首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The HIV-specific cytotoxic T lymphocyte (CTL) response is a critical component in controlling viral replication in vivo, but ultimately fails in its ability to eradicate the virus. Our intent in these studies is to develop ways to enhance and restore the HIV-specific CTL response to allow long-term viral suppression or viral clearance. In our approach, we sought to genetically manipulate human hematopoietic stem cells (HSCs) such that they differentiate into mature CTL that will kill HIV infected cells. To perform this, we molecularly cloned an HIV-specific T cell receptor (TCR) from CD8+ T cells that specifically targets an epitope of the HIV-1 Gag protein. This TCR was then used to genetically transduce HSCs. These HSCs were then introduced into a humanized mouse containing human fetal liver, fetal thymus, and hematopoietic progenitor cells, and were allowed to differentiate into mature human CD8+ CTL. We found human, HIV-specific CTL in multiple tissues in the mouse. Thus, genetic modification of human HSCs with a cloned TCR allows proper differentiation of the cells to occur in vivo, and these cells migrate to multiple anatomic sites, mimicking what is seen in humans. To determine if the presence of the transgenic, HIV-specific TCR has an effect on suppressing HIV replication, we infected with HIV-1 mice expressing the transgenic HIV-specific TCR and, separately, mice expressing a non-specific control TCR. We observed significant suppression of HIV replication in multiple organs in the mice expressing the HIV-specific TCR as compared to control, indicating that the presence of genetically modified HIV-specific CTL can form a functional antiviral response in vivo. These results strongly suggest that stem cell based gene therapy may be a feasible approach in the treatment of chronic viral infections and provide a foundation towards the development of this type of strategy.  相似文献   

2.
人白细胞抗原G(HLA G)是一种在母婴耐受中起主要作用的非经典的HLA Ⅰ类分子 .其中HLA G3结构简单 ,仅具有α1结构域、穿膜区及胞浆区 ,其是否在细胞表面表达尚存在争议 .为了建立HLA G3稳定转染细胞株并确定其在细胞内的定位 ,采用RT PCR法从 9周人胎盘组织中获得了HLA G3的cDNA ,并构建到真核表达载体pcDNA3中 ,将所获得的真核表达质粒pcDNA G3转染至HLA Ⅰ (- )细胞株K5 6 2 ,经G4 18筛选后获得稳定转染的细胞株K5 6 2 G3.利用RT PCR、Western印迹检测方法证明在K5 6 2 G3细胞株中 ,HLA G3在mRNA水平和蛋白水平上均有表达 .进一步利用免疫荧光标记技术 ,证明HLA G3能够在转染细胞细胞膜上表达 .结果表明 ,稳定转染细胞株中HLA G3蛋白能够定位表达在细胞膜  相似文献   

3.
The expression of gangliosides of the lactosylceramide (LC) and of the gangliotetraosylceramide (GTC) series on the surface of cells from the chick neural retina was investigated by double-color indirect immunofluorescence. GD3 was assumed to be representative of LC and was detected using a specific monoclonal antibody. GM1 was assumed to be representative of GTC and was detected using the binding of cholera toxin followed by the binding of cholera toxin antibodies. The expression of polysialosylated GTC (polysialosyl-GTC) was detected using the cholera toxin-cholera toxin antibody experimental approach, after conversion of polysialosyl-GTC to GM1 by treatment of the cells with neuraminidase. In retinas from 6-day-old embryos (R6), most cells (approximately 80%) expressed GD3 but not GTC. After culturing for 7 days, (R6+7), the expression of GTC was found confined to neuron-like cells; flat cells derived from Müller cells expressed GD3 but were negative for GTC expression. On the other hand, postmitotic Müller cells obtained from 13-day-old embryo (R13) or 1-day-old hatched chick retina (RP1) expressed GD3, GM1, and polysialosyl-GTC but were unable to maintain the expression of these GTCs when kept in culture for several days. According to these results, retinal cells can be defined on the basis of their ganglioside expression as follows: (a) retinoblasts, by the expression of GD3; (b) postmitotic neuronal cells, by the expression of GTC; and (c) postmitotic Müller cells, by the expression of GD3 and GTC.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
DNA phosphorothioate (PT) modification is a recently identified epigenetic modification that occurs in the sugar-phosphate backbone of prokaryotic DNA. Previous studies have demonstrated that DNA PT modification is governed by the five DndABCDE proteins in a sequence-selective and R P stereo-specific manner. Bacteria may have acquired this physiological modification along with dndFGH as a restriction-modification system. However, little is known about the biological function of Dnd proteins, especially the smallest protein, DndE, in the PT modification pathway. DndE was reported to be a DNA-binding protein with a preference for nicked dsDNA in vitro; the binding of DndE to DNA occurs via six positively charged lysine residues on its surface. The substitution of these key lysine residues significantly decreased the DNA binding affinities of DndE proteins to undetectable levels. In this study, we conducted site-directed mutagenesis of dndE on a plasmid and measured DNA PT modifications under physiological conditions by mass spectrometry. We observed distinctive differences from the in vitro binding assays. Several mutants with lysine residues mutated to alanine decreased the total frequency of PT modifications, but none of the mutants completely eliminated PT modification. Our results suggest that the nicked dsDNA-binding capacity of DndE may not be crucial for PT modification and/or that DndE may have other biological functions in addition to binding to dsDNA.  相似文献   

5.

Background

Plant viruses such as Cowpea mosaic virus (CPMV) are increasingly being developed for applications in nanobiotechnology including vaccine development because of their potential for producing large quantities of antigenic material in plant hosts. In order to improve efficacy of viral nanoparticles in these types of roles, an investigation of the individual cell types that interact with the particles is critical. In particular, it is important to understand the interactions of a potential vaccine with antigen presenting cells (APCs) of the immune system. CPMV was previously shown to interact with vimentin displayed on cell surfaces to mediate cell entry, but the expression of surface vimentin on APCs has not been characterized.

Methodology

The binding and internalization of CPMV by several populations of APCs was investigated both in vitro and in vivo by flow cytometry and fluorescence confocal microscopy. The association of the particles with mouse gastrointestinal epithelium and Peyer''s patches was also examined by confocal microscopy. The expression of surface vimentin on APCs was also measured.

Conclusions

We found that CPMV is bound and internalized by subsets of several populations of APCs both in vitro and in vivo following intravenous, intraperitoneal, and oral administration, and also by cells isolated from the Peyer''s patch following gastrointestinal delivery. Surface vimentin was also expressed on APC populations that could internalize CPMV. These experiments demonstrate that APCs capture CPMV particles in vivo, and that further tuning the interaction with surface vimentin may facilitate increased uptake by APCs and priming of antibody responses. These studies also indicate that CPMV particles likely access the systemic circulation following oral delivery via the Peyer''s patch.  相似文献   

6.
7.
Babesia bovis is a tick-borne intraerythocytic protozoan responsible for acute disease in cattle which can be controlled by vaccination with attenuated B. bovis strains. Emerging B. bovis transfection technologies may increase the usefulness of these live vaccines. One use of transfected B. bovis parasites may be as a vaccine delivery platform. Previous transfection methods for B. bovis were limited by single expression sites and intracellular expression of transfected antigens. This study describes a novel transfection system in which two exogenous genes are expressed: one for selection and the other for a selected antigen designed to be delivered to the surface of the parasites. The strategy for duplicating the number of transfected genes was based on the use of the putative bidirectional promoter of the B. bovis 1.4 Kb ef-1α intergenic region. The ability of this region to regulate two independent expression sites was demonstrated using a luciferase assay on transiently transfected B. bovis parasites and then incorporated into a stable transfection plasmid to control independent expression of the selectable marker GFP-BSD and another gene of interest. A chimeric gene was synthetized using sequences from the protective B-cell epitopes of Rhipicephalus microplus tick antigen Bm86 along with sequences from the surface exposed B. bovis major surface antigen-1. This chimeric gene was then cloned into the additional expression site of the transfection plasmid. Transfection of the B. bovis Mo7 strain with this plasmid resulted in stable insertion into the ef-1α locus and simultaneous expression of both exogenous genes. Expression of the Bm86 epitopes on the surface of transfected merozoites was demonstrated using immunofluorescence analyses. The ability to independently express multiple genes by the inclusion of a bidirectional promoter and the achievement of surface expression of foreign epitopes advances the potential of transfected B. bovis as a future vaccine delivery platform.  相似文献   

8.
N. S. Amin  C. Holm 《Genetics》1996,144(2):479-493
To identify the regions of the proliferating cell nuclear antigen (PCNA) that are important for function in vivo, we used random mutagenesis to isolate 10 cold-sensitive (Cs(-)) and 31 methyl methanesulfonate-sensitive (Mms(s)) mutations of the PCNA gene (POL30) in Saccharomyces cerevisiae. Unlike the Mms(s) mutations, the Cs(-) mutations are strikingly clustered in the interdomain region of the three-dimensional PCNA monomer structure. At the restrictive temperature, the Cs(-) pol30 mutants undergo a RAD9-dependent arrest as large-budded cells with a 2c DNA content. Defects in DNA synthesis are suggested by a significant delay in the progression of synchronized pol30 cells through S phase at the restrictive temperature. DNA repair defects are revealed by the observation that Cs(-) pol30 mutants are very sensitive to the alkylating agent MMS and mildly sensitive to ultraviolet radiation, although they are not sensitive to gamma radiation. Finally, analysis of the chromosomal DNA in pol30 cells by velocity sedimentation gradients shows that pol30 cells accumulate single-stranded DNA breaks at the restrictive temperature. Thus, our results show that PCNA plays an essential role in both DNA replication and DNA repair in vivo.  相似文献   

9.
Virally introduced mouse tyrosinase expression was checked both in vitro and in vivo in chicken cells and tissues. The results indicate that a constitutive promoter is able to express mouse tyrosinase in a variety of cells and tissues both in vitro and in vivo. Tyrosinase expression is marked by pigment production in situ, which is visible at macroscopic as well as microscopic levels without the use of substrates. It is concluded that tyrosinase can be a valuable marker for tracking gene insertion since it is spontaneously expressed. The expression of tyrosinase in some cells and tissues has a detrimental effect, however, and should be controlled by tissue-specific promoters.  相似文献   

10.
Although reactive oxygen species (ROS) participate in many cellular mechanisms, only few data exist concerning their involvement in physiological angiogenesis. The aim of the present work was to elucidate possible mechanisms through which ROS affect angiogenesis in vivo, using the model of the chicken embryo chorioallantoic membrane (CAM). Superoxide dismutase (SOD) and its membrane permeable mimetic tempol, dose dependently decreased angiogenesis and down-regulated inducible nitric oxide synthase (iNOS) expression and nitric oxide (NO) production. The NADPH oxidase inhibitors, 4-(2-aminoethyl)-benzenesulfonyl fluoride (AEBSF) and apocynin, but not allopurinol, also had a dose dependent inhibitory effect on angiogenesis and NO production in vivo. Catalase and the intracellular hydrogen peroxide (H2O2) scavenger sodium pyruvate decreased, while H2O2 increased in a dose-dependent manner the number of CAM blood vessels, as well as the expression and activity of iNOS. Dexamethasone, which down-regulated NO production by iNOS and l-NAME, but not d-NAME, dose dependently decreased angiogenesis in vivo. These data suggest that antioxidants affect physiological angiogenesis in vivo, through regulation of NOS expression and activity.  相似文献   

11.
Vaccine development involves time-consuming and expensive evaluation of candidate vaccines in animal models. As mediators of both innate and adaptive immune responses dendritic cells (DCs) are considered to be highly important for vaccine performance. Here we evaluated how far the response of DCs to a vaccine in vitro is in line with the immune response the vaccine evokes in vivo. To this end, we investigated the response of murine bone marrow-derived DCs to whole inactivated virus (WIV) and subunit (SU) influenza vaccine preparations. These vaccine preparations were chosen because they differ in the immune response they evoke in mice with WIV being superior to SU vaccine through induction of higher virus-neutralizing antibody titers and a more favorable Th1-skewed response phenotype. Stimulation of DCs with WIV, but not SU vaccine, resulted in a cytokine response that was comparable to that of DCs stimulated with live virus. Similarly, the gene expression profiles of DCs treated with WIV or live virus were similar and differed from that of SU vaccine-treated DCs. More specifically, exposure of DCs to WIV resulted in differential expression of genes in known antiviral pathways, whereas SU vaccine did not. The stronger antiviral and more Th1-related response of DCs to WIV as compared to SU vaccine correlates well with the superior immune response found in mice. These results indicate that in vitro stimulation of DCs with novel vaccine candidates combined with the assessment of multiple parameters, including gene signatures, may be a valuable tool for the selection of vaccine candidates.  相似文献   

12.
Glibenclamide is an oral hypoglycemic drug commonly prescribed for the treatment of type 2 diabetes mellitus, whose anti-tumor activity has been recently described in several human cancer cells. The mutagenic potential of such an antidiabetic drug and its recombinogenic activity in eukaryotic cells were evaluated, the latter for the first time. The mutagenic potential of glibenclamide in therapeutically plasma (0.6 μM) and higher concentrations (10 μM, 100 μM, 240 μM and 480 μM) was assessed by the in vitro mammalian cell micronucleus test in human lymphocytes. Since the loss of heterozygosity arising from allelic recombination is an important biologically significant consequence of oxidative damage, the glibenclamide recombinogenic activity at 1 μM, 10 μM and 100 μM concentrations was evaluated by the in vivo homozygotization assay. Glibenclamide failed to alter the frequency of micronuclei between 0.6 μM and 480 μM concentrations and the cytokinesis block proliferation index between 0.6 μM and 240 μM concentrations. On the other hand, glibenclamide changed the cell-proliferation kinetics when used at 480 μM. In the homozygotization assay, the homozygotization indices for the analyzed markers were lower than 2.0 and demonstrated the lack of recombinogenic activity of glibenclamide. Data in the current study demonstrate that glibenclamide, in current experimental conditions, is devoid of significant genotoxic effects. This fact encourages further investigations on the use of this antidiabetic agent as a chemotherapeutic drug.  相似文献   

13.
The development of genetically marked animal tumour xenografts is an area of ongoing research to enable easier and more reliable testing of cancer therapies. Genetically marked tumour models have a number of advantages over conventional tumour models, including the easy longitudinal monitoring of therapies and the reduced number of animals needed for trials. Several different methods have been used in previous studies to mark tumours genetically, however all have limitations, such as genotoxicity and other artifacts related to the usage of integrating viral vectors. Recently, we have generated an episomally maintained plasmid DNA (pDNA) expression system based on Scaffold/Matrix Attachment Region (S/MAR), which permits long-term luciferase transgene expression in the mouse liver. Here we describe a further usage of this pDNA vector with the human Ubiquitin C promoter to create stably transfected human hepatoma (Huh7) and human Pancreatic Carcinoma (MIA-PaCa2) cell lines, which were delivered into “immune deficient” mice and monitored longitudinally over time using a bioluminometer. Both cell lines revealed sustained episomal long-term luciferase expression and formation of a tumour showing the pathological characteristics of hepatocellular carcinoma (HCC) and pancreatic carcinoma (PaCa), respectively. This is the first demonstration that a pDNA vector can confer sustained episomal luciferase transgene expression in various mouse tumour models and can thus be readily utilised to follow tumour formation without interfering with the cellular genome.  相似文献   

14.
Odin has been implicated in the downstream signaling pathway of receptor tyrosine kinases, such as the epidermal growth factor and Eph receptors. However, the physiologically relevant function of Odin needs to be further determined. In this study, we used Odin heterozygous mice to analyze the Odin expression pattern; the targeted allele contained a β-geo gene trap vector inserted into the 14th intron of the Odin gene. Interestingly, we found that Odin was exclusively expressed in ependymal cells along the brain ventricles. In particular, Odin was highly expressed in the subcommissural organ, a small ependymal glandular tissue. However, we did not observe any morphological abnormalities in the brain ventricles or ependymal cells of Odin null-mutant mice. We also generated BAC transgenic mice that expressed the PTB-deleted Odin (dPTB) after a floxed GFP-STOP cassette was excised by tissue-specific Cre expression. Strikingly, Odin-dPTB expression played a causative role in the development of the hydrocephalic phenotype, primarily in the midbrain. In addition, Odin-dPTB expression disrupted proper development of the subcommissural organ and interfered with ependymal cell maturation in the cerebral aqueduct. Taken together, our findings strongly suggest that Odin plays a role in the differentiation of ependymal cells during early postnatal brain development.  相似文献   

15.
The periodontopathogenic bacterium Eikenella corrodens has an N-acetyl-D-galactosamine (GalNAc)-specific lectin, that contributes significantly to the pathogenicity of the bacterium. Recently, we reported that plasmid-mediated genomic recombination enhances the activity of this lectin. In this study, we investigated the effects of genomic recombination on certain virulence factors. Introduction of the recombinase gene resulted in hemolysis and significantly increased bacterial adhesion to epithelial cells. It was suggested that the enhanced adhesion was attributable to increased lectin activity due to genomic recombination, because it was inhibited by the addition of GalNAc. In contrast, invasion of the epithelial cells was remarkably reduced by genomic recombination. Although we assumed that this decrease in invasion resulted from a loss of type-IV pili, the phase variant did not show any decrease in invasion activity. This suggests that type-IV pili do not contribute to the invasive ability of E. corrodens. Our results suggest that genomic recombination enhances the pathogenicity of E. corrodens.  相似文献   

16.
In this report, we have found that fatty acid-free bovine serum albumin stimulated the expression of a transfected foreign gene in Cos1 cells in serum-free medium and that its activity was as same as that of fetal calf serum. This will simplify the purification of the gene product from the culture medium.  相似文献   

17.
The principal component of the amyloid which accumulates in Alzheimer's Disease brain is a 4-kDa βA4 fragment of the amyloid precursor protein (APP). Although APP has the structural features of an integral transmembrane receptor, there has been limited evidence for expression of APP at the plasma membrane. The function of APP and related molecules is unknown. Using rabbit antisera to purified human brain APP, surface labeling of APP is demonstrable in HeLa cells transfected with the APP695 isoform. Indirect immunofluorescence indicates the presence of APP at the surface of unfixed or aldehyde-fixed cells; preembedding immunoelectron microscopy using 5- or 1-nm gold particles and silver enhancement confirms plasma membrane labeling as well as labeling within intracellular membrane vesicles. Immunolabeling of unfixed cells at 4°C followed by incubation at 37°C shows APP within endocytic vesicles. Transfected HeLa cells with prominent surface APP were larger with more extensive microvilli than nonimmunoreactive HeLa cells. This is consistent with the postulated role of APP as a mediator of cell surface adhesion and membranematrix stabilization.  相似文献   

18.
OBJECTIVESTo determine whether poly (ADP-ribose) polymerase-1/2 (PARP-1/2) inhibition enhances radiation-induced cytotoxicity of pancreatic adenocarcinoma in vitro and in vivo, and the mechanism by which this occurs.MethodsPancreatic carcinoma cells were treated with ABT-888, radiation, or both. In vitro cell viability, apoptosis, and PARP activity were measured. Orthotopic xenografts were generated in athymic mice and treated with ABT-888 (25 mg/kg), radiation (5 Gy), both, or no treatment. Mice were monitored with bioluminescence imaging.RESULTSIn vitro, treatment with ABT-888 and radiation led to higher rates of cell death after 8 days (P < .01). Co-treatment with 5 Gy and 1, 10 or 100 μmol/l of ABT-888 led to dose enhancement factors of 1.29, 1.41 and 2.36, respectively. Caspase activity was not significantly increased when treated with ABT-888 (10 μmol/l) alone (1.28-fold, P = .08), but became significant when radiation was added (2.03-fold, P < .01). PARP activity increased post-radiation and was abrogated following co-treatment with ABT-888. In vivo, treatment with ABT-888, radiation or both led to tumor growth inhibition (TGI) of 8, 30 and 39 days, and survival at 60 days of 0%, 0% and 40%, respectively.CONCLUSIONSABT-888 with radiation significantly enhanced tumor response in vitro and in vivo. ABT-888 inhibited PAR protein polymerization resulting in dose-dependent feedback up-regulation of PARP and p-ATM suggesting increased DNA damage. This translated into enhancement in TGI and survival with radiation in vivo. In vitro PAR levels correlated with levels of tumor apoptosis suggesting potential as a predictive biomarker. These data are being used to support a Phase I study in locally advanced pancreatic cancer.  相似文献   

19.
目的:确定HIV-1疫苗中有效的交叉保护性细胞免疫抗原,提高各个基因在相应疫苗载体中的表达水平,为研究不同抗原在DNA载体和痘苗病毒载体中的免疫原性奠定实验基础。方法:选择HIV B′/C亚型5个以细胞免疫为主的抗原(Gag、Pol、Rev、Tat和Nef),进行基因序列优化及表达结构改造,并分别构建以质粒DNA和重组痘苗病毒为载体的两大类HIV-1疫苗。结果:优化前后5个目的基因均能够在这2种载体中有效表达;虽然采用相同的基因修饰策略,但与痘苗病毒载体相比,在DNA载体中各基因表达水平的提高均较为明显;含有抑制性序列(INS)的gag、pol基因经密码子优化后,Gag、Pol蛋白的表达均明显提高,其中Pol蛋白的提高更为明显,单独pol基因比gagpol天然结构表达水平要高,而gag基因却变化不大;对于rev、tat、nef基因而言,优化后的单独基因结构要略高于优化后的融合结构(hRTN),且二者均高于未优化的融合结构(RTN)。结论:为进一步确定HIV-1疫苗中有效的交叉保护性细胞免疫抗原、研究不同抗原在DNA载体和痘苗病毒载体中的免疫原性奠定了实验基础,为进一步研究DNA疫苗和重组痘苗病毒疫苗联合免疫提供了实验依据。  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号