首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
J. R. Ovenden  RWG. White 《Genetics》1990,124(3):701-716
Galaxias truttaceus is found in coastal rivers and streams in south-eastern Australia. It spawns at the head of estuaries in autumn and the larvae spend 3 months of winter at sea before returning to fresh water. In Tasmania there are landlocked populations of G. truttaceus in a cluster of geologically young lakes on the recently glaciated Central Plateau. These populations have no marine larval stage and spawn in the lakes in spring. Speciation due to land locking is thought to be a frequent occurrence within Galaxias. To investigate the nature of the speciation event which may be occurring within lake populations of G. truttaceus we studied the mitochondrial DNA (mtDNA) and allozyme diversity of both lake and stream populations. Using the presence or absence of restriction sites recognized by 13 six-base restriction endonucleases, we found 58 mtDNA haplotypes among 150 fish collected from 13 Tasmanian and one south-east Australian mainland stream populations. The most parsimonious network relating the haplotypes by site loss or gain was starlike in shape. We argue that this arrangement is best explained by selection upon slightly beneficial mutations within the mitochondrial genome. Gene diversity analysis under Wright's island model showed that the populations in each drainage were not genetically subdivided. Only two of these stream haplotypes were found among the 66 fish analyzed from four lake populations. Despite the extreme lack of mtDNA diversity in lake populations, the observed nuclear DNA heterozygosity of 40 lake fish (0.10355) was only slightly less than that of 82 stream fish (0.11635). In the short time (3000-7000 years) that the lake fish have been landlocked, random genetic drift in a finite, stable-sized population was probably not responsible for the lack of mtDNA diversity in the lake populations. We infer the lake populations have probably experienced at least one, severe, but transitory bottleneck possibly induced by natural selection for life-history characters essential for survival in the lacustrine habitat. If speciation is occurring in the landlocked populations of G. truttaceus, then it may be driven by genetic transilience.  相似文献   

2.
The wheat midge, Sitodiplosis mosellana, is an important pest in Northern China. We tested the hypothesis that the population structure of this species arises during a range expansion over the past 30 years. This study used microsatellite and mitochondrial loci to conduct population genetic analysis of S. mosellana across its distribution range in China. We found strong genetic structure among the 16 studied populations, including two genetically distinct groups (the eastern and western groups), broadly consistent with the geography and habitat fragmentation. These results underline the importance of natural barriers in impeding dispersal and gene flow of S. mosellana populations. Low to moderate genetic diversity among the populations and moderate genetic differentiation (F ST = 0.117) between the two groups were also found. The populations in the western group had lower genetic diversity, higher genetic differentiation and lower gene flow (F ST = 0.116, Nm = 1.89) than those in the eastern group (F ST = 0.049, Nm = 4.91). Genetic distance between populations was positively and significantly correlated with geographic distance (r = 0.56, P<0.001). The population history of this species provided no evidence for population expansion or bottlenecks in any of these populations. Our data suggest that the distribution of genetic diversity, genetic differentiation and population structure of S. mosellana have resulted from a historical event, reflecting its adaptation to diverse habitats and forming two different gene pools. These results may be the outcome of a combination of restricted gene flow due to geographical and environmental factors, population history, random processes of genetic drift and individual dispersal patterns. Given the current risk status of this species in China, this study can offer useful information for forecasting outbreaks and designing effective pest management programs.  相似文献   

3.
Spring phenologies are advancing in many ecosystems associated with climate warming causing unpredictable changes in ecosystem functioning. Here we establish a phenological model for Daphnia, an aquatic keystone herbivore based on decadal data on water temperatures and the timing of Daphnia population maxima from Lake Constance, a large European lake. We tested this model with long-term time-series data from two lakes (Müggelsee, Germany; Lake Washington, USA), and with observations from a diverse set of 49 lakes/sites distributed widely across the Northern Hemisphere (NH). The model successfully captured the observed temporal variation of Daphnia phenology in the two case study sites (r2 = 0.25 and 0.39 for Müggelsee and Lake Washington, respectively) and large-scale spatial variation in the NH (R2 = 0.57). These results suggest that Daphnia phenology follows a uniform temperature dependency in NH lakes. Our approach – based on temperature phenologies – has large potential to study and predict phenologies of animal and plant populations across large latitudinal gradients in other ecosystems.  相似文献   

4.
We explored possible links between vector activity and genetic diversity in introduced populations of Limnoperna fortunei by characterizing the genetic structure in native and introduced ranges in Asia and South America. We surveyed 24 populations: ten in Asia and 14 in South America using the mitochondrial cytochrome c oxidase subunit I (COI) gene, as well as eight polymorphic microsatellite markers. We performed population genetics and phylogenetic analyses to investigate population genetic structure across native and introduced regions. Introduced populations in Asia exhibit higher genetic diversity (H E = 0.667–0.746) than those in South America (H E = 0.519–0.575), suggesting higher introduction effort for the former populations. We observed pronounced geographical structuring in introduced regions, as indicated by both mitochondrial and nuclear markers based on multiple genetic analyses including pairwise ФST, F ST, Bayesian clustering method, and three-dimensional factorial correspondence analyses. Pairwise F ST values within both Asia (F ST = 0.017–0.126, P = 0.000–0.009) and South America (F ST = 0.004–0.107, P = 0.000–0.721) were lower than those between continents (F ST = 0.180–0.319, P = 0.000). Fine-scale genetic structuring was also apparent among introduced populations in both Asia and South America, suggesting either multiple introductions of distinct propagules or strong post-introduction selection and demographic stochasticity. Higher genetic diversity in Asia as compared to South America is likely due to more frequent propagule transfers associated with higher shipping activities between source and donor regions within Asia. This study suggests that the intensity of human-mediated introduction vectors influences patterns of genetic diversity in non-indigenous species.  相似文献   

5.
Sinopodophyllum hexandrum is an important medicinal plant whose genetic diversity must be conserved because it is endangered. The Qinling Mts. are a S. hexandrum distribution area that has unique environmental features that highly affect the evolution of the species. To provide the reference data for evolutionary and conservation studies, the genetic diversity and population structure of S. hexandrum in its overall natural distribution areas in the Qinling Mts. were investigated through inter-simple sequence repeats analysis of 32 natural populations. The 11 selected primers generated a total of 135 polymorphic bands. S. hexandrum genetic diversity was low within populations (average He = 0.0621), but higher at the species level (He = 0.1434). Clear structure and high genetic differentiation among populations were detected by using the unweighted pair group method for arithmetic averages, principle coordinate analysis and Bayesian clustering. The clustering approaches supported a division of the 32 populations into three major groups, for which analysis of molecular variance confirmed significant variation (63.27%) among populations. The genetic differentiation may have been attributed to the limited gene flow (Nm = 0.3587) in the species. Isolation by distance among populations was determined by comparing genetic distance versus geographic distance by using the Mantel test. Result was insignificant (r = 0.212, P = 0.287) at 0.05, showing that their spatial pattern and geographic locations are not correlated. Given the low within-population genetic diversity, high differentiation among populations and the increasing anthropogenic pressure on the species, in situ conservation measures were recommended to preserve S. hexandrum in Qinling Mts., and other populations must be sampled to retain as much genetic diversity of the species to achieve ex situ preservation as a supplement to in situ conservation.  相似文献   

6.
Crustaceans that initially colonize a freshwater temporary pond can strongly bias the subsequent genetic composition of the population, causing nearby populations to be genetically distinct. In addition, these crustaceans have various reproductive modes that can influence genetic differentiation and diversity within and between populations. We report on two species of tadpole shrimp, Triops newberryi and Triops longicaudatus “short”, with different reproductive modes. Reproduction in the tadpole shrimp can occur clonally (parthenogenesis), with self fertilization (hermaphroditism), or through outcrossing of hermaphrodites with males (androdioecy). For all these reproductive modes, population genetic theory predicts decreased genetic diversity and increased population differentiation. Here we use mitochondrial control region (mtCR) sequences and nuclear microsatellite loci to determine if the difference in reproductive mode affects the high genetic structure typical of persistent founder effects. Previous authors indicated that T. newberryi is androdioecious because populations are composed of hermaphrodites and males, and T. longicaudatus “short” is hermaphroditic or parthenogenetic because males are absent. In our data, T. newberryi and T. longicaudatus “short” populations were highly structured genetically over short geographic distances for mtCR sequences and microsatellite loci (T. newberryi: ΦST = 0.644, F ST = 0.252, respectively; T. l. “short”: invariant mtCR sequences, F ST = 0.600). Differences between the two Triops species in a number of diversity measures were generally consistent with expectations from population genetic theory regarding reproductive mode; however, three of four comparisons were not statistically significant. We conclude the high genetic differentiation between populations is likely due to founder effects and results suggest both species are composed of selfing hermaphrodites with some level of outcrossing; the presence of males in T. newberryi does not appreciably reduce inbreeding. We cannot exclude the possibility that males in T. newberryi are non-reproductive individuals and the two species have the same mating system.  相似文献   

7.
Striking genetic structure among marine populations at small spatial scales is becoming evident with extensive molecular studies. Such observations suggest isolation at small scales may play an important role in forming patterns of genetic diversity within species. Isolation‐by‐distance, isolation‐by‐environment and historical priority effects are umbrella terms for a suite of processes that underlie genetic structure, but their relative importance at different spatial and temporal scales remains elusive. Here, we use marine lakes in Indonesia to assess genetic structure and assess the relative roles of the processes in shaping genetic differentiation in populations of a bivalve mussel (Brachidontes sp.). Marine lakes are landlocked waterbodies of similar age (6,000–10,000 years), but with heterogeneous environments and varying degrees of connection to the sea. Using a population genomic approach (double‐digest restriction‐site‐associated DNA sequencing), we show strong genetic structuring across populations (range FST: 0.07–0.24) and find limited gene flow through admixture plots. At large spatial scales (>1,400 km), a clear isolation‐by‐distance pattern was detected. At smaller spatial scales (<200 km), this pattern is maintained, but accompanied by an association of genetic divergence with degree of connection. We hypothesize that (incomplete) dispersal barriers can cause initial isolation, allowing priority effects to give the numerical advantage necessary to initiate strong genetic structure. Priority effects may be strengthened by local adaptation, which the data may corroborate by showing a high correlation between mussel genotypes and temperature. Our study indicates an often‐neglected role of (evolution‐mediated) priority effects in shaping population divergence.  相似文献   

8.
The vulnerable Chinese cobra (Naja atra) ranges from southeastern China south of the Yangtze River to northern Vietnam and Laos. Large mountain ranges and water bodies may influence the pattern of genetic diversity of this species. We sequenced the mitochondrial DNA control region (1029 bp) using 285 individuals collected from 23 localities across the species'' range and obtained 18 sequences unique to Taiwan from GenBank for phylogenetic and population analysis. Two distinct clades were identified, one including haplotypes from the two westernmost localities (Hekou and Miyi) and the other including haplotypes from all sampling sites except Miyi. A strong population structure was found (Φst = 0.76, P<0.0001) with high haplotype diversity (h = 1.00) and low nucleotide diversity (π = 0.0049). The Luoxiao and Nanling Mountains act as historical geographical barriers limiting gene exchange. In the haplotype network there were two “star” clusters. Haplotypes from populations east of the Luoxiao Mountains were represented within one cluster and haplotypes from populations west of the mountain range within the other, with haplotypes from populations south of the Nanling Mountains in between. Lineage sorting between mainland and island populations is incomplete. It remains unknown as to how much adaptive differentiation there is between population groups or within each group. We caution against long-distance transfers within any group, especially when environmental differences are apparent.  相似文献   

9.
Carcinus maenas, the common shore crab of European coastal waters, has recently gained notoriety due to its globally invasive nature associated with drastic ecological and economic effects. The native ubiquity and worldwide importance of C. maenas has resulted in it becoming one of the best-studied estuarine crustacean species globally. Accordingly, there is significant interest in investigating the population genetic structure of this broadly distributed crab along European and invaded coastlines. Here, we developed polymerase chain reaction (PCR) primers for one dinucleotide and two trinucleotide microsatellite loci, resulting from an enrichment process based on Portuguese populations. Combining these three new markers with six existing markers, we examined levels of genetic diversity and population structure of C. maenas in two coastal regions from Northern and Central Portugal. Genotypes showed that locus polymorphism ranged from 10 to 42 alleles (N = 135) and observed heterozygosity per locus ranged from 0.745 to 0.987 with expected heterozygosity ranging from 0.711 to 0.960; values typical of marine decapods. The markers revealed weak, but significant structuring among populations (global FST = 0.004) across a 450 km (over-water distance) spatial scale. Combinations of these and existing markers will be useful for studying population genetic parameters at a range of spatial scales of C. maenas throughout its expanding species range.  相似文献   

10.

Background and Question

The harvesting of medicinal plants from wild sources is escalating in many parts of the world, compromising the long-term survival of natural populations of medicinally important plants and sustainability of sources of raw material to meet pharmaceutical industry needs. Although protected areas are considered to play a central role in conservation of plant genetic resources, the effectiveness of protected areas for maintaining medicinal plant populations subject to intense harvesting pressure remain largely unknown. We conducted genetic and demographic studies of Nothapodytes nimmoniana Graham, one of the extensively harvested medicinal plant species in the Western Ghats biodiversity hotspot, India to assess the effectiveness of protected areas in long-term maintenance of economically important plant species.

Methodology/Principal Findings

The analysis of adults and seedlings of N. nimmoniana in four protected and four non-protected areas using 7 nuclear microsatellite loci revealed that populations that are distributed within protected areas are subject to lower levels of harvesting and maintain higher genetic diversity (He = 0.816, Ho = 0.607, A = 18.857) than populations in adjoining non-protected areas (He = 0.781, Ho = 0.511, A = 15.571). Furthermore, seedlings in protected areas had significantly higher observed heterozygosity (Ho = 0.630) and private alleles as compared to seedlings in adjoining non-protected areas (Ho = 0.426). Most populations revealed signatures of recent genetic bottleneck. The prediction of long-term maintenance of genetic diversity using BOTTLESIM indicated that current population sizes of the species are not sufficient to maintain 90% of present genetic diversity for next 100 years.

Conclusions/Significance

Overall, these results highlight the need for establishing more protected areas encompassing a large number of adult plants in the Western Ghats to conserve genetic diversity of economically and medicinally important plant species.  相似文献   

11.
A. assamensis is a phytophagous Lepidoptera from Northeast India reared on host trees of Lauraceae family for its characteristic cocoon silk. Source of these cocoons are domesticated farm stocks that crash frequently and/or wild insect populations that provide new cultures. The need to reduce dependence on wild populations for cocoons necessitates assessment of genetic diversity in cultivated and wild populations. Molecular markers based on PCR of Inter-simple sequence repeats (ISSR) and simple sequence repeats (SSR) were used with four populations of wild insects and eleven populations of cultivated insects. Wild populations had high genetic diversity estimates (Hi = 0.25; HS = 0.28; HE = 0.42) and at least one population contained private alleles. Both marker systems indicated that genetic variability within populations examined was significantly high. Among cultivated populations, insects of the Upper Assam region (Hi = 0.19; HS = 0.18; HE = 0) were genetically distinct (F ST = 0.38 with both marker systems) from insects of Lower Assam (Hi = 0.24; HS = 0.25; HE = 0.3). Sequencing of polymorphic amplicons suggested transposition as a mechanism for maintaining genomic diversity. Implications for conservation of native populations in the wild and preserving in-farm diversity are discussed.  相似文献   

12.
Although evidence for the evolution of terrestrial species on islands continues to rapidly accumulate, little is known about the evolution of marine species in geographically isolated environments such as islands as ocean currents often facilitate gene flow among populations. In this study, we focused on marine lakes of the Palau Islands, which are considered to be true analogues of terrestrial islands for marine species. To examine evolutionary processes in marine lakes, we conducted population genetic analyses on marine lake and lagoon populations of the striped silverside, Atherinomorus endrachtensis, using two mitochondrial DNA markers differing in evolutionary rate, the cytochrome b gene and the control region. The analyses revealed that the amount of genetic diversity of marine lake populations is much lower than that of lagoon populations and high levels of genetic differentiation occur among marine lake and lagoon populations. The present study has shown that marine lake populations have been completely isolated and have differentiated from lagoon populations, and each marine lake population is experiencing different evolutionary processes. These findings clearly demonstrate that marine lakes are excellent environments for the evolutionary study of marine species.  相似文献   

13.
As wild populations decline, ex situ propagation provides a potential bank of genetic diversity and a hedge against extinction. These programs are unlikely to succeed if captive populations do not recover from the severe bottleneck imposed when they are founded with a limited number of individuals from remnant populations. In small captive populations allelic richness may be lost due to genetic drift, leading to a decline in fitness. Wild populations of the Hawaiian tree snail Achatinella lila, a hermaphroditic snail with a long life history, have declined precipitously due to introduced predators and other human impacts. A captive population initially thrived after its founding with seven snails, exceeding 600 captive individuals in 2009, but drastically declined in the last five years. Measures of fitness were examined from 2,018 captive snails that died between 1998 and 2012, and compared with genotypic data for six microsatellite loci from a subset of these deceased snails (N = 335), as well as live captive snails (N = 198) and wild snails (N = 92). Surprisingly, the inbreeding coefficient (Fis) declined over time in the captive population, and is now approaching values observed in the 2013 wild population, despite a significant decrease in allelic richness. However, adult annual survival and fecundity significantly declined in the second generation. These measures of fitness were positively correlated with heterozygosity. Snails with higher measures of heterozygosity had more offspring, and third generation offspring with higher measures of heterozygosity were more likely to reach maturity. These results highlight the importance of maintaining genetic diversity in captive populations, particularly those initiated with a small number of individuals from wild remnant populations. Genetic rescue may allow for an increase in genetic diversity in the captive population, as measures of heterozygosity and rarified allelic richness were higher in wild tree snails.  相似文献   

14.
Nesting by three species of marine turtles persists in the Dominican Republic, despite historic threats and long-term population decline. We conducted a genetic survey of marine turtles in the Dominican Republic in order to link them with other rookeries around the Caribbean. We sequenced a 740bp fragment of the control region of the mitochondrial DNA of 92 samples from three marine turtle species [hawksbill (n = 48), green (n = 2) and leatherback (n = 42)], and incorporated published data from other nesting populations and foraging grounds. The leatherback turtle (Dermochelys coriacea) in the Dominican Republic appeared to be isolated from Awala-Yalimapo, Cayenne, Trinidad and St. Croix but connected with other Caribbean populations. Two distinct nesting populations of hawksbill turtles (Eremochelys imbricata) were detected in the Dominican Republic and exhibited interesting patterns of connectivity with other nesting sites and juvenile and adult male foraging aggregations. The green sea turtle (Chelonia mydas) has almost been extirpated from the Dominican Republic and limited inference could be made from our samples. Finally, results were compared with Lagrangian drifting buoys and published Lagrangian virtual particles that travelled through the Dominican Republic and Caribbean waters. Conservation implications of sink-source effects or genetic isolation derived from these complex inter-connections are discussed for each species and population.  相似文献   

15.
Gelatinous zooplankton outbreaks have increased globally owing to a number of human-mediated factors, including food web alterations and species introductions. The invasive ctenophore Mnemiopsis leidyi entered the Black Sea in the early 1980s. The invasion was followed by the Azov, Caspian, Baltic and North Seas, and, most recently, the Mediterranean Sea. Previous studies identified two distinct invasion pathways of M. leidyi from its native range in the western Atlantic Ocean to Eurasia. However, the source of newly established populations in the Mediterranean Sea remains unclear. Here we build upon our previous study and investigate sequence variation in both mitochondrial (Cytochrome c Oxidase subunit I) and nuclear (Internal Transcribed Spacer) markers in M. leidyi, encompassing five native and 11 introduced populations, including four from the Mediterranean Sea. Extant genetic diversity in Mediterranean populations (n = 8, N a = 10) preclude the occurrence of a severe genetic bottleneck or founder effects in the initial colonizing population. Our mitochondrial and nuclear marker surveys revealed two possible pathways of introduction into Mediterranean Sea. In total, 17 haplotypes and 18 alleles were recovered from all surveyed populations. Haplotype and allelic diversity of Mediterranean populations were comparable to populations from which they were likely drawn. The distribution of genetic diversity and pattern of genetic differentiation suggest initial colonization of the Mediterranean from the Black-Azov Seas (pairwise F ST = 0.001–0.028). However, some haplotypes and alleles from the Mediterranean Sea were not detected from the well-sampled Black Sea, although they were found in Gulf of Mexico populations that were also genetically similar to those in the Mediterranean Sea (pairwise F ST = 0.010–0.032), raising the possibility of multiple invasion sources. Multiple introductions from a combination of Black Sea and native region sources could be facilitated by intense local and transcontinental shipping activity, respectively.  相似文献   

16.
Contemporary insights from evolutionary ecology suggest that population divergence in ecologically important traits within predators can generate diversifying ecological selection on local community structure. Many studies acknowledging these effects of intraspecific variation assume that local populations are situated in communities that are unconnected to similar communities within a shared region. Recent work from metacommunity ecology suggests that species dispersal among communities can also influence species diversity and composition but can depend upon the relative importance of the local environment. Here, we study the relative effects of intraspecific phenotypic variation in a fish predator and spatial processes related to plankton species dispersal on multitrophic lake plankton metacommunity structure. Intraspecific diversification in foraging traits and residence time of the planktivorous fish alewife (Alosa pseudoharengus) among coastal lakes yields lake metacommunities supporting three lake types which differ in the phenotype and incidence of alewife: lakes with anadromous, landlocked, or no alewives. In coastal lakes, plankton community composition was attributed to dispersal versus local environmental predictors, including intraspecific variation in alewives. Local and beta diversity of zooplankton and phytoplankton was additionally measured in response to intraspecific variation in alewives. Zooplankton communities were structured by species sorting, with a strong influence of intraspecific variation in A. pseudoharengus. Intraspecific variation altered zooplankton species richness and beta diversity, where lake communities with landlocked alewives exhibited intermediate richness between lakes with anadromous alewives and without alewives, and greater community similarity. Phytoplankton diversity, in contrast, was highest in lakes with landlocked alewives. The results indicate that plankton dispersal in the region supplied a migrant pool that was strongly structured by intraspecific variation in alewives. This is one of the first studies to demonstrate that intraspecific phenotypic variation in a predator can maintain contrasting patterns of multitrophic diversity in metacommunities.  相似文献   

17.
Rhodiola sachalinensis is an endangered species with important medicinal value. We used inter-simple sequence repeat (ISSR) and methylation-sensitive amplified polymorphism (MSAP) markers to analyze genetic and epigenetic differentiation in different populations of R. sachalinensis, including three natural populations and an ex situ population. Chromatographic fingerprint was used to reveal HPLC fingerprint differentiation. According to our results, the ex situ population of R. sachalinensis has higher level genetic diversity and greater HPLC fingerprint variation than natural populations, but shows lower epigenetic diversity. Most genetic variation (54.88%) was found to be distributed within populations, and epigenetic variation was primarily distributed among populations (63.87%). UPGMA cluster analysis of ISSR and MSAP data showed identical results, with individuals from each given population grouping together. The results of UPGMA cluster analysis of HPLC fingerprint patterns was significantly different from results obtained from ISSR and MSAP data. Correlation analysis revealed close relationships among altitude, genetic structure, epigenetic structure, and HPLC fingerprint patterns (R2 = 0.98 for genetic and epigenetic distance; R2 = 0.90 for DNA methylation level and altitude; R2 = –0.95 for HPLC fingerprint and altitude). Taken together, our results indicate that ex situ population of R. sachalinensis show significantly different genetic and epigenetic population structures and HPLC fingerprint patterns. Along with other potential explanations, these findings suggest that the ex situ environmental factors caused by different altitude play an important role in keeping hereditary characteristic of R. sachalinensis.  相似文献   

18.
Temporal variation in allele frequencies, whether caused by deterministic or stochastic forces, can inform us about interesting demographic and evolutionary phenomena occurring in wild populations. In spite of the continued surge of interest in the genetics of three-spined stickleback (Gasterosteus aculeatus) populations, little attention has been paid towards the temporal stability of allele frequency distributions, and whether there are consistent differences in effective size (Ne) of local populations. We investigated temporal stability of genetic variability and differentiation in 15 microsatellite loci within and among eight collection sites of varying habitat type, surveyed twice over a six-year time period. In addition, Nes were estimated with the expectation that they would be lowest in isolated ponds, intermediate in larger lakes and largest in open marine sites. In spite of the marked differences in genetic variability and differentiation among the study sites, the temporal differences in allele frequencies, as well as measures of genetic diversity and differentiation, were negligible. Accordingly, the Ne estimates were temporally stable, but tended to be lower in ponds than in lake or marine habitats. Hence, we conclude that allele frequencies in putatively neutral markers in three-spined sticklebacks seem to be temporally stable – at least over periods of few generations – across a wide range of habitat types differing markedly in levels of genetic variability, effective population size and gene flow.  相似文献   

19.
African tropical lakes provide vital ecosystem services including food and water to some of the fastest growing human populations, yet they are among the most understudied ecosystems in the world. The consequences of climate change and other stressors on the tropical lakes of Africa have been informed by long-term analyses, but these studies have largely focused on the massive Great Rift Valley lakes. Our objective was to evaluate how recent climate change has altered the functioning and services of smaller tropical lakes, which are far more abundant on the landscape. Based on a paired analysis of 20 years of high-resolution water column data and a paleolimnological record from a small crater lake in western Uganda, we present evidence that even a modest warming of the air (∼0.9°C increase over 20 years) and changes in the timing and intensity of rainfall can have significant consequences on the dynamics of this common tropical lake type. For example, we observed a significant nonlinear increase (R2adj = 0.23, e.d.f. = 7, p<0.0001) in thermal stability over the past 20 years. This resulted in the expansion of anoxic waters and consequent deterioration of fish habitat and appears to have abated primary production; processes that may impair ecosystem services for a vulnerable human population. This study on a system representative of small tropical crater lakes highlights the far-reaching effects of global climatic change on tropical waters. Increased research efforts into tropical aquatic ecosystem health and the development of sound management practices are necessary in order to strengthen adaptive capabilities in tropical regions.  相似文献   

20.
The Bolson tortoise (Gopherus flavomarginatus) is the first species of extirpated megafauna to be repatriated into the United States. In September 2006, 30 individuals were translocated from Arizona to New Mexico with the long-term objective of restoring wild populations via captive propagation. We evaluated mtDNA sequences and allelic diversity among 11 microsatellite loci from the captive population and archived samples collected from wild individuals in Durango, Mexico (n = 28). Both populations exhibited very low genetic diversity and the captive population captured roughly 97.5% of the total wild diversity, making it a promising founder population. Genetic screening of other captive animals (n = 26) potentially suitable for reintroduction uncovered multiple hybrid G. flavomarginatus×G. polyphemus, which were ineligible for repatriation; only three of these individuals were verified as purebred G. flavomarginatus. We used these genetic data to inform mate pairing, reduce the potential for inbreeding and to monitor the maintenance of genetic diversity in the captive population. After six years of successful propagation, we analyzed the parentage of 241 hatchlings to assess the maintenance of genetic diversity. Not all adults contributed equally to successive generations. Most yearly cohorts of hatchlings failed to capture the diversity of the parental population. However, overlapping generations of tortoises helped to alleviate genetic loss because the entire six-year cohort of hatchlings contained the allelic diversity of the parental population. Polyandry and sperm storage occurred in the captives and future management strategies must consider such events.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号