首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Enzyme-linked immunosorbent assay (ELISA) is compared with the indirect fluorescent antibody test (IFAT), the indirect haemagglutination test (IHAT) and the latex agglutination (LA) test for the detection of toxoplasma antibodies in swine sera. The 100 swine sera examined represent ELISA values from > 0 to 154 EIU. The agreement was highest (0.67) between ELISA and IFAT with an ELISA cut-off value of 30 EIU, and between ELISA and the LA test with an ELISA cut-off value of 50 EIU (0.74). All sera giving < 10 EIU were negative in the other tests, and all those with > 70 EIU were positive in 1, 2 or all of the reference tests. In order to avoid false positive results with ELISA, all sera giving 10–70 EIU should be confirmed with a test which has a good specificity, e.g. IFAT. ELISA is a sensitive test and is highly suitable for the screening of large amounts of samples, but it may be too complicated for screening toxoplasma antibodies in the laboratories of abattoirs.  相似文献   

3.
4.
初步报道建立了一种检测流行性出血热(EHF)特异性IgE、IgA、IgG抗体的改良抗体捕获ELISA方法(EacELISA,AacELISA,GacELISA)。该法以抗人IgE、IgA或IgG单克隆抗体作包被抗体;酶标记物系两株组特异性较强的EHF·McAb(A_(35),A_(25-1)株);在实验中采用EHF病毒抗原与酶标记物混合后一次加入,而不是分别依次加入的方式,使操作步骤简化,实验时间缩短,又适当提高了试验敏感性。该法具有简便,特异性高,灵敏度较高(检测EHF·IgE,EHF·IgA>1:100;EHF·IgG>1:2560),重复性较好(CV:EHF·IgE 2.51%,EHF·IgA 11.80%,EHF·IgG 10.85%)等优点。检测39份EHF病人血清,急性期病人(3~7病日)血清三种抗体的检出率分别为84.21%(16/19,EHF·IgG),89.47%(17/19,EHF·IgA)和100%(19/19,EHF·IgG);而发病3~6月后患者血清三种抗体检出率分别为10.00%(2/20),45.00%(9/20)和100.00%。在急性期与恢复期病人之间,EHF·IgE和EHF·IgA两种抗体的检出率差异较显著(P<0.01)。70价其他人群血清三种抗体检出率均为阴性。  相似文献   

5.
The protozoan parasite Toxoplasma gondii is the causative agent of the zoonosis toxoplasmosis. In sheep and goats, it is one of the most prevalent causes of infectious abortion. Also in pregnant women, a primary infection can result in miscarriage. Humans acquire the infection either by ingestion of oocysts excreted by cats, the definitive host of the parasite, or by eating raw or undercooked meat from latently infected animals (Dubey & Beattie 1988). In Sweden, toxoplasmosis is a notifiable disease, and cases of clinical disease in humans as well as animals must be reported. In both veterinary and human medicine serological assays based on detecting the humoral antibody response of the host against the parasite are used as diagnostic tools. So far, solid phase assays, such as the indirect fluorescent antibody test (IFAT) and the enzyme-linked immunosorbent assay (ELISA), have been widely used to diagnose T. gondii infection in many species including cats, pigs and sheep (Dubey & Beattie 1988). However, both IFAT and ELISA require appropriate anti-species specific immunoglobulins (Ig) that must be carefully evaluated for each species prior to use. This makes these assays complicated and time consuming. Consequently, alternative, simpler methods that do not require specific antisera would be of great value. The direct agglutination test (DA), which is based on the principle that formalin-treated organisms agglutinate in the presence of specific IgG antibodies, is such an assay (Fulton & Turk 1959). The DA-test is widely used in human medicine as a screening test for T gondii infection but it has not yet been thoroughly evaluated for use in veterinary medicine (Uggla & Buxton 1990).  相似文献   

6.
选用酵母菌偏爱密码子人工合成了编码51个氨基酸的人表皮生长因子(hEGF)基因.将合成基因与编码酵母α因子前导肽85个氨基酸的DNA片段融合后克隆到醇氧化酶基因启动子下游,并构建出多拷贝表达载体.此载体转化甲基营养型酵母株GS115后筛选出整合型MutSHis+基因型菌株.高密度培养及诱导表达后该株可分泌具完好生物活性和正确物理化学性质的人表皮生长因子,产量达100mg/L,经3次柱层析纯度达95%以上,为观察其生物学作用打下了良好基础  相似文献   

7.
The microslide gel-diffusion and macro-tube agglutination techniques to detect Brucella canis antibodies in dogs were compared. Sera from dogs experimentally infected with B. canis and a random sample of dog sera with unknown histories of exposure to this organism were examined. The results of the gel-diffusion method employing specific rough Brucella saline-extract antigens of B. canis and Brucella ovis were comparable to those obtained by the tube agglutination test. The easily prepared, stable R antigen in the freeze-dried form offers a convenient, simple, and reliable diagnostic method for the serological detection of canine brucellosis by the gel-diffusion test.  相似文献   

8.
Human noroviruses (HuNoV) are the leading cause of acute viral gastroenteritis and an important cause of foodborne disease. Despite their public health significance, routine detection of HuNoV in community settings, or food and environmental samples, is limited, and there is a need to develop alternative HuNoV diagnostic reagents to complement existing ones. The purpose of this study was to select and characterize single-stranded (ss)DNA aptamers with binding affinity to HuNoV. The utility of these aptamers was demonstrated in their use for capture and detection of HuNoV in outbreak-derived fecal samples and a representative food matrix. SELEX (Systematic Evolution of Ligands by EXponential enrichment) was used to isolate ssDNA aptamer sequences with broad reactivity to the prototype GII.2 HuNoV strain, Snow Mountain Virus (SMV). Four aptamer candidates (designated 19, 21, 25 and 26) were identified and screened for binding affinity to 14 different virus-like particles (VLPs) corresponding to various GI and GII HuNoV strains using an Enzyme-Linked Aptamer Sorbant Assay (ELASA). Collectively, aptamers 21 and 25 showed affinity to 13 of the 14 VLPs tested, with strongest binding to GII.2 (SMV) and GII.4 VLPs. Aptamer 25 was chosen for further study. Its binding affinity to SMV-VLPs was equivalent to that of a commercial antibody within a range of 1 to 5 µg/ml. Aptamer 25 also showed binding to representative HuNoV strains present in stool specimens obtained from naturally infected individuals. Lastly, an aptamer magnetic capture (AMC) method using aptamer 25 coupled with RT-qPCR was developed for recovery and detection of HuNoV in artificially contaminated lettuce. The capture efficiency of the AMC was 2.5–36% with an assay detection limit of 10 RNA copies per lettuce sample. These ssDNA aptamer candidates show promise as broadly reactive reagents for use in HuNoV capture and detection assays in various sample types.  相似文献   

9.
Doklady Biochemistry and Biophysics - Using the recombinant second fragment of the extracellular domain (EC2) of human desmoglein type 3 (Dsg3) as an affinity ligand, an immunosorbent was obtained...  相似文献   

10.
Capture enzyme-linked immunosorbent assays (ELISAs) were developed to detect immunoglobulin G and M antibodies to group A streptococcal (GAS) antigens, streptolysin O, streptokinase, and group A carbohydrate. The sensitivities and the specificities of the IgM capture ELISAs to each GAS antigen were high enough to distinguish the patients with GAS infections (diagnosed as GAS pharyngitis or scarlet fever) from the control groups (healthy people and patients with pharyngitis from whom GAS could not be isolated). On the other hand, the specificities of the IgG capture ELISAs were not very effective in diagnosis of GAS infections. When the capture ELISA and an indirect ELISA detecting IgM antibodies to group A carbohydrate were compared, false-positive reactions due to rheumatoid factor occurred in the indirect ELISA, but did not occur in the capture ELISA. These results indicate that the capture ELISA works better than the indirect ELISA in detecting the IgM antibody, and that the IgM capture ELISA to GAS antigen provides a rapid and highly reliable serodiagnosis for GAS infections employing only a single serum.  相似文献   

11.
12.
Antibodies that neutralize primary isolates of human immunodeficiency virus type 1 (HIV-1) appear during HIV-1 infection but are difficult to elicit by immunization with current vaccine products comprised of monomeric forms of HIV-1 envelope glycoprotein gp120. The limited neutralizing antibody response generated by gp120 vaccine products could be due to the absence or inaccessibility of the relevant epitopes. To determine whether neutralizing antibodies from HIV-1-infected patients bind to epitopes accessible on monomeric gp120 and/or oligomeric gp140 (ogp140), purified total immunoglobulin from the sera of two HIV-1-infected patients as well as pooled HIV immune globulin were selectively depleted of antibodies which bound to immobilized gp120 or ogp140. After passage of each immunoglobulin preparation through the respective columns, antibody titers against gp120 and ogp140 were specifically reduced at least 128-fold. The gp120- and gp140-depleted antibody fraction from each serum displayed reduced neutralization activity against three primary and two T-cell line-adapted (TCLA) HIV-1 isolates. Significant residual neutralizing activity, however, persisted in the depleted sera, indicating additional neutralizing antibody specificities. gp120- and ogp140-specific antibodies eluted from each column neutralized both primary and TCLA viruses. These data demonstrate the presence and accessibility of epitopes on both monomeric gp120 and ogp140 that are specific for antibodies that are capable of neutralizing primary isolates of HIV-1. Thus, the difficulties associated with eliciting neutralizing antibodies by using current monomeric gp120 subunit vaccines may be related less to improper protein structure and more to ineffective immunogen formulation and/or presentation.  相似文献   

13.
14.
15.
The membrane-proximal external region (MPER) of the human immunodeficiency virus (HIV) envelope glycoprotein (gp41) is critical for viral fusion and infectivity and is the target of three of the five known broadly neutralizing HIV type 1 (HIV-1) antibodies, 2F5, Z13, and 4E10. Here, we report the crystal structure of the Fab fragment of Z13e1, an affinity-enhanced variant of monoclonal antibody Z13, in complex with a 12-residue peptide corresponding to the core epitope (W670NWFDITN677) at 1.8-Å resolution. The bound peptide adopts an S-shaped conformation composed of two tandem, perpendicular helical turns. This conformation differs strikingly from the α-helical structure adopted by an overlapping MPER peptide bound to 4E10. Z13e1 binds to an elbow in the MPER at the membrane interface, making relatively few interactions with conserved aromatics (Trp672 and Phe673) that are critical for 4E10 recognition. The comparison of the Z13e1 and 4E10 epitope structures reveals a conformational switch such that neutralization can occur by the recognition of the different conformations and faces of the largely amphipathic MPER. The Z13e1 structure provides significant new insights into the dynamic nature of the MPER, which likely is critical for membrane fusion, and it has significant implications for mechanisms of HIV-1 neutralization by MPER antibodies and for the design of HIV-1 immunogens.The continued spread of human immunodeficiency virus (HIV) worldwide and, in particular, in sub-Saharan Africa, where an estimated 22 million people currently are living with HIV/AIDS, underscores the urgent need for a preventative vaccine. However, despite nearly 25 years of intense international research, a vaccine is not yet available. Passive immunization with broadly neutralizing antibodies can confer sterilizing protection against infection in animal models (4, 12, 39-41, 51, 64), providing encouragement for the development of an antibody-inducing component of an HIV type 1 (HIV-1) vaccine. Such a vaccine should elicit neutralizing antibodies with activity against the broadest range of primary circulating isolates. However, a lack of understanding of how to raise potent, cross-reactive antibodies by immunization, the so-called neutralizing antibody problem, is a major hurdle in this effort (6, 24, 72). Thus, an understanding of the structure and presentation of neutralizing epitopes on the virus and the antibodies that recognize them is vital for vaccine development.The targets of antibody neutralization are the surface envelope (Env) glycoprotein trimers (gp120/gp41) that mediate the fusion of the viral membrane with that of the host. The majority of antibodies elicited during natural infection or immunization show limited or no cross-reactivity against diverse isolates. However, a few rare, broadly neutralizing, monoclonal antibodies have been isolated from HIV-1-infected individuals and exhibit activity against a wide range of isolates by binding to functionally conserved epitopes exposed on native gp120/gp41 trimers. These epitopes include the CD4 binding site, recognized by antibody b12, and a relatively well-conserved cluster of N-linked glycans, located on the outer domain of gp120, that is recognized by antibody 2G12 (12, 13, 71, 76). V3-directed antibodies, which are common in natural infection, also are able to sporadically neutralize across clades, as exemplified by 447-52D and F425-B4e8 (7, 16, 49, 66). The identification of three broadly neutralizing antibodies, 2F5, Z13, and 4E10, that target the conserved tryptophan-rich membrane-proximal external region (MPER) of gp41 has implicated this region as a highly promising vaccine target and has, therefore, spurred interest in its structural characterization (15, 35, 45, 47, 48, 50, 80).The MPER plays a critical, but not fully understood, role in membrane fusion and is situated between the C-terminal heptad repeat (CHR) and the transmembrane domain (TM) of gp41 (Fig. (Fig.1).1). Following the binding of gp120 to the cell surface receptors CD4 and CXCR4/CCR5, the gp41 glycoprotein undergoes a series of conformational changes that trigger the membrane fusion activity. Notably, a relatively long-lived prehairpin intermediate of gp41 is formed, in which the coiled-coil of the N-terminal heptad repeats (NHR) extends so as to enable the fusion peptides to embed into the target membrane. In the postfusion or fusogenic state, the CHR and NHR reassemble into an antiparallel 6-helix bundle in a process that drives membrane fusion (18). The MPER contains several functionally conserved tryptophan residues that are critical for membrane fusion and viral entry, although the structural basis for their specific role has not been firmly established (22, 44, 58). Their mutation to alanine leads to the attenuation of viral infectivity, which is most pronounced for Trp666 and Trp672 (numbered according to the HXB2 isolate) (46, 58, 78). In addition, peptides based on the MPER can induce membrane leakage (68). Such membrane-disrupting properties of the MPER have been suggested to be functionally important in the expansion of the fusion pore created after receptor engagement (42, 44, 58, 68, 77).Open in a separate windowFIG. 1.Major features of gp41 include the fusion peptide (FP), NHR, CHR, TM, and cytoplasmic domain (CD). The MPER is located between the CHR and TM regions of gp41. The core epitopes of 2F5 (green), Z13e1 (yellow), and 4E10 (orange) are indicated. The epitope of Z13e1 is located between those of 2F5 and 4E10, but it overlaps more closely with 4E10.From initial explorations using solution nuclear magnetic resonance, the structure of a 19-residue MPER peptide (residues 665 to 683) was found to be helical in dodecylphosphocholine micelles, with the hydrophobic and hydrophilic residues distributed evenly around the helix axis (62). Another study found that an MPER peptide comprising residues 659 to 671 adopts a 310-helix in water (10). More recently, the structure of an MPER peptide (residues 662 to 683) in liposomes was elucidated by a combination of nuclear magnetic resonance and spin-label electron paramagnetic resonance (69), and it was found to adopt a kinked, amphipathic structure composed of two helices connected by a short hinge (Phe673 and Asn674). Crystal structures of Fab 2F5 in complex with a 7-mer (E662LDKWAS668) and 17-mer encompassing residues 654 to 670 previously had revealed a mostly extended conformation characterized by a central β-turn involving Asp664, Lys665, and Trp666 (47, 48). This motif is the key recognition determinant for 2F5 and becomes deeply buried in the antibody combining site, suggesting that it is exposed at some stage in viral entry (45, 47, 78). The crystal structure of Fab 4E10 in complex with peptide-spanning residues W670NWFDITNW678 revealed an amphipathic α-helical structure with a narrow hydrophilic face (15). The N terminus of the 4E10 epitope forms a 310-helix that transitions into a regular α-helix at residue Asp674 and continues to Lys683, which constitutes the end of the gp41 ectodomain (14). Thus, while the structure of the MPER within functional, membrane-embedded Env trimers is not known, the observation that unconstrained peptides are able to adopt more than one defined structure suggests an inherent degree of flexibility.Like 4E10, Z13 was identified from an HIV-1-infected individual, the former being isolated from an immortalized B-cell line and the latter from a bone marrow RNA phage display library (80). The epitope of MAb Z13 spans residues S668LWNWFDITN677, as determined by peptide mapping, scanning mutagenesis, and antibody competition studies (46, 80). This region lies between the 2F5 and 4E10 epitopes but overlaps more closely with 4E10 (Fig. (Fig.1).1). 4E10 and Z13 are both able to neutralize primary as well as laboratory-adapted isolates; nevertheless, Z13 is not as broadly neutralizing as 4E10, which has the greatest breadth of any HIV-1 antibody described to date (9). Z13e1 is an affinity-enhanced variant of Z13 and was evolved by randomizing the complementarity determining region (CDR) L3 loop sequence to identify tighter-binding mutants using phage display (46). Z13e1 displays higher affinity for both peptide and recombinant gp41 substrates, as well as increased neutralization potency, suggesting that the L3 mutations optimize binding to the linear MPER epitope. The neutralization breadth of Z13e1 is limited by the requirement for Asn671 and Asp674 in the MPER, which are approximately 71 and 58% conserved, respectively, among sequences in the Los Alamos HIV sequence database (80). Based on the clear relationship between Env trimer binding and neutralization, the neutralizing activity of Z13e1 derives from binding to a functional trimer (8, 20, 25, 43, 52, 55, 60, 73, 74). While Z13e1 and 4E10 have identical affinities for optimized linear peptides, Z13e1 is still about an order of magnitude less potent than 4E10 against a variety of primary isolates. Although the occlusion of the Z13e1 epitope on virion-associated trimers is thought to be the major limitation (46), the structural basis for the lower potency of Z13e1 relative to those of 2F5 and 4E10 is unclear.Whereas neutralization by 4E10 depends critically on Trp672 and Phe673, Z13e1 instead requires the flanking Asn671 and Asp674 residues (46). Based on a helical model of the MPER, it was predicted that Z13e1 binds the narrow hydrophilic face that displays Asn671, Asp674, and Asn677 that is opposite that recognized by 4E10. As Z13e1 and 4E10 bind to functional trimers, both epitopes must be exposed at some stage before membrane fusion (20). To examine how Z13e1 recognizes its MPER epitope, we determined the crystal structure of Fab Z13e1 in complex with a 12-residue peptide corresponding to the core epitope with C-terminal flanking lysines to aid peptide solubility (W670NWFDITN677KKKK). The crystal structure at 1.8-Å resolution uncovers a conformation of the MPER that is distinct from that visualized in complex with 4E10. Our findings show that Z13e1 and 4E10 recognize different conformers of the MPER and reveal a novel conformational switch that is relevant for HIV-1 neutralization and membrane fusion.  相似文献   

16.
Despite their favorable pharmacokinetic properties, single-chain Fv antibody fragments (scFvs) are not commonly used as therapeutics, mainly due to generally low stabilities and poor production yields. In this work, we describe the identification and optimization of a human scFv scaffold, termed FW1.4, which is suitable for humanization and stabilization of a broad variety of rabbit antibody variable domains. A motif consisting of five structurally relevant framework residues that are highly conserved in rabbit variable domains was introduced into FW1.4 to generate a generically applicable scFv scaffold, termed FW1.4gen. Grafting of complementarity determining regions (CDRs) from 15 different rabbit monoclonal antibodies onto FW1.4 and their derivatives resulted in humanized scFvs with binding affinities in the range from 4.7 × 10−9 to 1.5 × 10−11 m. Interestingly, minimalistic grafting of CDRs onto FW1.4gen, without any substitutions in the framework regions, resulted in affinities ranging from 5.7 × 10−10 to <1.8 × 10−12 m. When compared with progenitor rabbit scFvs, affinities of most humanized scFvs were similar. Moreover, in contrast to progenitor scFvs, which were difficult to produce, biophysical properties of the humanized scFvs were significantly improved, as exemplified by generally good production yields in a generic refolding process and by apparent melting temperatures between 53 and 86 °C. Thus, minimalistic grafting of rabbit CDRs on the FW1.4gen scaffold presents a simple and reproducible approach to humanize and stabilize rabbit variable domains.  相似文献   

17.
18.
Neutralization test is the most reliable method of evaluating immunity against viral diseases but there is no standard procedure for mumps virus, with tests differing in the infectivity of the challenge virus, 50% plaque reduction or complete inhibition of cytopathic effects (CPE), and usage of complement. A reliable, easy, and simple neutralization test for mumps virus was developed in this study. A recombinant mumps virus expressing GFP was generated as a challenge virus. Complement was added to the neutralizing mixture at 1∶200 when stocked serum samples were used. Neutralizing antibody titers were expressed as the reciprocal of the highest dilution that did not exceed two-fold of FU values (GFP expression) of the cell control wells. A total of 1,452 serum samples were assayed by inhibition of GFP expression in comparison with those examined by conventional 100% inhibition of CPE. 1,367 (94.1%) showed similar neutralizing antibody titers when examined by both methods. The GFP expression inhibition assay, using a recombinant mumps virus expressing GFP, is a simple and time- saving method.  相似文献   

19.
With rapidly growing interest in the urine proteome, methods for reducing sample complexity are becoming increasingly important. Depletion strategies for removal of high-abundance proteins from human urine have not been reported. A commercial kit designed for depletion of abundant proteins from plasma was evaluated for removing top proteins from urine of patients with proteinuria. The number of low-abundance proteins identified in urine after depletion increased nearly 2.5-fold.  相似文献   

20.
A modified technique for production of antigen and performance of the test is described. A suspension of infected neutrophils was directly applied to multiwell slides. Multichannel pipettes may be used for dilution and application of sera. The modification inreases the capacity both by production of the antigen and by performance of the test. This paper also gives a quantitative determination of the antibodies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号