首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Patients with familial pulmonary arterial hypertension inherit heterozygous mutations of the type 2 bone morphogenetic protein (BMP) receptor BMPR2. To explore the cellular mechanisms of this disease, we evaluated the pulmonary vascular responses to chronic hypoxia in mice carrying heterozygous hypomorphic Bmpr2 mutations (Bmpr2 delta Ex2/+). These mice develop more severe pulmonary hypertension after prolonged exposure to hypoxia without an associated increase in pulmonary vascular remodeling or proliferation compared with wild-type mice. This is associated with defective endothelial-dependent vasodilatation and enhanced vasoconstriction in isolated intrapulmonary artery preparations. In addition, there is a selective decrease in hypoxia-induced, BMP-dependent, endothelial nitric oxide synthase expression and Smad signaling in the intact lungs and in cultured pulmonary microvascular endothelial cells from Bmpr2 delta Ex2/+ mutant mice. These findings indicate that the pulmonary endothelium is a target of abnormal BMP signaling in Bmpr2 delta Ex2/+ mutant mice and suggest that endothelial dysfunction contributes to their increased susceptibility to hypoxic pulmonary hypertension.  相似文献   

2.
Hereditary pulmonary arterial hypertension (HPAH) is a rare, fatal disease of the pulmonary vasculature. The majority of HPAH patients inherit mutations in the bone morphogenetic protein type 2 receptor gene (BMPR2), but how these promote pulmonary vascular disease is unclear. HPAH patients have features of pulmonary endothelial cell (PEC) dysfunction including increased vascular permeability and perivascular inflammation associated with decreased PEC barrier function. Recently, frameshift mutations in the caveolar structural protein gene Caveolin-1 (CAV-1) were identified in two patients with non-BMPR2-associated HPAH. Because caveolae regulate endothelial function and vascular permeability, we hypothesized that defects in caveolar function might be a common mechanism by which BMPR2 mutations promote pulmonary vascular disease. To explore this, we isolated PECs from mice carrying heterozygous null Bmpr2 mutations (Bmpr2+/−) similar to those found in the majority of HPAH patients. We show that Bmpr2+/− PECs have increased numbers and intracellular localization of caveolae and caveolar structural proteins CAV-1 and Cavin-1 and that these defects are reversed after blocking endocytosis with dynasore. SRC kinase is also constitutively activated in Bmpr2+/− PECs, and localization of CAV-1 to the plasma membrane is restored after treating Bmpr2+/− PECs with the SRC kinase inhibitor 3-(4-chlorophenyl)-1-(1,1-dimethylethyl)-1H-pyrazolo[3,4-d]pyrimidin-4-amine (PP2). Late outgrowth endothelial progenitor cells isolated from HPAH patients show similar increased activation of SRC kinase. Moreover, Bmpr2+/− PECs have impaired endothelial barrier function, and barrier function is restored after treatment with PP2. These data suggest that heterozygous null BMPR2 mutations promote SRC-dependent caveolar trafficking defects in PECs and that this may contribute to pulmonary endothelial barrier dysfunction in HPAH patients.  相似文献   

3.
4.
Bone morphogenetic protein (BMP) ligands signal by binding the BMP type II receptor (BMPR2) or the activin type II receptors (ActRIIa and ActRIIb) in conjunction with type I receptors to activate SMADs 1, 5, and 8, as well as members of the mitogen-activated protein kinase family. Loss-of-function mutations in Bmpr2 have been implicated in tumorigenesis and in the etiology of primary pulmonary hypertension. Because several different type II receptors are known to recognize BMP ligands, the specific contribution of BMPR2 to BMP signaling is not defined. Here we report that the ablation of Bmpr2 in pulmonary artery smooth muscle cells, using an ex vivo conditional knock-out (Cre-lox) approach, as well as small interfering RNA specific for Bmpr2, does not abolish BMP signaling. Disruption of Bmpr2 leads to diminished signaling by BMP2 and BMP4 and augmented signaling by BMP6 and BMP7. Using small interfering RNAs to inhibit the expression of other BMP receptors, we found that wild-type cells transduce BMP signals via BMPR2, whereas BMPR2-deficient cells transduce BMP signals via ActRIIa in conjunction with a set of type I receptors distinct from those utilized by BMPR2. These findings suggest that disruption of Bmpr2 leads to the net gain of signaling by some, but not all, BMP ligands via the activation of ActRIIa.  相似文献   

5.
More than 200 heterozygous mutations in the type 2 BMP receptor gene, BMPR2, have been identified in patients with Heritable Pulmonary Arterial Hypertension (HPAH). More severe clinical outcomes occur in patients with BMPR2 mutations by-passing nonsense-mediated mRNA decay (NMD negative mutations). These comprise 40% of HPAH mutations and are predicted to express BMPR2 mutant products. However expression of endogenous NMD negative BMPR2 mutant products and their effect on protein trafficking and signaling function have never been described. Here, we characterize the expression and trafficking of an HPAH-associated NMD negative BMPR2 mutation that results in an in-frame deletion of BMPR2 EXON2 (BMPR2ΔEx2) in HPAH patient-derived lymphocytes and in pulmonary endothelial cells (PECs) from mice carrying the same in-frame deletion of Exon 2 (Bmpr2 ΔEx2/+ mice). The endogenous BMPR2ΔEx2 mutant product does not reach the cell surface and is retained in the endoplasmic reticulum. Moreover, chemical chaperones 4-PBA and TUDCA partially restore cell surface expression of Bmpr2ΔEx2 in PECs, suggesting that the mutant product is mis-folded. We also show that PECs from Bmpr2 ΔEx2/+ mice have defects in the BMP-induced Smad1/5/8 and Id1 signaling axis, and that addition of chemical chaperones restores expression of the Smad1/5/8 target Id1. These data indicate that the endogenous NMD negative BMPRΔEx2 mutant product is expressed but has a folding defect resulting in ER retention. Partial correction of this folding defect and restoration of defective BMP signaling using chemical chaperones suggests that protein-folding agents could be used therapeutically in patients with these NMD negative BMPR2 mutations.  相似文献   

6.
7.
The heritable form of pulmonary arterial hypertension (PAH) is typically caused by a mutation in bone morphogenic protein receptor type 2 (BMPR2), and mice expressing Bmpr2 mutations develop PAH with features similar to human disease. BMPR2 is known to interact with the cytoskeleton, and human array studies in PAH patients confirm alterations in cytoskeletal pathways. The goal of this study was to evaluate cytoskeletal defects in BMPR2-associated PAH. Expression arrays on our Bmpr2 mutant mouse lungs revealed cytoskeletal defects as a prominent molecular consequence of universal expression of a Bmpr2 mutation (Rosa26-Bmpr2(R899X)). Pulmonary microvascular endothelial cells cultured from these mice have histological and functional cytoskeletal defects. Stable transfection of different BMPR2 mutations into pulmonary microvascular endothelial cells revealed that cytoskeletal defects are common to multiple BMPR2 mutations and are associated with activation of the Rho GTPase, Rac1. Rac1 defects are corrected in cell culture and in vivo through administration of exogenous recombinant human angiotensin-converting enzyme 2 (rhACE2). rhACE2 reverses 77% of gene expression changes in Rosa26-Bmpr2(R899X) transgenic mice, in particular, correcting defects in cytoskeletal function. Administration of rhACE2 to Rosa26-Bmpr2(R899X) mice with established PAH normalizes pulmonary pressures. Together, these findings suggest that cytoskeletal function is central to the development of BMPR2-associated PAH and that intervention against cytoskeletal defects may reverse established disease.  相似文献   

8.
9.
Loss-of-function mutations in the bone morphogenetic protein receptor type 2 (BMPR2) gene have been identified in patients with heritable pulmonary arterial hypertension (PAH); however, disease penetrance is low, suggesting additional factors play a role. Inflammation is associated with PAH and vascular remodeling, but whether allergic inflammation triggers vascular remodeling in individuals with BMPR2 mutations is unknown. Our goal was to determine if chronic allergic inflammation would induce more severe vascular remodeling and PAH in mice with reduced BMPR-II signaling. Groups of Bmpr2 hypomorph and wild-type (WT) Balb/c/Byj mice were exposed to house dust mite (HDM) allergen, intranasally for 7 or 20 weeks to generate a model of chronic inflammation. HDM exposure induced similar inflammatory cell counts in all groups compared to controls. Muscularization of pulmonary arterioles and arterial wall thickness were increased after 7 weeks HDM, more severe at 20 weeks, but similar in both groups. Right ventricular systolic pressure (RVSP) was measured by direct cardiac catheterization to assess PAH. RVSP was similarly increased in both HDM exposed groups after 20 weeks compared to controls, but not after 7 weeks. Airway hyperreactivity (AHR) to methacholine was also assessed and interestingly, at 20 weeks, was more severe in HDM exposed Bmpr2 hypomorph mice versus WT. We conclude that chronic allergic inflammation caused PAH and while the severity was mild and similar between WT and Bmpr2 hypomorph mice, AHR was enhanced with reduced BMPR-II signaling. These data suggest that vascular remodeling and PAH resulting from chronic allergic inflammation occurs independently of BMPR-II pathway alterations.  相似文献   

10.
The majority of familial pulmonary arterial hypertension (PAH) cases are caused by mutations in the type 2 bone morphogenetic protein receptor (BMPR2). However, less than one-half of BMPR2 mutation carriers develop PAH, suggesting that the most important function of BMPR2 mutation is to cause susceptibility to a "second hit." There is substantial evidence from the literature implicating dysregulated inflammation, in particular the cytokine IL-6, in the development of PAH. We thus hypothesized that the BMP pathway regulates IL-6 in pulmonary tissues and conversely that IL-6 regulates the BMP pathway. We tested this in vivo using transgenic mice expressing an inducible dominant negative BMPR2 in smooth muscle, using mice injected with an IL-6-expressing virus, and in vitro using small interfering RNA (siRNA) to BMPR2 in human pulmonary artery smooth muscle cells (PA SMC). Consistent with our hypothesis, we found upregulation of IL-6 in both the transgenic mice and in cultured PA SMC with siRNA to BMPR2; this could be abolished with p38(MAPK) inhibitors. We also found that IL-6 in vivo caused a twofold increase in expression of the BMP signaling target Id1 and caused increased BMP activity in a luciferase-reporter assay in PA SMC. Thus we have shown both in vitro and in vivo a complete negative feedback loop between IL-6 and BMP, suggesting that an important consequence of BMPR2 mutations may be poor regulation of cytokines and thus vulnerability to an inflammatory second hit.  相似文献   

11.
Interactions between ectodermal and mesenchymal extracellular signaling pathways regulate hair follicle (HF) morphogenesis and hair cycling. Bone morphogenetic proteins (BMPs) are known to be important in hair follicle development by affecting the local cell fate modulation. To study the role of BMP signaling in the HF, we disrupted Bmpr1a, which encodes the BMP receptor type IA (BMPR1A) in an HF cell-specific manner, using the Cre/loxP system. We found that the differentiation of inner root sheath, but not outer root sheath, was severely impaired in mutant mice. The number of HFs was reduced in the dermis and subcutaneous tissue, and cycling epithelial cells were reduced in mutant mice HFs. Our results strongly suggest that BMPR1A signaling is essential for inner root sheath differentiation and is indispensable for HF renewal in adult skin.  相似文献   

12.
Bone morphogenetic proteins (BMPs) are critically involved in early development and cell differentiation. In humans, dysfunction of the bone morphogenetic protein type II receptor (BMPR-II) is associated with pulmonary arterial hypertension (PAH) and neoplasia. The ability of Kaposi sarcoma-associated herpesvirus (KSHV), the etiologic agent of Kaposi sarcoma and primary effusion lymphoma, to down-regulate cell surface receptor expression is well documented. Here we show that KSHV infection reduces cell surface BMPR-II. We propose that this occurs through the expression of the viral lytic gene, K5, a ubiquitin E3 ligase. Ectopic expression of K5 leads to BMPR-II ubiquitination and lysosomal degradation with a consequent decrease in BMP signaling. The down-regulation by K5 is dependent on both its RING domain and a membrane-proximal lysine in the cytoplasmic domain of BMPR-II. We demonstrate that expression of BMPR-II protein is constitutively regulated by lysosomal degradation in vascular cells and provide preliminary evidence for the involvement of the mammalian E3 ligase, Itch, in the constitutive degradation of BMPR-II. Disruption of BMP signaling may therefore play a role in the pathobiology of diseases caused by KSHV infection, as well as KSHV-associated tumorigenesis and vascular disease.  相似文献   

13.
14.
Bone morphogenetic proteins (BMPs) function during various aspects of embryonic development including skeletogenesis. However, their biological functions after birth are less understood. To investigate the role of BMPs during bone remodeling, we generated a postnatal osteoblast-specific disruption of Bmpr1a that encodes the type IA receptor for BMPs in mice. Mutant mice were smaller than controls up to 6 months after birth. Irregular calcification and low bone mass were observed, but there were normal numbers of osteoblasts. The ability of the mutant osteoblasts to form mineralized nodules in culture was severely reduced. Interestingly, bone mass was increased in aged mutant mice due to reduced bone resorption evidenced by reduced bone turnover. The mutant mice lost more bone after ovariectomy likely resulting from decreased osteoblast function which could not overcome ovariectomy-induced bone resorption. In organ culture of bones from aged mice, ablation of the Bmpr1a gene by adenoviral Cre recombinase abolished the stimulatory effects of BMP4 on the expression of lysosomal enzymes essential for osteoclastic bone resorption. These results demonstrate essential and age-dependent roles for BMP signaling mediated by BMPRIA (a type IA receptor for BMP) in osteoblasts for bone remodeling.  相似文献   

15.
Bone quantity and bone quality are important factors in determining the properties and the mechanical functions of bone. This study examined the effects of disrupting bone morphogenetic protein (BMP) signaling through BMP receptors on bone quantity and bone quality. More specifically, we disrupted two BMP receptors, Acvr1 and Bmpr1a, respectively, in Osterix-expressing osteogenic progenitor cells in mice. We examined the structural changes to the femora from 3-month old male and female conditional knockout (cKO) mice using micro-computed tomography (micro-CT) and histology, as well as compositional changes to both cortical and trabecular compartments of bone using Raman spectroscopy. We found that the deletion of Acvr1 and Bmpr1a, respectively, in an osteoblast-specific manner resulted in higher bone mass in the trabecular compartment. Disruption of Bmpr1a resulted in a more significantly increased bone mass in the trabecular compartment. We also found that these cKO mice showed lower mineral-to-matrix ratio, while tissue mineral density was lower in the cortical compartment. Collagen crosslink ratio was higher in both cortical and trabecular compartments of male cKO mice. Our study suggested that BMP signaling in osteoblast mediated by BMP receptors, namely ACVR1 and BMPR1A, is critical in regulating bone quantity and bone quality.  相似文献   

16.
Bone morphogenetic proteins (BMPs) have been implicated in the pathogenesis of familial pulmonary arterial hypertension. The type 2 receptor (BMPR2) is required for recognition of all BMPs. Transgenic mice with a smooth muscle cell-targeted mutation in this receptor (SM22-tet-BMPR2(delx4+)) developed increased pulmonary artery pressure, associated with a modest increase in arterial muscularization, after 8 wk of transgene activation (West J, Fagan K, Steudel W, Fouty B, Lane K, Harral J, Hoedt-Miller M, Tada Y, Ozimek J, Tuder R, and Rodman DM. Circ Res 94: 1109-1114, 2004). In the present study, we show that these transgenic mice developed increased right ventricular pressures after only 1 wk of transgene activation, without significant remodeling of the vasculature. We then tested the hypothesis that the increased pulmonary artery pressure due to loss of BMPR2 signaling was mediated by reduced K(V) channel expression. There was decreased expression of K(V)1.1, K(V)1.5, and K(V)4.3 mRNA isolated from whole lung. Western blot confirmed decreased K(V)1.5 protein in these lungs. Human pulmonary artery smooth muscle cells (PASMC) treated with recombinant BMP2 had increased K(V)1.5 protein and macroscopic K(V) current density, which was blocked by anti-K(V)1.5 antibody. In vivo, nifedipine, a selective L-type Ca(2+) channel blocker, reduced RV systolic pressure in these dominant-negative BMPR2 mice to levels seen in control animals. This suggests that activation of L-type Ca(2+) channels caused by reduced K(V)1.5 mediates increased pulmonary artery pressure in these animals. These studies suggest that BMP regulates K(V) channel expression and that loss of this signaling pathway in PASMC through a mutation in BMPR2 is sufficient to cause pulmonary artery vasoconstriction.  相似文献   

17.
18.
Multiple abnormalities of bone morphogenetic protein (BMPs) signaling are implicated in the process of pulmonary arterial hypertension (PAH). BMP4 plays an important role during the process of pulmonary arterial remodeling and mutant of the principle BMP4 receptor, BMP receptors II (BMPRII), is found to associate with the development of PAH. However, the likely mechanism defining the contribution of BMPRII to BMP4 mediated signaling in pulmonary arterial smooth muscle cells (PASMCs) remains comprehensively unclear. We previously found that enhanced store operated calcium entry (SOCE) and basal intracellular calcium concentration [Ca2+]i were induced by BMP4 via upregulation of TRPC1, 4 and 6 expression in PASMCs, and that BMP4 modulated TRPC channel expression through activating p38MAPK and ERK1/2 signaling pathways. In this study, BMPRII siRNA was used to knockdown BMPRII expression to investigate whether BMP4 upregulates the expression of TRPC and activating Smad1/5/8, ERK1/2 and p38MAPK pathway via BMPRII in distal PASMCs. Our results showed that knockdown of BMPRII: 1) attenuated BMP4 induced activation of P-Smad1/5/8, without altering BMP4 induced P-p38MAPK and P-ERK1/2 activation in PASMCs; 2) did not attenuate the BMP4-induced TRPC1, 4 and 6 expression; 3) did not affect BMP4-enhanced SOCE and basal [Ca2+]i. Thus, we concluded that BMP4 activated Smad1/5/8 pathway is BMPRII-dependent, while the BMP4 – ERK/p-P38 – TRPC – SOCE signaling axis are likely mediated through other receptor rather than BMPRII.  相似文献   

19.
Bone morphogenetic proteins (BMPs) are known to induce ectopic bone. However, it is largely unknown how BMP signaling in osteoblasts directly regulates endogenous bone. This study investigated the mechanism by which BMP signaling through the type IA receptor (BMPR1A) regulates endogenous bone mass using an inducible Cre-loxP system. When BMPR1A in osteoblasts was conditionally disrupted during embryonic bone development, bone mass surprisingly was increased with upregulation of canonical Wnt signaling. Although levels of bone formation markers were modestly reduced, levels of resorption markers representing osteoclastogenesis were severely reduced, resulting in a net increase in bone mass. The reduction of osteoclastogenesis was primarily caused by Bmpr1a-deficiency in osteoblasts, at least through the RANKL-OPG pathway. Sclerostin (Sost) expression was downregulated by about 90% and SOST protein was undetectable in osteoblasts and osteocytes, whereas the Wnt signaling was upregulated. Treatment of Bmpr1a-deficient calvariae with sclerostin repressed the Wnt signaling and restored normal bone morphology. By gain of Smad-dependent BMPR1A signaling in mice, Sost expression was upregulated and osteoclastogenesis was increased. Finally, the Bmpr1a-deficient bone phenotype was rescued by enhancing BMPR1A signaling, with restoration of osteoclastogenesis. These findings demonstrate that BMPR1A signaling in osteoblasts restrain endogenous bone mass directly by upregulating osteoclastogenesis through the RANKL-OPG pathway, or indirectly by downregulating canonical Wnt signaling through sclerostin, a Wnt inhibitor and a bone mass mediator.  相似文献   

20.
Mortality from prostate cancer (PCa) is due to the formation of metastatic disease. Understanding how that process is regulated is therefore critical. We previously demonstrated that endoglin, a type III transforming growth factor β (TGFβ) superfamily receptor, suppresses human PCa cell invasion and metastasis. Endoglin-mediated suppression of invasion was also shown by us to be dependent upon the type I TGFβ receptor, activin receptor-like kinase 2 (ALK2), and the downstream effector, Smad1. In this study we demonstrate for the first time that two type II TGFβ receptors are required for endoglin-mediated suppression of invasion: activin A receptor type IIA (ActRIIA) and bone morphogenetic protein receptor type II (BMPRII). Downstream signaling through these receptors is predominantly mediated by Smad1. ActRIIA stimulates Smad1 activation in a kinase-dependent manner, and this is required for suppression of invasion. In contrast BMPRII regulates Smad1 in a biphasic manner, promoting Smad1 signaling through its kinase domain but suppressing it through its cytoplasmic tail. BMPRII’s Smad1-regulatory effects are dependent upon its expression level. Further, its ability to suppress invasion is independent of either kinase function or tail domain. We demonstrate that ActRIIA and BMPRII physically interact, and that each also interacts with endoglin. The current findings demonstrate that both BMPRII and ActRIIA are necessary for endoglin-mediated suppression of human PCa cell invasion, that they have differential effects on Smad1 signaling, that they make separate contributions to regulation of invasion, and that they functionally and physically interact.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号