首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Bone morphogenetic protein (BMP) receptor kinases are tightly regulated to control development and tissue homeostasis. Mutant receptor kinase domains escape regulation leading to severely degenerative diseases and represent an important therapeutic target. Fibrodysplasia ossificans progressiva (FOP) is a rare but devastating disorder of extraskeletal bone formation. FOP-associated mutations in the BMP receptor ALK2 reduce binding of the inhibitor FKBP12 and promote leaky signaling in the absence of ligand. To establish structural mechanisms of receptor regulation and to address the effects of FOP mutation, we determined the crystal structure of the cytoplasmic domain of ALK2 in complex with the inhibitors FKBP12 and dorsomorphin. FOP mutations break critical interactions that stabilize the inactive state of the kinase, thereby facilitating structural rearrangements that diminish FKBP12 binding and promote the correct positioning of the glycine-serine-rich loop and αC helix for kinase activation. The balance of these effects accounts for the comparable activity of R206H and L196P. Kinase activation in the clinically benign mutant L196P is far weaker than R206H but yields equivalent signals due to the stronger interaction of FKBP12 with R206H. The presented ALK2 structure offers a valuable template for the further design of specific inhibitors of BMP signaling.  相似文献   

2.
Bone morphogenetic proteins (BMPs) are critically involved in early development and cell differentiation. In humans, dysfunction of the bone morphogenetic protein type II receptor (BMPR-II) is associated with pulmonary arterial hypertension (PAH) and neoplasia. The ability of Kaposi sarcoma-associated herpesvirus (KSHV), the etiologic agent of Kaposi sarcoma and primary effusion lymphoma, to down-regulate cell surface receptor expression is well documented. Here we show that KSHV infection reduces cell surface BMPR-II. We propose that this occurs through the expression of the viral lytic gene, K5, a ubiquitin E3 ligase. Ectopic expression of K5 leads to BMPR-II ubiquitination and lysosomal degradation with a consequent decrease in BMP signaling. The down-regulation by K5 is dependent on both its RING domain and a membrane-proximal lysine in the cytoplasmic domain of BMPR-II. We demonstrate that expression of BMPR-II protein is constitutively regulated by lysosomal degradation in vascular cells and provide preliminary evidence for the involvement of the mammalian E3 ligase, Itch, in the constitutive degradation of BMPR-II. Disruption of BMP signaling may therefore play a role in the pathobiology of diseases caused by KSHV infection, as well as KSHV-associated tumorigenesis and vascular disease.  相似文献   

3.
Bone morphogenetic proteins (BMPs) are involved with a wide range of processes including apoptosis, differentiation, and proliferation. Several different pathways such as Smad, p38, and PI3/Akt are activated by BMPs. Signaling is transduced by BMP receptors (BMPRs) of type I and type II that are serine/threonine kinase receptors. BMPRs shuttle between membrane domains such as caveolae enriched with caveolin-1 β-isoform and caveolae of the caveolin-1 α/β-isoforms. It is hypothesized that there are other membrane domains to which the receptors localize. We used immunoprecipitation, Western blots, image cross-correlation spectroscopy, and fluorescence resonance energy transfer to investigate the interaction of BMPRs with proteins in clathrin-coated pits (CCPs). Our data indicate that these domains are associated with at least two of the BMPRs: BRIa and BRII. For the first time, to our knowledge, we showed what we believe are specific interactions between BRIa and BRII with a key component of CCPs, adaptor protein 2. Further, disruption of CCPs resulted in increased BRIa aggregation at the cell surface and activation of the BMP pathway even in the absence of BMP2. Therefore, CCPs seem to function as a negative regulatory membrane domain for BMP pathway activation.  相似文献   

4.
Cell surface heparan sulfate (HS) not only binds several major classes of growth factors but also sometimes potentiates their activities—an effect usually termed “coreception.” A view that coreception is due to the stabilization of growth factor–receptor interactions has emerged primarily from studies of the fibroblast growth factors (FGFs). Recent in vivo studies have strongly suggested that HS also plays an important role in regulating signaling by the bone morphogenetic proteins (BMPs). Here, we provide evidence that the mechanism of coreception for BMPs is markedly different from that established for FGFs. First, we demonstrate a direct, stimulatory role for cell surface HS in the immediate signaling activities of BMP2 and BMP4, and we provide evidence that HS–BMP interactions are required for this effect. Next, using several independent assays of ligand binding and receptor assembly, including coimmunoprecipitation, cross-linking, and fluorescence fluctuation microscopy, we show that HS does not affect BMP binding to type I receptor subunits but instead enhances the subsequent recruitment of type II receptor subunits to BMP-type I receptor complexes. This suggests a view of HS as a catalyst of the formation of signaling complexes, rather than as a stabilizer of growth factor binding.  相似文献   

5.
6.
Applied Biochemistry and Microbiology - The biological properties of a new gene-activated osteoplastic material based on chitosan sponges impregnated with plasmids with the gene BMP-2 for bone...  相似文献   

7.
BMPR-IB基因主要在哺乳动物卵巢中表达,对卵泡的发育和分化起重要作用。该研究从影响卵巢生长发育和调控的BMPR-IB基因出发,以牛卵巢的RNA为模板,按照不同物种BMPR-IB基因的相似性设计特异引物,运用RT-PCR技术扩增并获得了特异片段,该片段经PCR、酶切和测序验证,证实所克隆序列为牛BMPR-IB序列,包含有953bp组成的部分cDNA序列,同源性分析结果表明,牛BMPR-IB基因序列与绵羊、山羊、人、猪、小鼠的BMPR-IB基因分别为98%、97%、92%、93%、88%的同源性。这为克隆其他物种的BMPR-IB基因提供了依据,同时牛骨形态发生蛋白的测序为更好地理解牛的生殖机理提供帮助。  相似文献   

8.
9.
目的:构建重组人骨形态发生蛋白-7(rhBMP7)表达质粒,并研究其在中国仓鼠卵巢细胞中的表达。方法:将hBMP7重组表达质粒电转到中国仓鼠卵巢细胞(CHO)中,并用DOT-BLOT和ELISA方法分析检测rhBMP7在重组CHO细胞中的表达。结果:hBMP7 cDNA整合到CHO细胞基因组中并被转录。点杂交和ELISA检测证实rhBMP7在CHO细胞中得到表达。结论:hBMP7成功在CHO表达系统中得到表达。  相似文献   

10.
目的:探讨骨形态发生蛋白( BMP-7)在前列腺癌组织中的表达及其与临床分期之间的关系.方法:应用免疫印迹法检测30例前列腺癌患者及30例前列腺良性增生患者前列腺组织中BMP-7的表达情况.结果:前列腺癌组织中BMP-7的表达显著高于前列腺良性增生组织,且BMP-7的表达随前列腺癌的临床分期、Gleason分级增高而增加.结论:BMP-7在前列腺癌中的表达明显增高,其表达量与临床分期相关,前列腺癌组织中BMP-7的表达增高提示预后不佳.  相似文献   

11.
Penicillium marneffei is a dimorphic, pathogenic fungus in Southeast Asia that mostly afflicts immunocompromised individuals. As the only dimorphic member of the genus, it goes through a phase transition from a mold to yeast form, which is believed to be a requisite for its pathogenicity. Mp1p, a cell wall antigenic mannoprotein existing widely in yeast, hyphae, and conidia of the fungus, plays a vital role in host immune response during infection. To understand the function of Mp1p, we have determined the x-ray crystal structure of its ligand binding domain 2 (LBD2) to 1.3 Å. The structure reveals a dimer between the two molecules. The dimer interface forms a ligand binding cavity, in which electron density was observed for a palmitic acid molecule interacting with LBD2 indirectly through hydrogen bonding networks via two structural water molecules. Isothermal titration calorimetry experiments measured the ligand binding affinity (Kd) of Mp1p at the micromolar level. Mutations of ligand-binding residues, namely S313A and S332A, resulted in a 9-fold suppression of ligand binding affinity. Analytical ultracentrifugation assays demonstrated that both LBD2 and Mp1p are mostly monomeric in vitro, no matter with or without ligand, and our dimeric crystal structure of LBD2 might be the result of crystal packing. Based on the conformation of the ligand-binding pocket in the dimer structure, a model for the closed, monomeric form of LBD2 is proposed. Further structural analysis indicated the biological importance of fatty acid binding of Mp1p for the survival and pathogenicity of the conditional pathogen.  相似文献   

12.
Specification of progenitors into the osteoblast lineage is an essential event for skeletogenesis. During endochondral ossification, cells in the perichondrium give rise to osteoblast precursors. Hedgehog (Hh) and bone morphogenetic protein (BMP) are suggested to regulate the commitment of these cells. However, properties of perichondrial cells and regulatory mechanisms of the specification process are still poorly understood. Here, we investigated the machineries by combining a novel organ culture system and single-cell expression analysis with mouse genetics and biochemical analyses. In a metatarsal organ culture reproducing bone collar formation, activation of BMP signaling enhanced the bone collar formation cooperatively with Hh input, whereas the signaling induced ectopic chondrocyte formation in the perichondrium without Hh input. Similar phenotypes were also observed in compound mutant mice, where signaling activities of Hh and BMP were genetically manipulated. Single-cell quantitative RT-PCR analyses showed heterogeneity of perichondrial cells in terms of natural characteristics and responsiveness to Hh input. In vitro analyses revealed that Hh signaling suppressed BMP-induced chondrogenic differentiation; Gli1 inhibited the expression of Sox5, Sox6, and Sox9 (SRY box-containing gene 9) as well as transactivation by Sox9. Indeed, ectopic expression of chondrocyte maker genes were observed in the perichondrium of metatarsals in Gli1−/− fetuses, and the phenotype was more severe in Gli1−/−;Gli2−/− newborns. These data suggest that Hh-Gli activators alter the function of BMP to specify perichondrial cells into osteoblasts; the timing of Hh input and its target populations are critical for BMP function.  相似文献   

13.

Background

Predicting protein function from primary sequence is an important open problem in modern biology. Not only are there many thousands of proteins of unknown function, current approaches for predicting function must be improved upon. One problem in particular is overly-specific function predictions which we address here with a new statistical model of the relationship between protein sequence similarity and protein function similarity.

Methodology

Our statistical model is based on sets of proteins with experimentally validated functions and numeric measures of function specificity and function similarity derived from the Gene Ontology. The model predicts the similarity of function between two proteins given their amino acid sequence similarity measured by statistics from the BLAST sequence alignment algorithm. A novel aspect of our model is that it predicts the degree of function similarity shared between two proteins over a continuous range of sequence similarity, facilitating prediction of function with an appropriate level of specificity.

Significance

Our model shows nearly exact function similarity for proteins with high sequence similarity (bit score >244.7, e-value >1e−62, non-redundant NCBI protein database (NRDB)) and only small likelihood of specific function match for proteins with low sequence similarity (bit score <54.6, e-value <1e−05, NRDB). For sequence similarity ranges in between our annotation model shows an increasing relationship between function similarity and sequence similarity, but with considerable variability. We applied the model to a large set of proteins of unknown function, and predicted functions for thousands of these proteins ranging from general to very specific. We also applied the model to a data set of proteins with previously assigned, specific functions that were electronically based. We show that, on average, these prior function predictions are more specific (quite possibly overly-specific) compared to predictions from our model that is based on proteins with experimentally determined function.  相似文献   

14.
Protein disulfide isomerases comprise a large family of enzymes responsible for catalyzing the proper oxidation and folding of newly synthesized proteins in the endoplasmic reticulum (ER). Protein disulfide isomerase-related (PDIR) protein (also known as PDIA5) is a specialized member that participates in the folding of α1-antitrypsin and N-linked glycoproteins. Here, the crystal structure of the non-catalytic domain of PDIR was determined to 1.5 Å resolution. The structure adopts a thioredoxin-like fold stabilized by a structural disulfide bridge with a positively charged binding surface for interactions with the ER chaperones, calreticulin and ERp72. Crystal contacts between molecules potentially mimic the interactions of PDIR with misfolded substrate proteins. The results suggest that the non-catalytic domain of PDIR plays a key role in the recognition of protein partners and substrates.  相似文献   

15.
Bone morphogenetic proteins (BMPs) are secreted signaling proteins - they transduce their signals by assembling complexes comprised of one of three known type II receptors and one of four known type I receptors. BMP-9 binds and signals through the type I receptor Alk1, but not other Alks, while BMP-2, -4, and -7 bind and signal through Alk3, and the close homologue Alk6, but not Alk1. The present results, which include the determination of the Alk1 structure using NMR and identification of residues important for binding using SPR, show that the β-strand framework of Alk1 is highly similar to Alk3, yet there are significant differences in loops shown previously to be important for binding. The most pronounced difference is in the N-terminal portion of the β4-β5 loop, which is structurally ordered and includes a similarly placed but shorter helix in Alk1 compared to Alk3. The altered conformation of the β4-β5 loop, and to lesser extent β1-β2 loop, cause clashes when Alk1 is positioned onto BMP-9 in the manner that Alk3 is positioned onto BMP-2. This necessitates an alternative manner of binding, which is supported by a model of the BMP-9/Alk1 complex constructed using the program RosettaDock. The model shows that Alk1 is positioned similar to Alk3 but is rotated by 40 deg. The alternate positioning allows Alk1 to bind BMP-9 through a large hydrophobic interface, consistent with mutational analysis that identified several residues in the central portion of the β4-β5 loop that contribute significantly to binding and are nonconservatively substituted relative to the corresponding residues in Alk3.  相似文献   

16.
The bipolar kinesin-5 motors are one of the major players that govern mitotic spindle dynamics. Their bipolar structure enables them to cross-link and slide apart antiparallel microtubules (MTs) emanating from the opposing spindle poles. The budding yeast kinesin-5 Cin8 was shown to switch from fast minus-end- to slow plus-end-directed motility upon binding between antiparallel MTs. This unexpected finding revealed a new dimension of cellular control of transport, the mechanism of which is unknown. Here we have examined the role of the C-terminal tail domain of Cin8 in regulating directionality. We first constructed a stable dimeric Cin8/kinesin-1 chimera (Cin8Kin), consisting of head and neck linker of Cin8 fused to the stalk of kinesin-1. As a single dimeric motor, Cin8Kin switched frequently between plus and minus directionality along single MTs, demonstrating that the Cin8 head domains are inherently bidirectional, but control over directionality was lost. We next examined the activity of a tetrameric Cin8 lacking only the tail domains (Cin8Δtail). In contrast to wild-type Cin8, the motility of single molecules of Cin8Δtail in high ionic strength was slow and bidirectional, with almost no directionality switches. Cin8Δtail showed only a weak ability to cross-link MTs in vitro. In vivo, Cin8Δtail exhibited bias toward the plus-end of the MTs and was unable to support viability of cells as the sole kinesin-5 motor. We conclude that the tail of Cin8 is not necessary for bidirectional processive motion, but is controlling the switch between plus- and minus-end-directed motility.  相似文献   

17.
Marine Biotechnology - Bone morphogenetic proteins (BMPs), which are members of the superfamily of transforming growth factor-β (TGF-β), are known both in vitro and in vivo for their...  相似文献   

18.
成骨分化相关基因骨钙素 (OC)等的启动子内均含有成骨特异性转录因子Cbfa1特异性作用元件 ,而骨形成蛋白 (bonemorphogeneticprotein ,BMP)的促成骨分化作用正是通过其首先引起Cbfa1的升高 ,而后Cbfa1激活这些基因的表达 ,最终出现成骨分化表型 .为解决BMP没有理想的活性测定方法的问题 ,在RT PCR结果证实BMP 2可促进NIH3T3和C2C12细胞Cbfa1表达后 ,构建了串联6个Cbfa1作用元件的小鼠OC部分启动子 (6OCP)控制萤光素酶 (luciferase)报告基因的真核表达质粒 ,以期来放大BMP诱导报告基因表达的作用效果 .即通过细胞转染、rhBMP 2刺激后检测萤光素酶活性变化 ,从而间接定量测定rhBMP 2的生物学活性 .结果表明 ,pcDNA3 6OCP Luc转染细胞后其报告基因的基础活性较pcDNA3 Luc大为降低 ;而且在一定剂量范围内 ,转染细胞的萤光素酶活性 (荧光值 )随rhBMP 2剂量增加而升高 ,并呈线性正相关 ,为建立BMP活性定量测定的方法打下基础  相似文献   

19.
Fibronectin Binds and Enhances the Activity of Bone Morphogenetic Protein 1   总被引:1,自引:0,他引:1  
Bone morphogenetic protein-1-like proteinases play key roles in formation of the extracellular matrix (ECM) in vertebrates via biosynthetic processing of precursors into mature functional proteins involved in ECM assembly. Such processing includes proteolytic activation of the zymogen for lysyl oxidase. Fibronectin (FN) is an abundant protein component of the ECM that is capable of regulating manifold cellular functions through its interactions with various ECM and cell surface proteins. It was previously shown that proteolytic activation of lysyl oxidase is much reduced in cultures of FN-null mouse embryo fibroblasts (MEFs). Here we demonstrate that cellular fibronectin, the form produced by fibroblasts and various other tissue cell types, and plasma fibronectin bind BMP1 with dissociation constants (KD) of ∼100 nm, consistent with a physiological role. Also consistent with such a role, cellular fibronectin FN is shown to positively regulate BMP1 processing activity against Chordin, probiglycan, and type I procollagen in vitro. Endogenous FN and BMP1 are demonstrated to co-localize in cell layers and to form complexes in culture medium. In addition, processing of endogenous BMP1 substrates Chordin, probiglycan, and procollagen is demonstrated to be strikingly reduced in cultures of FN−/− MEFs compared with FN+/− MEF cultures despite similar levels of endogenous BMP1. These data support the conclusion that FN binds BMP1-like proteinases in vivo and that FN is an important determinant of the in vivo activity levels of BMP1-like proteinases.Fibronectin (FN)3 is a noncollagenous extracellular matrix (ECM) glycoprotein of relatively high abundance that regulates a wide variety of cellular functions, including adhesion, migration, proliferation, differentiation, and apoptosis (14). FN is secreted as a disulfide-bonded dimer, and each subunit comprises 12 type I, 2 type II, and 15–17 type III FN modules as well as a “variable” (V) region that lacks homology to other protein domains (3). FN is found as two different major forms, plasma fibronectin (pFN), a soluble form synthesized by hepatocytes, and cellular fibronectin (cFN), which is locally expressed by many other cell types in various tissues (5). Both forms can be assembled into a fibrillar ECM by cultured fibroblasts (6). Differences between cFN and pFN arise from alternative RNA splicing in three regions; two type III repeats (designated EDA and EDB) and the V region. EDA and EDB are present in cFN but absent from pFN, whereas although only one subunit of the pFN dimer contains the V region, almost all cFN subunits contain this region (7). These differences in domain structure contribute to distinct functions for pFN and cFN; cFN plays roles in the dynamic tissue modeling of early embryogenesis and wound healing (8), whereas pFN subserves roles in hemostasis and thrombosis and immune responses (3, 911) and provides a reservoir for deposition in tissue (12).BMP1-like proteinases are evolutionary conserved extracellular metalloproteinases that play multiple roles in fostering ECM formation and activating TGFβ-like growth factors (13). These proteinases biosynthetically convert a variety of precursors into mature functional proteins with roles in ECM formation, including collagen types I-III, V, VII, and XI, laminin 332, and the small leucine-rich proteoglycans biglycan and osteoglycin. One important example is the zymogen for lysyl oxidase (LOX), an enzyme essential to formation of the covalent cross-links responsible for providing collagen and elastic fibers with much of their tensile strength (14). Recently, FN was reported to bind LOX in vitro (15). It was also suggested to positively regulate the proteolytic activation of LOX, as dramatically decreased processing of the zymogen for LOX was observed in FN−/− mouse embryo fibroblast (MEF) cultures compared with FN+/− MEF cultures even though equal amounts of BMP1 proteinase were produced by MEFs of the two different genotypes (15). These observations prompted the present study to determine whether FN might be involved in modulating the activities of BMP1-like proteinases. Herein, we provide evidence for direct interaction between FN and BMP1. BMP1 is shown to bind multiple FN sites via its non-protease domains, with affinities in the ∼100 nm range for cFN and pFN. This is a range congruent with KD values (30–800 nm) previously estimated for binding of FN to its integrin receptors (16, 17) and is, thus, consistent with the likelihood of in vivo FN-BMP1 interactions. Moreover, cFN is shown to positively regulate BMP1 processing activity against a number of substrates in vitro. Consistent with the in vitro evidence of FN-BMP1 interactions, we demonstrate FN-BMP1 co-localization and the existence of FN-BMP1 complexes in cell cultures. Also demonstrated is a striking decrease in the processing of various endogenous BMP1 substrates in cultures of FN−/− MEFs compared with FN+/− MEF cultures. Implications of the data, which support the conclusion that FN positively regulates BMP1 activities in vivo, are discussed.  相似文献   

20.
Bone morphogenetic proteins (BMPs) are highly conserved morphogens that are essential for normal development. BMP-2 is highly expressed in the majority of non-small cell lung carcinomas (NSCLC) but not in normal lung tissue or benign lung tumors. The effects of the BMP signaling cascade on the growth and survival of cancer cells is poorly understood. We show that BMP signaling is basally active in lung cancer cell lines, which can be effectively inhibited with selective antagonists of the BMP type I receptors. Lung cancer cell lines express alk2, alk3, and alk6 and inhibition of a single BMP receptor was not sufficient to decrease signaling. Inhibition of more than one type I receptor was required to decrease BMP signaling in lung cancer cell lines. BMP receptor antagonists and silencing of BMP type I receptors with siRNA induced cell death, inhibited cell growth, and caused a significant decrease in the expression of inhibitor of differentiation (Id1, Id2, and Id3) family members, which are known to regulate cell growth and survival in many types of cancers. BMP receptor antagonists also decreased clonogenic cell growth. Knockdown of Id3 significantly decreased cell growth and induced cell death of lung cancer cells. H1299 cells stably overexpressing Id3 were resistant to growth suppression and induction of cell death induced by the BMP antagonist DMH2. These studies suggest that BMP signaling promotes cell growth and survival of lung cancer cells, which is mediated through its regulation of Id family members. Selective antagonists of the BMP type I receptors represents a potential means to pharmacologically treat NSCLC and other carcinomas with an activated BMP signaling cascade.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号