CF and CF cells after 30 min treatment. Treatment with the nuclear-impeded Estrogen Dendrimer Conjugate mimicked the effect of free estrogen by reducing significantly the airway surface liquid height in CF and non-CF cells. Inhibition of chloride transport or basolateral potassium recycling decreased the airway surface liquid height and 17β-estradiol had no additive effect in the presence of these ion transporter inhibitors. 17β-estradiol decreased bumetanide-sensitive transepithelial short-circuit current in non-CF cells and prevented the forskolin-induced increase in ASL height. 17β-estradiol stimulated an amiloride-sensitive transepithelial current and increased ouabain-sensitive basolateral short-circuit current in CF cells. 17β-estradiol increased PKCδ activity in CF and non-CF cells. These results demonstrate that estrogen dehydrates CF and non-CF ASL, and these responses to 17β-estradiol are non-genomic rather than involving the classical nuclear estrogen receptor pathway. 17β-estradiol acts on the airway surface liquid by inhibiting cAMP-mediated chloride secretion in non-CF cells and increasing sodium absorption via the stimulation of PKCδ, ENaC and the Na+/K+ATPase in CF cells.  相似文献   

4.
Lung disease and elevation of blood glucose are associated with increased glucose concentration in the airway surface liquid (ASL). Raised ASL glucose is associated with increased susceptibility to infection by respiratory pathogens including Staphylococcus aureus and Pseudomonas aeruginosa. We have previously shown that the anti‐diabetes drug, metformin, reduces glucose‐induced S. aureus growth across in vitro airway epithelial cultures. The aim of this study was to investigate whether metformin has the potential to reduce glucose‐induced P. aeruginosa infections across airway epithelial (Calu‐3) cultures by limiting glucose permeability. We also explored the effect of P. aeruginosa and metformin on airway epithelial barrier function by investigating changes in tight junction protein abundance. Apical P. aeruginosa growth increased with basolateral glucose concentration, reduced transepithelial electrical resistance (TEER) and increased paracellular glucose flux. Metformin pre‐treatment of the epithelium inhibited the glucose‐induced growth of P. aeruginosa, increased TEER and decreased glucose flux. Similar effects on bacterial growth and TEER were observed with the AMP activated protein kinase agonist, 5‐aminoimidazole‐4‐carboxamide ribonucleotide. Interestingly, metformin was able to prevent the P. aeruginosa‐induced reduction in the abundance of tight junction proteins, claudin‐1 and occludin. Our study highlights the potential of metformin to reduce hyperglycaemia‐induced P. aeruginosa growth through airway epithelial tight junction modulation, and that claudin‐1 and occludin could be important targets to regulate glucose permeability across airway epithelia and supress bacterial growth. Further investigation into the mechanisms regulating metformin and P. aeruginosa action on airway epithelial tight junctions could yield new therapeutic targets to prevent/suppress hyperglycaemia‐induced respiratory infections, avoiding the use of antibiotics.  相似文献   

5.
Defective expression or function of the cystic fibrosis transmembrane conductance regulator (CFTR) underlies the hypersusceptibility of cystic fibrosis (CF) patients to chronic airway infections, particularly with Pseudomonas aeruginosa. CFTR is involved in the specific recognition of P. aeruginosa, thereby contributing to effective innate immunity and proper hydration of the airway surface layer (ASL). In CF, the airway epithelium fails to initiate an appropriate innate immune response, allowing the microbe to bind to mucus plugs that are then not properly cleared because of the dehydrated ASL. Recent studies have identified numerous CFTR-dependent factors that are recruited to the epithelial plasma membrane in response to infection and that are needed for bacterial clearance, a process that is defective in CF patients hypersusceptible to infection with this organism.  相似文献   

6.
A recently discovered enzyme system produces antibacterial hypothiocyanite (OSCN(-)) in the airway lumen by oxidizing the secreted precursor thiocyanate (SCN(-)). Airway epithelial cultures have been shown to secrete SCN(-) in a CFTR-dependent manner. Thus, reduced SCN(-) availability in the airway might contribute to the pathogenesis of cystic fibrosis (CF), a disease caused by mutations in the CFTR gene and characterized by an airway host defense defect. We tested this hypothesis by analyzing the SCN(-) concentration in the nasal airway surface liquid (ASL) of CF patients and non-CF subjects and in the tracheobronchial ASL of CFTR-ΔF508 homozygous pigs and control littermates. In the nasal ASL, the SCN(-) concentration was ~30-fold higher than in serum independent of the CFTR mutation status of the human subject. In the tracheobronchial ASL of CF pigs, the SCN(-) concentration was somewhat reduced. Among human subjects, SCN(-) concentrations in the ASL varied from person to person independent of CFTR expression, and CF patients with high SCN(-) levels had better lung function than those with low SCN(-) levels. Thus, although CFTR can contribute to SCN(-) transport, it is not indispensable for the high SCN(-) concentration in ASL. The correlation between lung function and SCN(-) concentration in CF patients may reflect a beneficial role for SCN(-).  相似文献   

7.
Cystic fibrosis (CF) is caused by defective cyclic AMP-dependent cystic fibrosis transmembrane conductance regulator Cl(-) channels. Thus, CF epithelia fail to transport Cl(-) and water. A postulated therapeutic avenue in CF is activation of alternative Ca(2+)-dependent Cl(-) channels. We hypothesized that stimulation of Ca(2+) entry from the extracellular space could trigger a sustained Ca(2+) signal to activate Ca(2+)-dependent Cl(-) channels. Cytosolic [Ca(2+)](i) was measured in non-polarized human CF (IB3-1) and non-CF (16HBE14o(-)) airway epithelial cells. Primary human CF and non-CF airway epithelial monolayers as well as Calu-3 monolayers were used to assess anion secretion. In vivo nasal potential difference measurements were performed in non-CF and two different CF mouse (DeltaF508 homozygous and bitransgenic gut-corrected but lung-null) models. Zinc and ATP induced a sustained, reversible, and reproducible increase in cytosolic Ca(2+) in CF and non-CF cells with chemistry and pharmacology most consistent with activation of P2X purinergic receptor channels. P2X purinergic receptor channel-mediated Ca(2+) entry stimulated sustained Cl(-) and HCO(3)(-) secretion in CF and non-CF epithelial monolayers. In non-CF mice, zinc and ATP induced a significant Cl(-) secretory response similar to the effects of agonists that increase intracellular cAMP levels. More importantly, in both CF mouse models, Cl(-) permeability of nasal epithelia was restored in a sustained manner by zinc and ATP. These effects were reversible and reacquirable upon removal and readdition of agonists. Our data suggest that activation of P2X calcium entry channels may have profound therapeutic benefit for CF that is independent of cystic fibrosis transmembrane conductance regulator genotype.  相似文献   

8.
Induction of mucus hypersecretion in the airway epithelium by Th2 cytokines is associated with the expression of TMEM16A, a Ca2+-activated Cl- channel. We asked whether exposure of airway epithelial cells to bacterial components, a condition that mimics the highly infected environment occurring in cystic fibrosis (CF), also results in a similar response. In cultured human bronchial epithelial cells, treatment with pyocyanin or with a P. aeruginosa culture supernatant caused a significant increase in TMEM16A function. The Ca2+-dependent Cl- secretion, triggered by stimulation with UTP, was particularly enhanced by pyocyanin in cells from CF patients. Increased expression of TMEM16A protein and of MUC5AC mucin by bacterial components was demonstrated by immunofluorescence in CF and non-CF cells. We also investigated TMEM16A expression in human bronchi by immunocytochemistry. We found increased TMEM16A staining in the airways of CF patients. The strongest signal was observed in CF submucosal glands. Our results suggest that TMEM16A expression/function is upregulated in CF lung disease, possibly as a response towards the presence of bacteria in the airways.  相似文献   

9.
10.
Innate immune response in CF airway epithelia: hyperinflammatory?   总被引:4,自引:0,他引:4  
The lack of functional cystic fibrosis (CF) transmembrane conductance regulator (CFTR) in the apical membranes of CF airway epithelial cells abolishes cAMP-stimulated anion transport, and bacteria, eventually including Pseudomonas aeruginosa, bind to and accumulate in the mucus. Flagellin released from P. aeruginosa triggers airway epithelial Toll-like receptor 5 and subsequent NF-B signaling and production and release of proinflammatory cytokines that recruit neutrophils to the infected region. This response has been termed hyperinflammatory because so many neutrophils accumulate; a response that damages CF lung tissue. We first review the contradictory data both for and against the idea that epithelial cells exhibit larger-than-normal proinflammatory signaling in CF compared with non-CF cells and then review proposals that might explain how reduced CFTR function could activate such proinflammatory signaling. It is concluded that apparent exaggerated innate immune response of CF airway epithelial cells may have resulted not from direct effects of CFTR on cellular signaling or inflammatory mediator production but from indirect effects resulting from the absence of CFTRs apical membrane channel function. Thus, loss of Cl, HCO3, and glutathione secretion may lead to reduced volume and increased acidification and oxidation of the airway surface liquid. These changes concentrate proinflammatory mediators, reduce mucociliary clearance of bacteria and subsequently activate cellular signaling. Loss of apical CFTR will also hyperpolarize basolateral membrane potentials, potentially leading to increases in cytosolic [Ca2+], intracellular Ca2+, and NF-B signaling. This hyperinflammatory effect of CF on intracellular Ca2+ and NF-B signaling would be most prominently expressed during exposure to both P. aeruginosa and also endocrine, paracrine, or nervous agonists that activate Ca2+ signaling in the airway epithelia. Pseudomonas aeruginosa; Toll-like receptor; NF-B; oxidative stress; acidic airway surface liquid; calcium  相似文献   

11.
Pseudomonas aeruginosa is an opportunistic pathogen that significantly contributes to the mortality of patients with cystic fibrosis. Chronic infection by Pseudomonas induces sustained immune and inflammatory responses and damage to the airway. The ability of Pseudomonas to resist host defenses is aided, in part, by secreted proteases, which act as virulence factors in multiple modes of infection. Recent studies suggest that misregulation of protease activity in the cystic fibrosis lung may alter fluid secretion and pathogen clearance by proteolytic activation of the epithelial sodium channel (ENaC). To evaluate the possibility that proteolytic activation of ENaC may contribute to the virulence of Pseudomonas, primary human bronchial epithelial cells were exposed to P. aeruginosa and ENaC function was assessed by short circuit current measurements. Apical treatment with a strain known to express high levels of alkaline protease (AP) resulted in an increase in basal ENaC current and a loss of trypsin-inducible ENaC current, consistent with sustained activation of ENaC. To further characterize this AP-induced ENaC activation, AP was purified, and its folding, activity, and ability to activate ENaC were assessed. AP folding was efficient under pH and calcium conditions thought to exist in the airway surface liquid of normal and cystic fibrosis (CF) lungs. Short circuit measurements of ENaC in polarized monolayers indicated that AP activated ENaC in immortalized cell lines as well as post-transplant, primary human bronchial epithelial cells from both CF and non-CF patients. This activation was mapped to the γ-subunit of ENaC. Based on these data, patho-mechanisms associated with AP in the CF lung are proposed wherein secretion of AP leads to decreased airway surface liquid volume and a corresponding decrease in mucocilliary clearance of pulmonary pathogens.  相似文献   

12.
The glucose concentration of the airway surface liquid (ASL) is much lower than that in blood and is tightly regulated by the airway epithelium. ASL glucose is elevated in patients with viral colds, cystic fibrosis, chronic obstructive pulmonary disease, and asthma. Elevated ASL glucose is also associated with increased incidence of respiratory infection. However, the mechanism by which ASL glucose increases under inflammatory conditions is unknown. The aim of this study was to investigate the effect of proinflammatory mediators (PIMs) on the mechanisms governing airway glucose homeostasis in polarized monolayers of human airway (H441) and primary human bronchial epithelial (HBE) cells. Monolayers were treated with TNF-α, IFN-γ, and LPS during 72 h. PIM treatment led to increase in ASL glucose concentration and significantly reduced H441 and HBE transepithelial resistance. This decline in transepithelial resistance was associated with an increase in paracellular permeability of glucose. Similar enhanced rates of paracellular glucose flux were also observed across excised trachea from LPS-treated mice. Interestingly, PIMs enhanced glucose uptake across the apical, but not the basolateral, membrane of H441 and HBE monolayers. This increase was predominantly via phloretin-sensitive glucose transporter (GLUT)-mediated uptake, which coincided with an increase in GLUT-2 and GLUT-10 abundance. In conclusion, exposure of airway epithelial monolayers to PIMs results in increased paracellular glucose flux, as well as apical GLUT-mediated glucose uptake. However, uptake was insufficient to limit glucose accumulation in ASL. To our knowledge, these data provide for the first time a mechanism to support clinical findings that ASL glucose concentration is increased in patients with airway inflammation.  相似文献   

13.
Cystic Fibrosis (CF) is a genetic disease characterised by a deficit in epithelial Cl(-) secretion which in the lung leads to airway dehydration and a reduced Airway Surface Liquid (ASL) height. The endogenous lipoxin LXA(4) is a member of the newly identified eicosanoids playing a key role in ending the inflammatory process. Levels of LXA(4) are reported to be decreased in the airways of patients with CF. We have previously shown that in normal human bronchial epithelial cells, LXA(4) produced a rapid and transient increase in intracellular Ca(2+). We have investigated, the effect of LXA(4) on Cl(-) secretion and the functional consequences on ASL generation in bronchial epithelial cells obtained from CF and non-CF patient biopsies and in bronchial epithelial cell lines. We found that LXA(4) stimulated a rapid intracellular Ca(2+) increase in all of the different CF bronchial epithelial cells tested. In non-CF and CF bronchial epithelia, LXA(4) stimulated whole-cell Cl(-) currents which were inhibited by NPPB (calcium-activated Cl(-) channel inhibitor), BAPTA-AM (chelator of intracellular Ca(2+)) but not by CFTRinh-172 (CFTR inhibitor). We found, using confocal imaging, that LXA(4) increased the ASL height in non-CF and in CF airway bronchial epithelia. The LXA(4) effect on ASL height was sensitive to bumetanide, an inhibitor of transepithelial Cl(-) secretion. The LXA(4) stimulation of intracellular Ca(2+), whole-cell Cl(-) currents, conductances and ASL height were inhibited by Boc-2, a specific antagonist of the ALX/FPR2 receptor. Our results provide, for the first time, evidence for a novel role of LXA(4) in the stimulation of intracellular Ca(2+) signalling leading to Ca(2+)-activated Cl(-) secretion and enhanced ASL height in non-CF and CF bronchial epithelia.  相似文献   

14.
In the airways of those with cystic fibrosis (CF), the leading pathophysiological hypothesis is that an ion channel defect results in a relative decrease in airway surface liquid (ASL) volume, producing thick and sticky mucus that facilitates the establishment and progression of early fatal lung disease. This hypothesis predicts that any successful CF airway treatment for this fundamental channel defect should increase the ASL volume, but up until now there has been no method of measuring this volume that would be compatible with in vivo monitoring. In order to accurately monitor the volume of the ASL, we have developed a new x-ray phase contrast imaging method that utilizes a highly attenuating reference grid. In this study we used this imaging method to examine the effect of a current clinical CF treatment, aerosolized hypertonic saline, on ASL depth in ex vivo normal mouse tracheas, as the first step towards non-invasive in vivo ASL imaging. The ex vivo tracheas were treated with hypertonic saline, isotonic saline or no treatment using a nebuliser integrated within a small animal ventilator circuit. Those tracheas exposed to hypertonic saline showed a transient increase in the ASL depth, which continued for nine minutes post-treatment, before returning to baseline by twelve minutes. These findings are consistent with existing measurements on epithelial cell cultures, and therefore suggest promise for the future development of in vivo testing of treatments. Our grid-based imaging technique measures the ASL depth with micron resolution, and can directly observe the effect of treatments expected to increase ASL depth, prior to any changes in overall lung health. The ability to non-invasively observe micron changes in the airway surface, particularly if achieved in an in vivo setting, may have potential in pre-clinical research designed to bring new treatments for CF and other airway diseases to clinical trials.  相似文献   

15.
Cystic fibrosis (CF) airway epithelium is constantly subjected to injury events due to chronic infection and inflammation. Moreover, abnormalities in CF airway epithelium repair have been described and contribute to the lung function decline seen in CF patients. In the last past years, it has been proposed that anoctamin 1 (ANO1), a Ca2 +-activated Cl? channel, might offset the CFTR deficiency but this protein has not been characterized in CF airways. Interestingly, recent evidence indicates a role for ANO1 in cell proliferation and tumor growth. Our aims were to study non-CF and CF bronchial epithelial repair and to determine whether ANO1 is involved in airway epithelial repair. Here, we showed, with human bronchial epithelial cell lines and primary cells, that both cell proliferation and migration during epithelial repair are delayed in CF compared to non-CF cells. We then demonstrated that ANO1 Cl? channel activity was significantly decreased in CF versus non-CF cells. To explain this decreased Cl? channel activity in CF context, we compared ANO1 expression in non-CF vs. CF bronchial epithelial cell lines and primary cells, in lung explants from wild-type vs. F508del mice and non-CF vs. CF patients. In all these models, ANO1 expression was markedly lower in CF compared to non-CF. Finally, we established that ANO1 inhibition or overexpression was associated respectively with decreases and increases in cell proliferation and migration. In summary, our study demonstrates involvement of ANO1 decreased activity and expression in abnormal CF airway epithelial repair and suggests that ANO1 correction may improve this process.  相似文献   

16.
Cystic fibrosis (CF) is an autosomal recessive disease caused by CFTR mutations. It is characterized by high NaCl concentration in sweat and the production of a thick and sticky mucus, occluding secretory ducts, intestine and airways, accompanied by chronic inflammation and infections of the lungs. This causes a progressive and lethal decline in lung function. Therefore, finding the mechanisms driving the high susceptibility to lung infections has been a key issue. For decades the prevalent hypothesis was that a reduced airway surface liquid (ASL) volume and composition, and the consequent increased mucus concentration (dehydration), create an environment favoring infections. However, a few years ago, in a pig model of CF, the Na+/K+ concentrations and the ASL volume were found intact. Immediately a different hypothesis arose, postulating a reduced ASL pH as the cause for the increased susceptibility to infections, due to a diminished bicarbonate secretion through CFTR. Noteworthy, a recent report found normal ASL pH values in CF children and in cultured primary airway cells, challenging the ASL pH hypothesis. On the other hand, recent evidences revitalized the hypothesis of a reduced ASL secretion. Thus, the role of the ASL pH in the CF is still a controversial matter. In this review we discuss the basis that sustain the role of CFTR in modulating the extracellular pH, and the recent results sustaining the different points of view. Finding the mechanisms of CFTR signaling that determine the susceptibility to infections is crucial to understand the pathophysiology of CF and related lung diseases.  相似文献   

17.
In cystic fibrosis (CF), the absence of functional cystic fibrosis transmembrane conductance regulator (CFTR) translates into chronic bacterial infection, excessive inflammation, tissue damage, impaired lung function and eventual death. Understanding the mechanisms underlying this vicious circle of inflammation is important to design better therapies for CF. We found in CF lung biopsies increased immunoreactivity for p38 MAPK activity markers. Moreover, when compared with their non-CF counterpart, airway epithelial cells expressing the most common mutation in CF (CFTRΔF508) were more potent at inducing neutrophil chemotaxis through increased interleukin (IL)-6 synthesis when challenged with Pseudomonas aeruginosa diffusible material. We then discovered that in CFTRΔF508 cells, the p38 and ERK MAPKs are hyperactivated in response to P. aeruginosa diffusible material, leading to increased IL-6 mRNA expression and stability. Moreover, although TLR5 contributes to p38 MAPK activation upon P. aeruginosa challenge, it only played a weak role in IL-6 synthesis. Instead, we found that the production of reactive oxygen species is essential for IL-6 synthesis in response to P. aeruginosa diffusible material. Finally, we uncovered that in CFTRΔF508 cells, the extracellular glutathione levels are decreased, leading to a greater sensitivity to reactive oxygen species, providing an explanation for the hyperactivation of the p38 and ERK MAPKs and increased IL-6 synthesis. Taken together, our study has characterized a mechanism whereby the CFTRΔF508 mutation in airway epithelial cells contributes to increase inflammation of the airways.  相似文献   

18.
Prior studies have shown that fluid secretions from airway submucosal glands in cystic fibrosis (CF) are reduced and hyperviscous, possibly contributing to the pathogenesis of CF airway disease. Because the CF transmembrane conductance regulator (CFTR) protein can transport both chloride and bicarbonate, we investigated whether gland fluid pH is abnormal in early CF, using nasal biopsies from pediatric subjects having minimal CF lung disease. Gland fluid pH, measured in freshly secreted droplets under oil stained with BCECF-dextran, was 6.57 ± 0.09 (mean ± SE) in biopsies from six CF subjects, significantly lower than 7.18 ± 0.06 in eight non-CF biopsies (P < 0.01). To rule out the possibility that the apparent gland fluid hyperacidity in CF results from modification of fluid pH by the airway surface, a microcannulation method was used to measure pH in fluid exiting gland orifices. In pig trachea and human bronchi, gland fluid pH was reduced by up to 0.45 units by CFTR inhibitors, but was not affected by amiloride. Acid base transport in the surface epithelium of pig trachea was studied from pH changes in 300-nl fluid droplets deposited onto the oil-covered airway surface. The droplets had specified ionic composition/pH and/or contained transporter activators/inhibitors. We found evidence for CFTR-dependent bicarbonate transport by the tracheal surface epithelium as well as ATP/histamine-stimulated proton secretion, but not for sodium/proton or chloride/bicarbonate exchange. These results provide evidence for intrinsic hyperacidity in CF gland fluid secretions, which may contribute to CF airway pathology. cystic fibrosis transmembrane conductance regulator; airway; fluorescence microscopy; pH regulation  相似文献   

19.
Bioluminescence detection of ATP release mechanisms in epithelia   总被引:19,自引:0,他引:19  
Autocrine and paracrine release of and extracellular signalingby ATP is a ubiquitous cell biological and physiological process. Despite this knowledge, the mechanisms and physiological roles ofcellular ATP release are unknown. We tested the hypothesis thatepithelia release ATP under basal and stimulated conditions by using anewly designed and highly sensitive assay for bioluminescence detectionof ATP released from polarized epithelial monolayers. Thisbioluminescence assay measures ATP released from cystic fibrosis (CF)and non-CF human epithelial monolayers in a reduced serum mediumthrough catalysis of the luciferase-luciferin reaction, yielding aphoton of light collected by a luminometer. This novel assay measuresATP released into the apical or basolateral medium surroundingepithelia. Of relevance to CF, CF epithelia fail to release ATP acrossthe apical membrane under basal conditions. Moreover, hypotonicity isan extracellular signal that stimulates ATP release into bothcompartments of non-CF epithelia in a reversible manner; the responseto hypotonicity is also lost in CF epithelia. The bioluminescencedetection assay for ATP released from epithelia and other cells will beuseful in the study of extracellular nucleotide signaling inphysiological and pathophysiological paradigms. Taken together, theseresults suggest that extracellular ATP may be a constant regulator ofepithelial cell function under basal conditions and an autocrineregulator of cell volume under hypotonic conditions, two functions thatmay be lost in CF and contribute to CF pathophysiology.

  相似文献   

20.
Airway surface liquid (ASL) absorption is initiated by Na+ entry via epithelial Na+ channels (ENaC), which establishes an osmotic gradient that drives fluid from the luminal to serosal airway surface. We and others have recently reported that a protease/anti-protease balance regulates ENaC in human airway epithelial cells (HAEC) and provides a mechanism for autoregulation of ASL volume. In cystic fibrosis (CF), this balance is disturbed, leading to constitutive proteolytic activation of ENaC and the pathological Na+ hyperabsorption characteristic of this airway disease. Prostasin is a glycosylphosphatidylinositol-anchored serine protease that activates ENaC and is expressed on the surface epithelium lining the airway. In this report we present evidence that prostasin expression is regulated by the ASL volume, allowing for increased proteolytic activation of ENaC when the ASL volume is high. Prostasin activity is further regulated by the cognate serpin protease nexin-1 (PN-1), which is expressed in HAEC and inhibits Na+ absorption by forming an inactive complex with prostasin and preventing the proteolytic processing of prostasin. Whereas these mechanisms regulate prostasin expression in response to ASL volume in non-CF epithelia, HAEC cultured from CF patients express >50% more prostasin on the epithelial surface. These findings suggest that a proteolytic cascade involving prostasin, an upstream prostasin-activating protease, and PN-1 regulate Na+ absorption in the airway and that abnormal prostasin expression contributes to excessive proteolytic activation of ENaC in CF patients.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号