首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Vertically transmitted HIV disease constitutes a significant problem in pediatrics. In order to characterize some of the possible host factors involved in HIV replication in fetuses and newborns, we surveyed the HIV-1 LTR binding factors present in nuclear extracts from cord blood mononuclear cells. A series of electrophoretic mobility shift assays (EMSAs) showed that protein extracts from cord blood interacted with several regions of the HIV LTR. The most prominent binding activities involved the NF-kB sites, but other regions of the LTR also showed factor binding with the cord blood extracts. Some of these cord blood extract binding activities displayed qualitative differences when compared to adult peripheral blood mononuclear cell extracts in EMSA and UV cross-linking studies. Transient transfection experiments indicated that the NF-kB and Sp1 sequences were important for wild type levels of expression in cord blood cells, but that additional sequences 5 to the NF-kB sites also contributed activity. Thus, factors that interact with many of the well-known HIV LTR regulatory sites are present in cord blood cells. However, certain qualitative differences distinguished cord blood and adult peripheral blood binding activities and these may contribute to pathogenesis of HIV infection in neonates.  相似文献   

3.
4.
5.
Despite the clinical relevance of latent HIV-1 infection as a block to HIV-1 eradication, the molecular biology of HIV-1 latency remains incompletely understood. We recently demonstrated the presence of a gatekeeper kinase function that controls latent HIV-1 infection. Using kinase array analysis, we here expand on this finding and demonstrate that the kinase activity profile of latently HIV-1-infected T cells is altered relative to that of uninfected T cells. A ranking of altered kinases generated from these kinome profile data predicted PIM-1 kinase as a key switch involved in HIV-1 latency control. Using genetic and pharmacologic perturbation strategies, we demonstrate that PIM-1 activity is indeed required for HIV-1 reactivation in T cell lines and primary CD4 T cells. The presented results thus confirm that kinases are key contributors to HIV-1 latency control. In addition, through mutational studies we link the inhibitory effect of PIM-1 inhibitor IV (PIMi IV) on HIV-1 reactivation to an AP-1 motif in the CD28-responsive element of the HIV-1 long terminal repeat (LTR). The results expand our conceptual understanding of the dynamic interactions of the host cell and the latent HIV-1 integration event and position kinome profiling as a research tool to reveal novel molecular mechanisms that can eventually be targeted to therapeutically trigger HIV-1 reactivation.  相似文献   

6.
7.
8.
The matrix domain (MA) of the HIV-1 precursor Gag (PrGag) protein directs PrGag proteins to assembly sites at the plasma membrane by virtue of its affinity to the phospholipid, phosphatidylinositol-4,5-bisphosphate (PI(4,5)P2). MA also binds to RNA at a site that overlaps its PI(4,5)P2 site, suggesting that RNA binding may protect MA from associating with inappropriate cellular membranes prior to PrGag delivery to the PM. Based on this, we have developed an assay in which small molecule competitors to MA-RNA binding can be characterized, with the assumption that such compounds might interfere with essential MA functions and help elucidate additional features of MA binding. Following this approach, we have identified four compounds, including three thiadiazolanes, that compete with RNA for MA binding. We also have identified MA residues involved in thiadiazolane binding and found that they overlap the MA PI(4,5)P2 and RNA sites. Cell culture studies demonstrated that thiadiazolanes inhibit HIV-1 replication but are associated with significant levels of toxicity. Nevertheless, these observations provide new insights into MA binding and pave the way for the development of antivirals that target the HIV-1 matrix domain.  相似文献   

9.
TARRNA结合蛋白是细胞中双链RNA结合蛋白家族成员之一.它可以结合HIV-1TARRNA,并与Tat协同作用激活LTR表达,进而促进病毒的转录与翻译.TRBP也是将干扰素抗病毒通路与RNA干扰免疫通路相连的一种细胞蛋白.在干扰素诱生的PKR反应中,TRBP通过直接抑制PKR的自磷酸化、与PKR竞争通用的RNA底物或与PACT形成异源二聚体等机制抑制细胞内的PKR反应,从而降低了PKR介导的对病毒表达的抑制作用.TRBP与Dicer和Ago2等组成的RNA诱导沉默复合体,在RNA干扰中发挥着关键作用并调控随后的序列特异性降解.在HIV-1感染中,TRBP更倾向于促进病毒的表达与复制,因此TRBP也成为控制HIV-1感染的新靶点.  相似文献   

10.
The human immunodeficiency virus type 1 (HIV-1) exterior envelope glycoprotein, gp120, possesses conserved binding sites for interaction with the primary virus receptor, CD4, and also for the co-receptor, generally CCR5. Although gp120 is a major target for virus-specific neutralizing antibodies, the gp120 variable elements and its malleable nature contribute to evasion of effective host-neutralizing antibodies. To understand the conformational character and immunogenicity of the gp120 receptor binding sites as potential vaccine targets, we introduced structure-based modifications to stabilize gp120 core proteins (deleted of the gp120 major variable regions) into the conformation recognized by both receptors. Thermodynamic analysis of the re-engineered core with selected ligands revealed significant stabilization of the receptor-binding regions. Stabilization of the co-receptor-binding region was associated with a marked increase in on-rate of ligand binding to this site as determined by surface plasmon resonance. Rabbit immunization studies showed that the conformational stabilization of core proteins, along with increased ligand affinity, was associated with strikingly enhanced humoral immune responses against the co-receptor-binding site. These results demonstrate that structure-based approaches can be exploited to stabilize a conformational site in a large functional protein to enhance immunogenic responses specific for that region.  相似文献   

11.
The matrix (MA) domain of the human immunodeficiency virus type 1 (HIV-1) precursor Gag (PrGag) protein plays multiple roles in the viral replication cycle. One essential role is to target PrGag proteins to their lipid raft-associated phosphatidylinositol-(4,5)-bisphosphate [PI(4,5)P2] assembly sites at the plasma membranes of infected cells. In addition to this role, several reports have implicated nucleic acid binding properties to retroviral MAs. Evidence indicates that RNA binding enhances the binding specificity of MA to PI(4,5)P2-containing membranes and supports a hypothesis in which RNA binding to MA acts as a chaperone that protects MA from associating with inappropriate cellular membranes prior to PrGag delivery to plasma membrane assembly sites. To gain a better understanding of HIV-1 MA-RNA interactions, we have analyzed the interaction of HIV MA with RNA ligands that were selected previously for their high affinities to MA. Binding interactions were characterized via bead binding, fluorescence anisotropy, gel shift, and analytical ultracentrifugation methods. Moreover, MA residues that are involved in RNA binding were identified from NMR chemical shift data. Our results indicate that the MA RNA and PI(4,5)P2 binding sites overlap and suggest models for Gag-membrane and Gag-RNA interactions and for the HIV assembly pathway.  相似文献   

12.
13.
14.
Lexa KW  Carlson HA 《Proteins》2011,79(7):2282-2290
A recent crystal structure of HIV-1 protease (HIVp) was the first to experimentally observe a ligand targeting an open-flap conformation. Researchers studying a symmetric pyrrolidine inhibitor found that two ligands cocrystallized with the protease, forcing an unusual configuration and unique crystallographic contacts. One molecule is centered in the traditional binding site (α pose) and the other binds between the flaps (β pose). The ligands stack against each other in a region termed the "eye" site. Ligands bound to the eye site should prevent flap closure, but it is unclear if the pyrrolidine inhibitors or the crystal packing are causing the open state. Molecular dynamics simulations were used to examine the solution-state behavior of three possible binding modes: the ternary complex of HIVp+αβ and the binary complexes, HIVp+α and HIVp+β. We show that HIVp+α is the most stable of the three states. During conformational sampling, α takes an asymmetric binding pose, with one naphthyl ring occupying the eye site and the other reoriented down to occupy positions seen with traditional inhibitors. This finding supports previous studies that reveal a requirement for asymmetric binding at the eye site. In fact, if the α pose is modified to splay both naphthyl rings across the binding site like traditional inhibitors, one ring consistently flips to occupy the eye site. Our simulations reveal that interactions to the eye site encourage a conformationally restrained state, and understanding those contacts may aid the design of ligands to specifically target alternate conformations of the protease.  相似文献   

15.
Reactivation of latent HIV-1 infection is considered our best therapeutic means to eliminate the latent HIV-1 reservoir. Past therapeutic attempts to systemically trigger HIV-1 reactivation using single drugs were unsuccessful. We thus sought to identify drug combinations consisting of one component that would lower the HIV-1 reactivation threshold and a synergistic activator. With aclacinomycin and dactinomycin, we initially identified two FDA-approved drugs that primed latent HIV-1 infection in T cell lines and in primary T cells for reactivation and facilitated complete reactivation at the population level. This effect was correlated not with the reported primary drug effects but with the cell-differentiating capacity of the drugs. We thus tested other cell-differentiating drugs/compounds such as cytarabine and aphidicolin and found that they also primed latent HIV-1 infection for reactivation. This finding extends the therapeutic promise of N'-N'-hexamethylene-bisacetamide (HMBA), another cell-differentiating agent that has been reported to trigger HIV-1 reactivation, into the group of FDA-approved drugs. To this end, it is also noteworthy that suberoylanilide hydroxamic acid (SAHA), a polar compound that was initially developed as a second-generation cell-differentiating agent using HMBA as a structural template and which is now marketed as the histone deacetylase (HDAC) inhibitor vorinostat, also has been reported to trigger HIV-1 reactivation. Our findings suggest that drugs with primary or secondary cell-differentiating capacity should be revisited as HIV-1-reactivating agents as some could potentially be repositioned as candidate drugs to be included in an induction therapy to trigger HIV-1 reactivation.  相似文献   

16.
17.
Mechanisms underlying HIV-1 latency remain among the most crucial questions that need to be answered to adopt strategies for purging the latent viral reservoirs. Here we show that HIV-1 accessory protein Vpr induces depletion of class I HDACs, including HDAC1, 2, 3, and 8, to overcome latency in macrophages. We found that Vpr binds and depletes chromatin-associated class I HDACs through a VprBP-dependent mechanism, with HDAC3 as the most affected class I HDAC. De novo expression of Vpr in infected macrophages induced depletion of HDAC1 and 3 on the HIV-1 LTR that was associated with hyperacetylation of histones on the HIV-1 LTR. As a result of hyperacetylation of histones on HIV-1 promotor, the virus established an active promotor and this contributed to the acute infection of macrophages. Collectively, HIV-1 Vpr down-regulates class I HDACs on chromatin to counteract latent infections of macrophages.  相似文献   

18.
Murine gammaherpesvirus 68 (MHV-68) is closely related to Epstein-Barr virus and Kaposi''s sarcoma-associated herpesvirus (KSHV) and provides a small-animal model to study the pathogenesis of gammaherpesvirus (γHV) infections. According to the colinear organization of the γHV genomes, the M10 locus is situated at a position equivalent to the K12 locus of KSHV, which codes for proteins of the kaposin family. The M10 locus of MHV-68 has been predicted to code for three overlapping open reading frames (M10a, M10b, and M10c [M10a-c]) with unknown function. In addition, the M10 locus contains a lytic origin of replication (oriLyt). To elucidate the function of the M10 locus during lytic and latent infections, we investigated, both in vitro and in vivo, the following four recombinant viruses which were generated using MHV-68 cloned as a bacterial artificial chromosome: (i) a mutant virus with a deletion which affects both the coding region for M10a-c and the oriLyt; (ii) a revertant virus in which both the M10a-c coding region and the oriLyt were reverted to those of the wild type; (iii) a virus with an ectopic insertion of the oriLyt, which restores the function of the oriLyt but not the M10a-c coding region; and (iv) a mutant virus with a deletion in the oriLyt only. While the mutants were slightly attenuated with regard to lytic replication in cell culture, they showed severe growth defects in vivo. Both lytic replication and latency amplification were strongly reduced. In contrast, both the revertant virus and the virus with the ectopic oriLyt insertion grew very similarly to the parental wild-type virus both in vitro and in vivo. Thus, we provide genetic evidence that mutation of the oriLyt, and not of putative protein coding sequences within the M10a-c region, is responsible for the observed phenotype. We conclude that the oriLyt in the M10 locus plays an important role during infection of mice with MHV-68.Diseases caused by gammaherpesviruses continue to be a challenge for human health. The prototypic gamma-1 herpesvirus Epstein-Barr virus (EBV) is associated with lymphomas and nasopharyngeal carcinoma (22). Human herpesvirus 8 (also called Kaposi''s sarcoma-associated herpesvirus [KSHV]), a gamma-2 herpesvirus, is associated with lymphoproliferative disorders and Kaposi''s sarcoma (24). In vivo studies of gammaherpesvirus pathogenesis have been limited to clinical investigation of the infection because of the restricted host range of these viruses. The murine gammaherpesvirus 68 (MHV-68) is also a member of the gammaherpesvirus subfamily and is closely related to KSHV and EBV. Since there exist no good animal models for KSHV and EBV, MHV-68 serves as a small-animal model to investigate gammaherpesvirus pathogenesis (6, 9, 10, 13, 21, 25, 26, 30). MHV-68 is a natural pathogen of wild rodents (7) and is capable of infecting laboratory mice. The nucleotide sequence of MHV-68 is similar to that of EBV and even more closely related to that of KSHV (29). MHV-68 contains genes which are homologous to cellular genes or to genes of other gammaherpesviruses. In addition, it contains virus-specific genes. Many of the latency- and transformation-associated proteins of the gammaherpesviruses, for example, EBNA and LMP of EBV, appear to be encoded by virus-specific genes, yet it has been suggested that pathogenesis-associated genes of gammaherpesviruses may be contained in similarly positioned genome regions (29). The virus-specific genes of MHV-68 were originally designated M1 to M14 (29). The M10 locus has been predicted to code for three overlapping open reading frames (M10a, M10b, and M10c [M10a-c]) (29). While several MHV-68-specific genes have been shown to code for proteins with important functions, the function of M10 is still unknown. A more recent report even considered M10a-c rather unlikely to code for proteins (21). Importantly, the M10 locus also contains a lytic origin of replication (oriLyt) (3, 8). According to the colinear organization of the gammaherpesvirus genomes, the M10 locus is situated at a position equivalent to that of the K12 locus of KSHV. K12 encodes proteins of the kaposin family. Kaposin proteins are involved in cellular transformation and in stabilization of cytokine mRNAs (16-18,20). Of note, the K12 locus also contains an oriLyt (5).Here, we investigated the function of the M10 locus during lytic and latent infections by studying mutant viruses with deletions in the M10 loci, either affecting both the coding region for M10a-c and the oriLyt or the oriLyt only. While the mutants were slightly attenuated with regard to lytic replication in cell culture, they showed severe growth defects in vivo. Both lytic replication and latency amplification were strongly reduced in mice infected with the mutant viruses. In contrast, a revertant virus in which both the M10a-c coding region and the oriLyt were reverted to those of the wild type and a virus with an ectopic insertion of the oriLyt which restores the function of the oriLyt but not the M10a-c coding region grew very similarly to the parental wild-type virus both in vitro and in vivo. Thus, we provide genetic evidence that mutation of the oriLyt, and not of putative protein coding sequences within the M10a-c region, is responsible for the observed phenotype.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号