共查询到20条相似文献,搜索用时 10 毫秒
1.
Breast cancer (BC) and benign breast lesions (BBLs) are common diseases in women worldwide. The gut microbiota plays a vital role in regulating breast diseases’ formation, progression, and therapy response. Hence, we explored the structure and function of gut microflora in patients with BC and BBLs. A cohort of 66 subjects was enrolled in the study. Twenty-six subjects had BC, 20 subjects had BBLs, and 20 matched healthy controls. High throughput 16S ribosomal RNA (16S rRNA) gene sequencing technology was used to determine the microbial community structure. Compared with healthy individuals, BC patients had significantly lower alpha diversity indices (Sobs index, p = 0.019; Chao1 index, p = 0.033). Sobs and Chao1 indices were also lower in patients with BBLs than healthy individuals, without statistical significance (p = 0.279, p = 0.314, respectively). Both unweighted and weighted UniFrac analysis showed that beta diversity differed significantly among the three groups (p = 3.376e–14, p < 0.001, respectively). Compared with healthy individuals, the levels of Porphyromonas and Peptoniphilus were higher in BC patients (p = 0.004, p = 0.007, respectively), whereas Escherichia and Lactobacillus were more enriched in the benign breast lesion group (p < 0.001, p = 0.011, respectively). Our study indicates that patients with BC and BBLs may undergo significant changes in intestinal microbiota. These findings can help elucidate the role of intestinal flora in BC and BBLs patients. Open in a separate window 相似文献
2.
Oleg Paliy Harshavardhan Kenche Frank Abernathy Sonia Michail 《Applied and environmental microbiology》2009,75(11):3572-3579
Gut microbiota carry out key functions in health and participate in the pathogenesis of a growing number of diseases. The aim of this study was to develop a custom microarray that is able to identify hundreds of intestinal bacterial species. We used the Entrez nucleotide database to compile a data set of bacterial 16S rRNA gene sequences isolated from human intestinal and fecal samples. Identified sequences were clustered into separate phylospecies groups. Representative sequences from each phylospecies were used to develop a microbiota microarray based on the Affymetrix GeneChip platform. The designed microbiota array contains probes to 775 different bacterial phylospecies. In our validation experiments, the array correctly identified genomic DNA from all 15 bacterial species used. Microbiota array has a detection sensitivity of at least 1 pg of genomic DNA and can detect bacteria present at a 0.00025% level of overall sample. Using the developed microarray, fecal samples from two healthy children and two healthy adults were analyzed for bacterial presence. Between 227 and 232 species were detected in fecal samples from children, whereas 191 to 208 species were found in adult stools. The majority of identified phylospecies belonged to the classes Clostridia and Bacteroidetes. The microarray revealed putative differences between the gut microbiota of healthy children and adults: fecal samples from adults had more Clostridia and less Bacteroidetes and Proteobacteria than those from children. A number of other putative differences were found at the genus level.In the healthy adult, there are 1011 to 1014 bacteria colonizing the intestine. This outnumbers the total tissue cells in the body by at least an order of magnitude. The composition and activity of this complex microbial system (called microbiota or microflora) have a major influence on health and disease (9). Commensal microbiota contribute to the trophic functions of the gut (producing fermentation products and vitamins that can be used by intestinal epithelial cells), stimulate the immune function of the gastrointestinal tract, transform or excrete toxic substances, protect the host against invasion by pathogenic species, and modulate gut motility (28, 36). At the same time, recent research incriminates a dysfunctional cross-talk between the host and the microbiota in the pathogenesis of a growing number of disorders, such as irritable bowel syndrome, inflammatory bowel disease, allergic diseases, and gastrointestinal cancer (28).While the intestine in a newborn contains no microbes, immediately after birth the intestine of the infant is colonized by enterobacteria and enterococci. Gradual changes in microbiota composition occur during childhood, with a general reduction in the number of aerobes and facultative anaerobes and an increase in the populations of obligate anaerobic species (27). It is considered that by 2 years of age the microbiota resembles that of an adult, which is dominated in health and disease by species from only four phyla, Firmicutes (predominantly Clostridia; 50 to 70% total bacterial numbers), Bacteroidetes (10 to 30%), Proteobacteria (up to 10%), and Actinobacteria (up to 5%), with 90% believed to be obligate anaerobes (4, 10, 11, 22).Traditionally, microorganisms were detected in intestinal samples and feces by microscopic, biochemical, or physiological methods, or by culturing on selective nutrient media. However, since most intestinal microbiota species are obligate anaerobes, their isolation and culturing are difficult (21, 38, 42). In recent years, new methods based on the use of microarray technology have been utilized for the characterization of complex microbial communities (18, 32, 41, 43, 47). Microarrays represent an excellent choice for the high-throughput analysis of bacterial populations, because many different probes can be placed on one slide or synthesized on one chip, and samples thus can be tested for the presence of many different species simultaneously. Environmental and clinical samples can be interrogated directly, circumventing any need for culturing, and thus nonculturable species can be reliably detected.Several types of microarrays have been used to date to characterize the composition of microbial communities (47). Community genome arrays are constructed using whole genomic DNA (gDNA) isolated from pure culture strains (46). Functional gene arrays contain genes encoding key enzymes that are involved in various biochemical processes, and they are useful for monitoring physiological changes in microbial communities (14, 45). Phylogenetic oligonucleotide arrays contain probes derived from rRNA sequence information and are ideally suited for the analysis of microbial community composition structure and variance. Different types of phylogenetic arrays have been designed for these purposes (26, 30, 31).A number of projects performed in the last several years focused on sampling the diversity of human microbiota by the cloning and subsequent sequencing of the 16S rRNA genes isolated from gastrointestinal and fecal samples (5, 10, 13, 23, 38). In this project, we have designed, developed, and validated a custom microbiota microarray containing 16S rRNA genes probes to 775 different microbial phylospecies of human intestinal bacteria. We also have tested the applicability of this array to profiling the microbiota populations in fecal samples isolated from two adult and two child volunteers. 相似文献
3.
Jean-Fred Fontaine Delphine Mirebeau-Prunier Mahatsangy Raharijaona Brigitte Franc Stephane Triau Patrice Rodien Olivier Go?au-Brissonniére Lucie Karayan-Tapon Marielle Mello Rémi Houlgatte Yves Malthiery Frédérique Savagner 《PloS one》2009,4(10)
Background
Genetic markers for thyroid cancers identified by microarray analysis have offered limited predictive accuracy so far because of the few classes of thyroid lesions usually taken into account. To improve diagnostic relevance, we have simultaneously analyzed microarray data from six public datasets covering a total of 347 thyroid tissue samples representing 12 histological classes of follicular lesions and normal thyroid tissue. Our own dataset, containing about half the thyroid tissue samples, included all categories of thyroid lesions.Methodology/Principal Findings
Classifier predictions were strongly affected by similarities between classes and by the number of classes in the training sets. In each dataset, sample prediction was improved by separating the samples into three groups according to class similarities. The cross-validation of differential genes revealed four clusters with functional enrichments. The analysis of six of these genes (APOD, APOE, CLGN, CRABP1, SDHA and TIMP1) in 49 new samples showed consistent gene and protein profiles with the class similarities observed. Focusing on four subclasses of follicular tumor, we explored the diagnostic potential of 12 selected markers (CASP10, CDH16, CLGN, CRABP1, HMGB2, ALPL2, ADAMTS2, CABIN1, ALDH1A3, USP13, NR2F2, KRTHB5) by real-time quantitative RT-PCR on 32 other new samples. The gene expression profiles of follicular tumors were examined with reference to the mutational status of the Pax8-PPARγ, TSHR, GNAS and NRAS genes.Conclusion/Significance
We show that diagnostic tools defined on the basis of microarray data are more relevant when a large number of samples and tissue classes are used. Taking into account the relationships between the thyroid tumor pathologies, together with the main biological functions and pathways involved, improved the diagnostic accuracy of the samples. Our approach was particularly relevant for the classification of microfollicular adenomas. 相似文献4.
5.
摘要 目的:探讨吸烟对种植体周围炎患者龈下菌群分布、龈沟液炎症因子白细胞介素-4(IL-4)、白细胞介素-5(IL-5)、白细胞介素-6(IL-6)、白细胞介素-8(IL-8)、白细胞介素-17(IL-17)和核因子-κB受体活化因子配体/骨保护素(RANKL/OPG)比值的影响。方法:选择2019年3月至2022年3月首都医科大学附属北京友谊医院口腔科收治的种植体周围炎患者99例(共151颗种植体),根据是否吸烟分为吸烟组(45例,68颗种植体)和非吸烟组(54例,83颗种植体),比较两组患者种植体牙周改良菌斑指数(mPLI)、牙龈出血指数(GBI)、种植体周围探诊深度(PPD),采集两组龈下菌斑进行细胞培养并进行菌种鉴定,分析两组龈下菌群分布情况,比较两组龈沟液中IL-4、IL-5、IL-6、IL-8、IL-17、RANKL/OPG比值。结果:吸烟组mPLI、GBI、PPD高于不吸烟组(P<0.05)。吸烟组厌氧菌检出率高于非吸烟组(P<0.05),有益菌检出率低于非吸烟组(P<0.05),两组需氧菌检出率比较差异无统计学意义(P>0.05)。吸烟组龈沟液IL-4、IL-5、IL-6、IL-8、IL-17水平均高于非吸烟组(P<0.05)。吸烟组龈沟液RANKL水平、RANKL/OPG比值高于非吸烟组(P<0.05),OPG水平低于非吸烟组(P<0.05)。结论:吸烟可导致种植体周围炎患者龈下厌氧菌增加,加重炎症反应,增加牙槽骨吸收风险。 相似文献
6.
Bill Vestergaard ?ukasz Krych Leif R Lund Bettina P J?rgensen Lars Hansen Henrik E Jensen Dennis S Nielsen Axel K Hansen 《Comparative medicine》2015,65(5):382-397
Plasminogen-deficient (FVB/NPan-plgtm1Jld, plgtm1Jld) mice, which are widely used as a wound-healing model, are prone to spontaneous rectal prolapses. The aims of this study were 1) to evaluate the fecal microbiome of plgtm1Jld mice for features that might contribute to the development of rectal prolapses and colonic inflammation and 2) to assess the relevance of the inflammatory phenotype to the variability in wound healing in this model. The plgtm1Jld mice exhibited delayed wound healing, and they could be divided into 3 distinct groups that differed according to the time until wound closure. Colonic lesions in plgtm1Jld mice, which were characterized by necrotizing ulcerations and cystically dilated glands, were restricted to the intermediate and distal parts of the colon. The cytokine profile was indicative of chronic tissue damage, but the genetic modification did not change the composition of the gut microbiota, and none of the clinical or biochemical parameters correlated with the gut microbiota composition.Several studies using plasminogen-deficient (plgtmJld) mice have demonstrated that plasminogen, the proenzyme of plasmin, can degrade fibrin and other extracellular matrix proteins.44 Plasminogen is essential for wound healing in skin,40 which begins with inflammation, followed by epithelial proliferation, and thereafter tissue remodeling. Because the migrating keratinocytes of plgtm1Jld mice have a decreased ability to dissect the platelet-rich fibrin matrix, they exhibit severely impaired wound healing.15,40 In addition, plasmin mediates various pathologic processes, such as tumor growth and cancer metastasis,8 and therapeutic intervention related to plasminogen has shown encouraging results in experimental tumors.31 Therefore, one important application of these mice is the induction of wound healing to study basic mechanistic functions of plasmin, such as the clearance of the extracellular matrix and activation of tumor growth factors.31Spontaneous rectal prolapse and colonic ulceration in plgtm1Jld mice compromise studies using these mice by leading to loss of body weight (wasting disease)6 and wellbeing-related, early study termination.6 Like other inflammatory conditions, rectal prolapse and chronic colonic inflammation might affect wound healing and contribute to the wide interindividual variation in the wound-healing processes of plgtm1Jld mice.28,40The development of rectal prolapses and colonic ulcerations in plgtm1Jld mice reportedly is due to vascular occlusion.6 This pathologic condition is alleviated by superimposing fibrinogen deficiency on plasminogen deficiency, suggesting that fibrin is the primary substrate for plasmin.7,15 The wide variation in effective tissue remodeling during the wound healing of plasminogen-deficient mice remains unexplained.Wound healing depends to a large extent on cells and factors of the immune system.3,53 We previously have shown that disease development in mouse models for various inflammatory conditions, including type 1 diabetes,17-19,35 type 2 diabetes,4,13,42 atopic dermatitis30 and inflammatory bowel disease,20 is influenced by the composition of gut microbiota. Therefore, gut inflammation can be presumed to interfere with wound healing and thus may increase the uncontrolled interindividual variation in these models. In addition, gut inflammatory conditions in humans, such as inflammatory bowel disease43 and irritable bowel syndrome,23 are linked to dysbiosis in the intestine. In mice deficient in IL10 or IL2 and in rats carrying HLA-B27,52 inflammatory bowel disease can be alleviated by germ-free status10,49,52 or ampicillin.20 However, the possible role of the gut microbiome in rectal prolapse, colonic lesions, and wound healing in plasminogen-deficient mice has not previously been assessed.The aims of the current study were 1) to evaluate the fecal microbiome of plgtm1Jld mice and their unaffected WT littermates for features that might contribute to their rectal prolapse and colonic inflammation phenotypes and 2) to assess the relevance of the inflammatory phenotype to the variability in wound healing in this model. 相似文献
7.
Focused Microarray Analysis of Peripheral Mononuclear Blood Cells from Churg-Strauss Syndrome Patients 总被引:1,自引:0,他引:1
Tougan Takahiro; Onda Hiroaki; Okuzaki Daisuke; Kobayashi Shigeto; Hashimoto Hiroshi; Nojima Hiroshi 《DNA research》2008,15(2):103-114
DNA diagnostics are useful but are hampered by difficult ethicalissues. Moreover, it cannot provide enough information on theenvironmental factors that are important for pathogenesis ofcertain diseases. However, this is not a problem for RNA diagnostics,which evaluate the expression of the gene in question. We herereport a novel RNA diagnostics tool that can be employed withperipheral blood mononuclear cells (PBMCs). To establish thistool, we identified 290 genes that are highly expressed in normalPBMCs but not in TIG-1, a normal human fibroblast cell. Thesegenes were entitled PREP after predominantly expressed in PBMCand included 50 uncharacterized genes. We then conducted PREPgene-focused microarray analysis on PBMCs from seven cases ofChurg–Strauss syndrome (CSS), which is a small-vesselnecrotizing vasculitis. We found that PREP135 (coactosin-likeprotein), PREP77 (prosaposin), PREP191 (cathepsin D), PREP234(c-fgr), and PREP136 (lysozyme) were very highly up-regulatedin all seven CSS patients. Another 28 genes were also up-regulated,albeit more moderately, and three were down-regulated in allCSS patients. The nature of these up- and down-regulated genessuggest that the immune systems of the patients are activatedin response to invading microorganisms. These observations indicatethat focused microarray analysis of PBMCs may be a practical,useful, and low-cost bedside diagnostics tool. 相似文献
8.
The analysis of differential gene expression in microarray experiments requires the development of adequate statistical tools. This article describes a simple statistical method for detecting differential expression between two conditions with a low number of replicates. When comparing two group means using a traditional t-test, gene-specific variance estimates are unstable and can lead to wrong conclusions. We construct a likelihood ratio test while modelling these variances hierarchically across all genes, and express it as a t-test statistic. By borrowing information across genes we can take advantage of their large numbers, and still yield a gene-specific test statistic. We show that this hierarchical t-test is more powerful than its traditional version and generates less false positives in a simulation study, especially with small sample sizes. This approach can be extended to cases where there are more than two groups. 相似文献
9.
Yang Song Shashank Garg Mohit Girotra Cynthia Maddox Erik C. von Rosenvinge Anand Dutta Sudhir Dutta W. Florian Fricke 《PloS one》2013,8(11)
Clostridium difficile causes antibiotic-associated diarrhea and pseudomembraneous colitis and is responsible for a large and increasing fraction of hospital-acquired infections. Fecal microbiota transplantation (FMT) is an alternate treatment option for recurrent C. difficile infection (RCDI) refractory to antibiotic therapy. It has recently been discussed favorably in the clinical and scientific communities and is receiving increasing public attention. However, short- and long-term health consequences of FMT remain a concern, as the effects of the transplanted microbiota on the patient remain unknown. To shed light on microbial events associated with RCDI and treatment by FMT, we performed fecal microbiota analysis by 16S rRNA gene amplicon pyrosequencing of 14 pairs of healthy donors and RCDI patients treated successfully by FMT. Post-FMT patient and healthy donor samples collected up to one year after FMT were studied longitudinally, including one post-FMT patient with antibiotic-associated relapse three months after FMT. This analysis allowed us not only to confirm prior reports that RCDI is associated with reduced diversity and compositional changes in the fecal microbiota, but also to characterize previously undocumented post-FMT microbiota dynamics. Members of the Streptococcaceae, Enterococcaceae, or Enterobacteriaceae were significantly increased and putative butyrate producers, such as Lachnospiraceae and Ruminococcaceae were significantly reduced in samples from RCDI patients before FMT as compared to post-FMT patient and healthy donor samples. RCDI patient samples showed more case-specific variations than post-FMT patient and healthy donor samples. However, none of the bacterial groups were invariably associated with RCDI or successful treatment by FMT. Overall microbiota compositions in post-FMT patients, specifically abundances of the above-mentioned Firmicutes, continued to change for at least 16 weeks after FMT, suggesting that full microbiota recovery from RCDI may take much longer than expected based on the disappearance of diarrheal symptoms immediately after FMT. 相似文献
10.
Junko Obata Toru Takeshita Yukie Shibata Wataru Yamanaka Masako Unemori Akifumi Akamine Yoshihisa Yamashita 《PloS one》2014,9(8)
While mutans streptococci have long been assumed to be the specific pathogen responsible for human dental caries, the concept of a complex dental caries-associated microbiota has received significant attention in recent years. Molecular analyses revealed the complexity of the microbiota with the predominance of Lactobacillus and Prevotella in carious dentine lesions. However, characterization of the dentin caries-associated microbiota has not been extensively explored in different ethnicities and races. In the present study, the bacterial communities in the carious dentin of Japanese subjects were analyzed comprehensively with molecular approaches using the16S rRNA gene. Carious dentin lesion samples were collected from 32 subjects aged 4–76 years, and the 16S rRNA genes, amplified from the extracted DNA with universal primers, were sequenced with a pyrosequencer. The bacterial composition was classified into clusters I, II, and III according to the relative abundance (high, middle, low) of Lactobacillus. The bacterial composition in cluster II was composed of relatively high proportions of Olsenella and Propionibacterium or subdominated by heterogeneous genera. The bacterial communities in cluster III were characterized by the predominance of Atopobium, Prevotella, or Propionibacterium with Streptococcus or Actinomyces. Some samples in clusters II and III, mainly related to Atopobium and Propionibacterium, were novel combinations of microbiota in carious dentin lesions and may be characteristic of the Japanese population. Clone library analysis revealed that Atopobium sp. HOT-416 and P. acidifaciens were specific species associated with dentinal caries among these genera in a Japanese population. We summarized the bacterial composition of dentinal carious lesions in a Japanese population using next-generation sequencing and found typical Japanese types with Atopobium or Propionibacterium predominating. 相似文献
11.
Na Wu Xi Yang Ruifen Zhang Jun Li Xue Xiao Yongfei Hu Yanfei Chen Fengling Yang Na Lu Zhiyun Wang Chunguang Luan Yulan Liu Baohong Wang Charlie Xiang Yuezhu Wang Fangqing Zhao George F. Gao Shengyue Wang Lanjuan Li Haizeng Zhang Baoli Zhu 《Microbial ecology》2013,66(2):462-470
The human gut microbiota is a complex system that is essential to the health of the host. Increasing evidence suggests that the gut microbiota may play an important role in the pathogenesis of colorectal cancer (CRC). In this study, we used pyrosequencing of the 16S rRNA gene V3 region to characterize the fecal microbiota of 19 patients with CRC and 20 healthy control subjects. The results revealed striking differences in fecal microbial population patterns between these two groups. Partial least-squares discriminant analysis showed that 17 phylotypes closely related to Bacteroides were enriched in the gut microbiota of CRC patients, whereas nine operational taxonomic units, represented by the butyrate-producing genera Faecalibacterium and Roseburia, were significantly less abundant. A positive correlation was observed between the abundance of Bacteroides species and CRC disease status (R?=?0.462, P?=?0.046?<?0.5). In addition, 16 genera were significantly more abundant in CRC samples than in controls, including potentially pathogenic Fusobacterium and Campylobacter species at genus level. The dysbiosis of fecal microbiota, characterized by the enrichment of potential pathogens and the decrease in butyrate-producing members, may therefore represent a specific microbial signature of CRC. A greater understanding of the dynamics of the fecal microbiota may assist in the development of novel fecal microbiome-related diagnostic tools for CRC. 相似文献
12.
13.
The study provides molecular analyses of fecal microbiota of diarrhea patients infected with four different types of viruses.
Fecal specimens from 52 patients with viral diarrhea (13 each of adenovirus, norovirus, rotavirus, and astrovirus) and six
healthy individuals were collected and etiological viral agent was confirmed by enzyme immunoassay and specific PCR. To assess
the changes in microbial diversity in patients with viral diarrhea, DNA from stool were extracted and characterized by PCR-denaturing
gradient gel electrophoresis (DGGE) with universal primers specific for the V3 region of 16S rRNA gene. The strongest bands
of the DGGE profiling were excised and sequenced to identify the dominant groups. Bacteroides vulgatus, Bifidobacterium, and Lactobacillus genera were also enumerated by real time PCR. The results revealed that bacterial diversity and similarity in feces from
viral diarrhea groups were significantly lower (mean H′/
H max¢ H_{ \max }^{\prime } 0.89–0.94, 29–43, respectively) as compared with those of healthy individuals (mean H′/
H max¢ H_{ \max }^{\prime } 1.36, 59, respectively). Sequencing of dominant bands affirmed that diarrhea groups were mainly comprised of phylum Firmicutes,
such as genera Enterococcus, Peptostreptococcaceae incertae sedi, Streptococcus, Weissella, and Clostridium, and opportunistically pathogenic genus Shigella, while dominant group in healthy individuals was phylum Bacteroidetes. Copy number of Bacteroides vulgatus, Bifidobacterium, and Lactobacillus genera was also reduced significantly in viral diarrhea groups as compared to healthy group. It is concluded that opportunistic
pathogens increases, while other species of commensal microbiota decrease significantly in the viral diarrhea patients and
dysbacteriosis is dependent on type of virus infection. 相似文献
14.
Michael J. Cox Martin Allgaier Byron Taylor Marshall S. Baek Yvonne J. Huang Rebecca A. Daly Ulas Karaoz Gary L. Andersen Ronald Brown Kei E. Fujimura Brian Wu Diem Tran Jonathan Koff Mary Ellen Kleinhenz Dennis Nielson Eoin L. Brodie Susan V. Lynch 《PloS one》2010,5(6)
Bacterial communities in the airways of cystic fibrosis (CF) patients are, as in other ecological niches, influenced by autogenic and allogenic factors. However, our understanding of microbial colonization in younger versus older CF airways and the association with pulmonary function is rudimentary at best. Using a phylogenetic microarray, we examine the airway microbiota in age stratified CF patients ranging from neonates (9 months) to adults (72 years). From a cohort of clinically stable patients, we demonstrate that older CF patients who exhibit poorer pulmonary function possess more uneven, phylogenetically-clustered airway communities, compared to younger patients. Using longitudinal samples collected form a subset of these patients a pattern of initial bacterial community diversification was observed in younger patients compared with a progressive loss of diversity over time in older patients. We describe in detail the distinct bacterial community profiles associated with young and old CF patients with a particular focus on the differences between respective “early” and “late” colonizing organisms. Finally we assess the influence of Cystic Fibrosis Transmembrane Regulator (CFTR) mutation on bacterial abundance and identify genotype-specific communities involving members of the Pseudomonadaceae, Xanthomonadaceae, Moraxellaceae and Enterobacteriaceae amongst others. Data presented here provides insights into the CF airway microbiota, including initial diversification events in younger patients and establishment of specialized communities of pathogens associated with poor pulmonary function in older patient populations. 相似文献
15.
16.
基因芯片数据分析与处理 总被引:7,自引:1,他引:6
基因芯片技术在基因表达分析等应用过程中产生大量的数据,如何处理和分析这些数据并从中提取出有价值的生物学信息是一个极为重要的问题.其过程包括原始数据的获取及处理、标准化数据的统计学分析、以及数据的存储和交流等. 相似文献
17.
18.
In this protocol, gene expression in yeast (Saccharomyces cerevisiae) is changed after exposure to oxidative stress induced by the addition of hydrogen peroxide (H2O2), an oxidizing agent. In the experiment, yeast is grown for 48 hours in 1/2X YPD broth containing 3X glucose. The culture is split into a control and treated group. The experiment culture is treated with 0.5 mM H2O2 in Hanks Buffered Saline (HBSS) for 1 hour. The control culture is treated with HBSS only. Total RNA is extracted from both cultures and is converted to a biotin-labeled cRNA product through a multistep process. The final synthesis product is taken back to the UVM Microarray Core Facility and hybridized to the Affymetrix yeast GeneChips. The resulting gene expression data are uploaded into bioinformatics data analysis software.Download video file.(79M, mov) 相似文献
19.
Vladimir Chizhikov Avraham Rasooly Konstantin Chumakov Dan D. Levy 《Applied microbiology》2001,67(7):3258-3263
Hybridization with oligonucleotide microchips (microarrays) was used for discrimination among strains of Escherichia coli and other pathogenic enteric bacteria harboring various virulence factors. Oligonucleotide microchips are miniature arrays of gene-specific oligonucleotide probes immobilized on a glass surface. The combination of this technique with the amplification of genetic material by PCR is a powerful tool for the detection of and simultaneous discrimination among food-borne human pathogens. The presence of six genes (eaeA, slt-I, slt-II, fliC, rfbE, and ipaH) encoding bacterial antigenic determinants and virulence factors of bacterial strains was monitored by multiplex PCR followed by hybridization of the denatured PCR product to the gene-specific oligonucleotides on the microchip. The assay was able to detect these virulence factors in 15 Salmonella, Shigella, and E. coli strains. The results of the chip analysis were confirmed by hybridization of radiolabeled gene-specific probes to genomic DNA from bacterial colonies. In contrast, gel electrophoretic analysis of the multiplex PCR products used for the microarray analysis produced ambiguous results due to the presence of unexpected and uncharacterized bands. Our results suggest that microarray analysis of microbial virulence factors might be very useful for automated identification and characterization of bacterial pathogens. 相似文献
20.
Priscila Ferreira de Sousa Moreira Katharina Gangl Francisco de Assis Machado Vieira Leandro Hideki Ynoue Birgit Linhart Sabine Flicker Helmut Fiebig Ines Swoboda Margarete Focke-Tejkl Ernesto Akio Taketomi Rudolf Valenta Verena Niederberger 《PloS one》2015,10(6)