首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Hermansky-Pudlak syndrome (HPS) is a genetically heterogeneous inherited disease causing hypopigmentation and prolonged bleeding times. An additional serious clinical problem of HPS is the development of lung pathology, which may lead to severe lung disease and premature death. No cure for the disease exists, and previously, no animal model for the HPS lung abnormalities has been reported. A mouse model of HPS, which is homozygously recessive for both the Hps1 (pale ear) and Hps2 (pearl) genes, exhibits striking abnormalities of lung type II cells. Type II cells and lamellar bodies of this mutant are greatly enlarged, and the lamellar bodies are engorged with surfactant. Mutant lungs accumulate excessive autofluorescent pigment. The air spaces of mutant lungs contain age-related elevations of inflammatory cells and foamy macrophages. In vivo measurement of lung hysteresivity demonstrated aberrant lung function in mutant mice. All these features are similar to the lung pathology described in HPS patients. Morphometry of mutant lungs indicates a significant emphysema. These mutant mice provide a model to further investigate the lung pathology and therapy of HPS. We hypothesize that abnormal type II cell lamellar body structure/function may predict future lung pathology in HPS.  相似文献   

2.
Hermansky-Pudlak syndrome (HPS) is a genetically heterogeneous inherited disease affecting vesicle trafficking among lysosome-related organelles. The Hps3, Hps5, and Hps6 genes are mutated in the cocoa, ruby-eye-2, and ruby-eye mouse pigment mutants, respectively, and their human orthologs are mutated in HPS3, HPS5, and HPS6 patients. These three genes encode novel proteins of unknown function. The phenotypes of Hps5/Hps5,Hps6/Hps6 and Hps3/Hps3,Hps6/Hps6 double mutant mice mimic, in coat and eye colors, in melanosome ultrastructure, and in levels of platelet dense granule serotonin, the corresponding phenotypes of single mutants. These facts suggest that the proteins encoded by these genes act within the same pathway or protein complex in vivo to regulate vesicle trafficking. Further, the Hps5 protein is destabilized within tissues of Hps3 and Hps6 mutants, as is the Hps6 protein within tissues of Hps3 and Hps5 mutants. Also, proteins encoded by these genes co-immunoprecipitate and occur in a complex of 350 kDa as determined by sucrose gradient and gel filtration analyses. Together, these results indicate that the Hps3, Hps5, and Hps6 proteins regulate vesicle trafficking to lysosome-related organelles at the physiological level as components of the BLOC-2 (biogenesis of lysosome-related organelles complex-2) protein complex and suggest that the pathogenesis and future therapies of HPS3, HPS5, and HPS6 patients are likely to be similar. Interaction of the Hps5 and Hps6 proteins within BLOC-2 is abolished by the three-amino acid deletion in the Hps6(ru) mutant allele, indicating that these three amino acids are important for normal BLOC-2 complex formation.  相似文献   

3.
Arabidopsis mutant hps1 that over-accumulates sucrose has enhanced sensitivity in almost all the aspects of plant responses to phosphate starvation. The detailed characterization of hps1 has led to the conclusion that sucrose is a global regulator of plant phosphate responses. Here, we show that hps1 is also hypersensitive to nitrogen and potassium deprivation, as well as to decreased levels of overall macronutrients. These results suggest that sucrose regulates plant deficiency responses to multiple nutrients and is part of a general response to nutrient deprivation.Key words: nutrient deficiency, plant response, hps1, sucrose, signalingPlants often encounter nutrient deficiency in their surrounding environments,1 and because they are sessile, plants have to develop sophisticated strategies to cope with nutritional stress. The strategies include an array of biochemical, physiological, and developmental responses.25 Interactions among the different nutrients have also been documented.6,7 For example, ammonium interacts with potassium (K) for uptake,8 and nitrate transporters were downregulated in K-deprived plants.9 Phosphate (P) deficiency induces expression of the K transporter gene HAK5 and causes high accumulation of iron.7,10,11 The intimate cross talk among the different nutrients suggests the existence of some common signaling components that are involved in regulating plant responses to different nutrient stresses. However, the molecular identity of these signaling components remains unknown.Previously, we reported the characterization of an Arabidopsis mutant hps1.10 In hps1, a sucrose transporter gene, SUC2, is overexpressed, resulting in enhanced uptake of sucrose from the culture medium. As a consequence, hps1 accumulates a high level of sucrose in both its shoot and root tissues. hps1 is hypersensitive in almost all the aspects of plant responses to P starvation. In contrast, the suc2 knockout mutant displays opposite phenotypes. We also showed that a high level of sucrose in hps1 can directly induce most P starvation-responsive genes even under P sufficient condition. Under normal growth condition, hps1 contains less chlorophyll, probably due to the feedback inhibition of photosynthesis by the high level of sucrose. Combined with the results from our genomic research and early work by other groups,10,12 we conclude that sucrose is a global regulator of plant responses to P starvation. In this study we determine if sucrose is also involved in responses to other nutrients and thus is part of a general response mechanism to nutrient deprivation.We first tested whether hps1 also shows hypersensitivity to nitrogen (N) and K deprivation. The seeds of the WT and hps1 were directly sown on MS medium in which sucrose was replaced by glucose to ensure the same growth status. Five days after seed germination, the seedling were transferred to sucrose-containing MS medium without supplementation of N, P or K, respectively, and grow for another 5 or 12 days. Compared to the WT, P-starved hps1 had smaller size of shoots and accumulated more anthocyanin (Fig. 1A and B); this was consistent with our previous findings.10 Similarly, hps1 showed enhanced sensitivity to N and K deprivation in term of primary root growth (Fig. 1A). N starved-hps1 plants also accumulated more anthocyanins than N starved-WT plants (Fig. 1B). However, there was no significant difference of the shoot size between the WT and hps1 on N and K deficiency medium.Open in a separate windowFigure 1The hps1 mutant is hypersensitive to N, P and K deprivation. Five-day-old seedlings of the WT and hps1 mutant grown on glucose-containing MS medium were transferred to sucrose-containing MS medium with or without supplemented phosphate, nitrogen or potassium. The seedlings were photographed 5 days (A) and 12 days (B) after transfer. Bar = 10 mm.To further determine whether hps1 is hypersensitive to a general decrease in nutrient supply, we examined the responses of hps1 grown on sucrose-containing MS medium with different levels of nutrients. When grown on full-strength MS medium, shoot size and shoot fresh weight were similar for the WT and hps1 (Fig. 2). Decreasing the macronutrient concentration to 1/2 strength significantly enhanced the shoot growth of both the WT and hps1. Reducing the macro-nutrient concentration to 1/10 had no further obvious effect on the WT, but it dramatically inhibited the shoot growth of hps1 (Fig. 2A and B). Ten days after seed germination, the shoot fresh weight of hps1 grown on 1/20 MS medium was only about 15% of that for the WT. Regardless of the strength of the MS media, no accumulation of anthocyanin could be visually detected for the WT. For the hps1 mutant, however, anthocyanin accumulation was evident even on 1/4 MS medium, and the accumulation increased as the macronutrient level was further decreased (Fig. 2A). Interestingly, the hypersensitive responses of hps1 to decreased macronutrient concentration only occurred in shoot growth, but not in root growth (Fig. 2A and C).Open in a separate windowFigure 2The hps1 mutant is hypersensitive to a decreased level of macronutrients. Five-day-old seedlings of the WT and hps1 mutant grown on glucose-containing MS medium were transferred to sucrose-containing MS medium with different strength of macronutrients. After transfer, the seedlings were grown for another 10 days. (A) Photographs of the WT and hps1 seedlings after growth on the MS medium with different nutrient strength. (B and C): Shoot and root fresh weight (FW) of the WT and hps1 seedlings shown in (A). Data represents means ± SE (n > 10). Values with different letters differ significantly (p < 0.01). Bar = 10 mm.  相似文献   

4.
Knowledge of the kinds and numbers of nuclear point mutations in human tissues is essential to the understanding of the mutation mechanisms underlying genetic diseases. However, nuclear point mutant fractions in normal humans are so low that few methods exist to measure them. We have now developed a means to scan for point mutations in 100 bp nuclear single copy sequences at mutant fractions as low as 10–6. Beginning with about 108 human cells we first enrich for the desired nuclear sequence 10 000-fold from the genomic DNA by sequence-specific hybridization coupled with a biotin–streptavidin capture system. We next enrich for rare mutant sequences 100-fold against the wild-type sequence by wide bore constant denaturant capillary electrophoresis (CDCE). The mutant-enriched sample is subsequently amplified by high fidelity PCR using fluorescein-labeled primers. Amplified mutant sequences are further enriched via two rounds of CDCE coupled with high fidelity PCR. Individual mutants, seen as distinct peaks on CDCE, are then isolated and sequenced. We have tested this approach by measuring N-methyl-′-nitro-N-nitrosoguanidine (MNNG)-induced point mutations in a 121 bp sequence of the adenomatous polyposis coli gene (APC) in human lymphoblastoid MT1 cells. Twelve different MNNG-induced GC→AT transitions were reproducibly observed in MNNG-treated cells at mutant fractions between 2 × 10–6 and 9 × 10–6. The sensitivity of this approach was limited by the fidelity of Pfu DNA polymerase, which created 14 different GC→TA transversions at a mutant fraction equivalent to ~10–6 in the original samples. The approach described herein should be general for all DNA sequences suitable for CDCE analysis. Its sensitivity and capacity would permit detection of stem cell mutations in tissue sectors consisting of ~108 cells.  相似文献   

5.
Pigmentation in mammals is important for protection of skin and eyes from ultraviolet radiation. Dysregulation of pigmentation is often associated with other conditions that are not directly linked to pigmentation. Here, we isolated spontaneously occurring hypopigmented mice that occasionally experienced severe diarrhea during lactation. Treatment of these mice with dextran sulfate sodium salt, a conventional method to induce acute colitis, caused chronic diarrhea with granulomatous colitis. Gene mapping and sequencing revealed that the mice had a nonsense mutation in the Hermansky–Pudlak syndrome (Hps)5 gene. As some HPS patients can develop granulomatous colitis, the simple induction of chronic colitis in spontaneously mutated Hps5‐deficient mice may become an invaluable model for exploring treatment options in patients with HPS as well as other patients with inflammatory bowel disease.  相似文献   

6.
Benzo[a]pyrene is an important environmental mutagen and carcinogen. Its metabolism in cells yields the mutagenic, key ultimate carcinogen 7R,8S,9S,10R-anti-benzo[a]pyrene-7,8-dihydrodiol-9,10-epoxide, (+)-anti-BPDE, which reacts via its 10-position with N2-dG in DNA to form the adduct (+)-trans-anti-BPDE-N2-dG. To gain molecular insights into BPDE-induced mutagenesis, we examined in vivo translesion synthesis and mutagenesis in yeast cells of a site-specific 10S (+)-trans-anti-BPDE-N2-dG adduct and the stereoisomeric 10R (−)-trans-anti-BPDE-N2-dG adduct. In wild-type cells, bypass products consisted of 76% C, 14% A and 7% G insertions opposite (+)-trans-anti-BPDE-N2-dG; and 89% C, 4% A and 4% G insertions opposite (−)-trans-anti-BPDE-N2-dG. Translesion synthesis was reduced by ~26–37% in rad30 mutant cells lacking Polη, but more deficient in rev1 and almost totally deficient in rev3 (lacking Polζ) mutants. C insertion opposite the lesion was reduced by ~24–33% in rad30 mutant cells, further reduced in rev1 mutant, and mostly disappeared in the rev3 mutant strain. The insertion of A was largely abolished in cells lacking either Polη, Polζ or Rev1. The insertion of G was not detected in either rev1 or rev3 mutant cells. The rad30 rev3 double mutant exhibited a similar phenotype as the single rev3 mutant with respect to translesion synthesis and mutagenesis. These results show that while the Polζ pathway is generally required for translesion synthesis and mutagenesis of the (+)- and (−)-trans-anti-BPDE-N2-dG DNA adducts, Polη, Polζ and Rev1 together are required for G→T transversion mutations, a major type of mutagenesis induced by these lesions. Based on biochemical and genetic results, we present mechanistic models of translesion synthesis of these two DNA adducts, involving both the one-polymerase one-step and two-polymerase two-step models.  相似文献   

7.
The structure-specific FEN-1 endonuclease has been implicated in various cellular processes, including DNA replication, repair and recombination. In vertebrate cells, however, no in vivo evidence has been provided so far. Here, we knocked out the FEN-1 gene (FEN1) in the chicken DT40 cell line. Surprisingly, homozygous mutant (FEN1–/–) cells were viable, indicating that FEN-1 is not essential for cell proliferation and thus for Okazaki fragment processing during DNA replication. However, compared with wild-type cells, FEN1–/– cells exhibited a slow growth phenotype, probably due to a high rate of cell death. The mutant cells were hypersensitive to methylmethane sulfonate, N-methyl-N′-nitro-N-nitrosoguanidine and H2O2, but not to UV light, X-rays and etoposide, suggesting that FEN-1 functions in base excision repair in vertebrate cells.  相似文献   

8.
Infant gut-associated bifidobacteria possess species-specific enzymatic sets to assimilate human milk oligosaccharides, and lacto-N-biosidase (LNBase) is a key enzyme that degrades lacto-N-tetraose (Galβ1–3GlcNAcβ1–3Galβ1–4Glc), the main component of human milk oligosaccharides, to lacto-N-biose I (Galβ1–3GlcNAc) and lactose. We have previously identified LNBase activity in Bifidobacterium bifidum and some strains of Bifidobacterium longum subsp. longum (B. longum). Subsequently, we isolated a glycoside hydrolase family 20 (GH20) LNBase from B. bifidum; however, the genome of the LNBase+ strain of B. longum contains no GH20 LNBase homolog. Here, we reveal that locus tags BLLJ_1505 and BLLJ_1506 constitute LNBase from B. longum JCM1217. The gene products, designated LnbX and LnbY, respectively, showed no sequence similarity to previously characterized proteins. The purified enzyme, which consisted of LnbX only, hydrolyzed via a retaining mechanism the GlcNAcβ1–3Gal linkage in lacto-N-tetraose, lacto-N-fucopentaose I (Fucα1–2Galβ1–3GlcNAcβ1–3Galβ1–4Glc), and sialyllacto-N-tetraose a (Neu5Acα2–3Galβ1–3GlcNAcβ1–3Galβ1–4Gal); the latter two are not hydrolyzed by GH20 LNBase. Among the chromogenic substrates examined, the enzyme acted on p-nitrophenyl (pNP)-β-lacto-N-bioside I (Galβ1–3GlcNAcβ-pNP) and GalNAcβ1–3GlcNAcβ-pNP. GalNAcβ1–3GlcNAcβ linkage has been found in O-mannosyl glycans of α-dystroglycan. Therefore, the enzyme may serve as a new tool for examining glycan structures. In vitro refolding experiments revealed that LnbY and metal ions (Ca2+ and Mg2+) are required for proper folding of LnbX. The LnbX and LnbY homologs have been found only in B. bifidum, B. longum, and a few gut microbes, suggesting that the proteins have evolved in specialized niches.  相似文献   

9.
Two novel dATP analogs for DNA photoaffinity labeling   总被引:1,自引:0,他引:1       下载免费PDF全文
Two new photoreactive dATP analogs, N6-[4-azidobenzoyl–(2-aminoethyl)]-2′-deoxyadenosine-5′-triphosphate (AB-dATP) and N6-[4-[3-(trifluoromethyl)-diazirin-3-yl]benzoyl-(2-aminoethyl)]-2′-deoxyadenosine-5′-triphosphate (DB-dATP), were synthesized from 2′-deoxyadenosine-5′-monophosphate in a six step procedure. Synthesis starts with aminoethylation of dAMP and continues with rearrangement of N1-(2-aminoethyl)-2′-deoxyadenosine-5′-monophosphate to N6-(2-aminoethyl)-2′-deoxyadenosine-5′-monophosphate (N6-dAMP). Next, N6-dAMP is converted into the triphosphate form by first protecting the N-6 primary amino group before coupling the pyrophosphate. After pyrophosphorylation, the material is deprotected to yield N6-(2-aminoethyl)-2′-deoxyadenosine-5′-triphosphate (N6-dATP). The N-6 amino group is subsequently used to attach either a phenylazide or phenyldiazirine and the photoreactive nucleotide is then enzymatically incorporated into DNA. N6-dATP and its photoreactive analogs AB-dATP and DB-dATP were successfully incorporated into DNA using the exonuclease-free Klenow fragment of DNA polymerase I in a primer extension reaction. UV irradiation of the primer extension reaction with AB-dATP or DB-dATP showed specific photocrosslinking of DNA polymerase I to DNA.  相似文献   

10.
Repair of oxidative stress- and inflammation-induced DNA lesions by the base excision repair (BER) pathway prevents mutation, a form of genomic instability which is often observed in cancer as ‘mutation hotspots’. This suggests that some sequences have inherent mutability, possibly due to sequence-related differences in repair. This study has explored intrinsic mutability as a consequence of sequence-specific repair of lipid peroxidation-induced DNA adduct, 1, N6-ethenoadenine (εA). For the first time, we observed significant delay in repair of ϵA at mutation hotspots in the tumor suppressor gene p53 compared to non-hotspots in live human hepatocytes and endothelial cells using an in-cell real time PCR-based method. In-cell and in vitro mechanism studies revealed that this delay in repair was due to inefficient turnover of N-methylpurine-DNA glycosylase (MPG), which initiates BER of εA. We determined that the product dissociation rate of MPG at the hotspot codons was ≈5–12-fold lower than the non-hotspots, suggesting a previously unknown mechanism for slower repair at mutation hotspots and implicating sequence-related variability of DNA repair efficiency to be responsible for mutation hotspot signatures.  相似文献   

11.
12.
The activity of DNA topoisomerase I (Top1), an enzyme that regulates DNA topology, is impacted by DNA structure alterations and by the anticancer alkaloid camptothecin (CPT). Here, we evaluated the effect of the acetaldehyde-derived DNA adduct, N2-ethyl-2′-deoxyguanosine (N2-ethyl-dG), on human Top1 nicking and closing activities. Using purified recombinant Top1, we show that Top1 nicking-closing activity remains unaffected in N2-ethyl-dG adducted oligonucleotides. However, the N2-ethyl-dG adduct enhanced CPT-induced Top1–DNA cleavage complexes depending on the relative position of the N2-ethyl-dG adduct with respect to the Top1 cleavage site. The Top1-mediated DNA religation (closing) was selectively inhibited when the N2-ethyl-dG adduct was present immediately 3′ from the Top1 site (position +1). In addition, when the N2-ethyl-dG adduct was located at the −5 position, CPT enhanced cleavage at an alternate Top1 cleavage site immediately adjacent to the adduct, which was then at position +1 relative to this new alternate Top1 site. Modeling studies suggest that the ethyl group on the N2-ethyl-dG adduct located at the 5′ end of a Top1 site (position +1) sterically blocks the dissociation of CPT from the Top1–DNA complex, thereby inhibiting further the religation (closing) reaction.  相似文献   

13.

Background

Fluoroquinolones have been used broadly since the end of the 1980s and have been recommended for Neisseria meningitidis prophylaxis since 2005 in China. The aim of this study was to determine whether and how N. meningitidis antimicrobial susceptibility, serogroup prevalence, and clonal complex (CC) prevalence shifted in association with the introduction and expanding use of quinolones in Shanghai, a region with a traditionally high incidence of invasive disease due to N. meningitidis.

Methods and Findings

A total of 374 N. meningitidis isolates collected by the Shanghai Municipal Center for Disease Control and Prevention between 1965 and 2013 were studied. Shifts in the serogroups and CCs were observed, from predominantly serogroup A CC5 (84%) in 1965–1973 to serogroup A CC1 (58%) in 1974–1985, then to serogroup C or B CC4821 (62%) in 2005–2013. The rates of ciprofloxacin nonsusceptibility in N. meningitidis disease isolates increased from 0% in 1965–1985 to 84% (31/37) in 2005–2013 (p < 0.001). Among the ciprofloxacin-nonsusceptible isolates, 87% (27/31) were assigned to either CC4821 (n = 20) or CC5 (n = 7). The two predominant ciprofloxacin-resistant clones were designated ChinaCC4821-R1-C/B and ChinaCC5-R14-A. The ChinaCC4821-R1-C/B clone acquired ciprofloxacin resistance by a point mutation, and was present in 52% (16/31) of the ciprofloxacin-nonsusceptible disease isolates. The ChinaCC5-R14-A clone acquired ciprofloxacin resistance by horizontal gene transfer, and was found in 23% (7/31) of the ciprofloxacin-nonsusceptible disease isolates. The ciprofloxacin nonsusceptibility rate was 47% (7/15) among isolates from asymptomatic carriers, and nonsusceptibility was associated with diverse multi-locus sequence typing profiles and pulsed-field gel electrophoresis patterns. As detected after 2005, ciprofloxacin-nonsusceptible strains were shared between some of the patients and their close contacts. A limitation of this study is that isolates from 1986–2004 were not available and that only a small sample of convenience isolates from 1965–1985 were available.

Conclusions

The increasing prevalence of ciprofloxacin resistance since 2005 in Shanghai was associated with the spread of hypervirulent lineages CC4821 and CC5. Two resistant meningococcal clones ChinaCC4821-R1-C/B and ChinaCC5-R14-A have emerged in Shanghai during the quinolone era. Ciprofloxacin should be utilized with caution for the chemoprophylaxis of N. meningitidis in China.  相似文献   

14.
Xeroderma pigmentosum (XP) is caused by defects in the nucleotide excision repair (NER) pathway. NER removes helix-distorting DNA lesions, such as UV–induced photodimers, from the genome. Patients suffering from XP exhibit exquisite sun sensitivity, high incidence of skin cancer, and in some cases neurodegeneration. The severity of XP varies tremendously depending upon which NER gene is mutated and how severely the mutation affects DNA repair capacity. XPF-ERCC1 is a structure-specific endonuclease essential for incising the damaged strand of DNA in NER. Missense mutations in XPF can result not only in XP, but also XPF-ERCC1 (XFE) progeroid syndrome, a disease of accelerated aging. In an attempt to determine how mutations in XPF can lead to such diverse symptoms, the effects of a progeria-causing mutation (XPFR153P) were compared to an XP–causing mutation (XPFR799W) in vitro and in vivo. Recombinant XPF harboring either mutation was purified in a complex with ERCC1 and tested for its ability to incise a stem-loop structure in vitro. Both mutant complexes nicked the substrate indicating that neither mutation obviates catalytic activity of the nuclease. Surprisingly, differential immunostaining and fractionation of cells from an XFE progeroid patient revealed that XPF-ERCC1 is abundant in the cytoplasm. This was confirmed by fluorescent detection of XPFR153P-YFP expressed in Xpf mutant cells. In addition, microinjection of XPFR153P-ERCC1 into the nucleus of XPF–deficient human cells restored nucleotide excision repair of UV–induced DNA damage. Intriguingly, in all XPF mutant cell lines examined, XPF-ERCC1 was detected in the cytoplasm of a fraction of cells. This demonstrates that at least part of the DNA repair defect and symptoms associated with mutations in XPF are due to mislocalization of XPF-ERCC1 into the cytoplasm of cells, likely due to protein misfolding. Analysis of these patient cells therefore reveals a novel mechanism to potentially regulate a cell''s capacity for DNA repair: by manipulating nuclear localization of XPF-ERCC1.  相似文献   

15.
Hermansky Pudlak syndrome (HPS) is a heterogeneous recessive genetic disease with a tendency to develop lung fibrosis with aging. A mouse strain with two mutant HPS genes affecting separate vesicle trafficking pathways, C57BL/6-Hps1 ep -Ap3b1 pe , exhibits severe lung abnormalities at young ages, including enlarged alveolar type II (ATII) cells with giant lamellar bodies and foamy alveolar macrophages (AMs), which are readily identified histologically. In this study, the appearance of lung fibrosis in older animals was studied using classical histological and biochemical methods. The HPS double mutant mice, but not Chediak Higashi syndrome (C57BL/6-Lyst bg-J -J, CHS) or C57BL/6J black control (WT) mice, were found to develop lung fibrosis at about 17 months of age using Masson trichrome staining, which was confirmed by hydroxyproline analysis. TGF β1 levels were elevated in bronchial alveolar lavage samples at all ages tested in the double mutant, but not WT or CHS mice, indicative of a prefibrotic condition in this experimental strain; and AMs were highly positive for this cytokine using immunohistochemistry staining. Prosurfactant protein C staining for ATII cells showed redistribution and dysmorphism of these cells with aging, but there was no evidence for epithelial-mesenchymal transition of ATII cells by dual staining for prosurfactant C protein and α-smooth muscle actin. This investigation showed that the HPS double mutant mouse strain develops interstitial pneumonia (HPSIP) past 1 year of age, which may be initiated by abnormal ATII cells and exacerbated by AM activation. With prominent prefibrotic abnormalities, this double mutant may serve as a model for interventive therapy in HPS.  相似文献   

16.
Daniel L. Wulff 《Genetics》1976,82(3):401-416
Seven lambda cy mutants have been mapped within a small region located approximately halfway between the rightward boundary of the imm434 region and the lambda cII gene. The seven mutants lie at four sites separated by a total distance of about 12 nucleotide pairs, as estimated from recombination frequencies. Six of the seven mutants lie on the right side of the cy fine structure map, spanning a total distance of about 3–5 nucleotide pairs. Lying approximately 11–21 nucleotide pairs to the left of the leftmost cy mutant is a newly described mutation called cin-1, for c independent. The cin-1 mutation allows some lysogenization when coupled with any cy, cII or cIII mutant, but not when coupled with a defective cI gene. The cin-1 mutation, like cy mutants, has a cis-dominant action upon the cI gene in mixed infections. The observation that λimm434 cin-1 cy2001 lysogenizes efficiently, but not λimm434 cin-1 cy2001 cII68 nor any other λimm434 cin-1 cy derivative, is interpreted to mean that all of the cy mutants on the right side of the cy fine structure map inactivate a binding site for cII/cIII function, but that cy2001, the single mutant on the left side of the cy fine structure map, does not inactivate that binding site.  相似文献   

17.
1. Assay of some photosynthetic bacteria for vitamin B12 showed them to be relatively rich in this factor. Rhodopseudomonas spheroides, grown photosynthetically in Co2+-supplemented medium, contained about 100μg./g. dry wt. 2. Extracts of wild-type Rps. spheroides methylated homocysteine by a mechanism similar to the cobalamin-dependent pathway present in Escherichia coli. However, no mechanism similar to the cobalamin-independent N5-methyltetrahydrofolate–homocysteine transmethylase of E. coli could be detected in Rps. spheroides. 3. N5N10-Methylenetetrahydrofolate-reductase activity was found in Rps. spheroides. 4. A methionine-requiring mutant strain of Rps. spheroides (strain 2/33), which does not respond to homocysteine, made the same amount of vitamin B12 as the parent organism. Extracts did not form methionine from N5-methyltetrahydrofolate and homocysteine even in the presence of cofactors shown to be necessary with the parent strain, and it is concluded that the mutant is blocked in the formation of the apoenzyme of a homocysteine-methylating system similar to the vitamin B12-dependent one in E. coli.  相似文献   

18.
In grassland ecosystems, N and P fertilization often increase plant productivity, but there is no concensus if fertilization affects soil C fractions. We tested effects of N, P and N+P fertilization at 5, 10, 15 g m−2 yr−1 (N5, N10, N15, P5, P10, P15, N5P5, N10P10, and N15P15) compared to unfertilized control on soil C, soil microbial biomass and functional diversity at the 0–20 cm and 20–40 cm depth in an alpine meadow after 5 years of continuous fertilization. Fertilization increased total aboveground biomass of community and grass but decreased legume and forb biomass compared to no fertilization. All fertilization treatments decreased the C:N ratios of legumes and roots compared to control, however fertilization at rates of 5 and 15 g m−2 yr−1 decreased the C:N ratios of the grasses. Compared to the control, soil microbial biomass C increased in N5, N10, P5, and P10 in 0–20 cm, and increased in N10 and P5 while decreased in other treatments in 20–40 cm. Most of the fertilization treatments decreased the respiratory quotient (qCO2) in 0–20 cm but increased qCO2 in 20–40 cm. Fertilization increased soil microbial functional diversity (except N15) but decreased cumulative C mineralization (except in N15 in 0–20 cm and N5 in 20–40 cm). Soil organic C (SOC) decreased in P5 and P15 in 0–20 cm and for most of the fertilization treatments (except N15P15) in 20–40 cm. Overall, these results suggested that soils will not be a C sink (except N15P15). Nitrogen and phosphorus fertilization may lower the SOC pool by altering the plant biomass composition, especially the C:N ratios of different plant functional groups, and modifying C substrate utilization patterns of soil microbial communities. The N+P fertilization at 15 g m−2 yr−1 may be used in increasing plant aboveground biomass and soil C accumulation under these meadows.  相似文献   

19.
To investigate the mutation mechanism of purine transitions in DNA damaged with methoxyamine, a DNA dodecamer with the sequence d(CGCAAATTmo4CGCG), where mo4C is 2′-deoxy-N4-methoxycytidine, has been synthesized and the crystal structure determined by X-ray analysis. The duplex structure is similar to that of the original undamaged B-form dodecamer, indicating that the methoxylation does not affect the overall DNA conformation. Electron density maps clearly show that the two mo4C residues form Watson–Crick-type base pairs with the adenine residues of the opposite strand and that the methoxy groups of mo4C adopt the anti conformation to N3 around the C4–N4 bond. For the pair formation through hydrogen bonds the mo4C residues are in the imino tautomeric state. Together with previous work, the present work establishes that the methoxylated cytosine residue can present two alternate faces for Watson–Crick base-pairing, thanks to the aminoimino tautomerism allowed by methoxylation. Based on this property, two gene transition routes are proposed.  相似文献   

20.
Complex I pumps protons across the membrane by using downhill redox energy. Here, to investigate the proton pumping mechanism by complex I, we focused on the largest transmembrane subunit NuoL (Escherichia coli ND5 homolog). NuoL/ND5 is believed to have H+ translocation site(s), because of a high sequence similarity to multi-subunit Na+/H+ antiporters. We mutated thirteen highly conserved residues between NuoL/ND5 and MrpA of Na+/H+ antiporters in the chromosomal nuoL gene. The dNADH oxidase activities in mutant membranes were mostly at the control level or modestly reduced, except mutants of Glu-144, Lys-229, and Lys-399. In contrast, the peripheral dNADH-K3Fe(CN)6 reductase activities basically remained unchanged in all the NuoL mutants, suggesting that the peripheral arm of complex I was not affected by point mutations in NuoL. The proton pumping efficiency (the ratio of H+/e), however, was decreased in most NuoL mutants by 30–50%, while the IC50 values for asimicin (a potent complex I inhibitor) remained unchanged. This suggests that the H+/e stoichiometry has changed from 4H+/2e to 3H+ or 2H+/2e without affecting the direct coupling site. Furthermore, 50 μm of 5-(N-ethyl-N-isopropyl)-amiloride (EIPA), a specific inhibitor for Na+/H+ antiporters, caused a 38 ± 5% decrease in the initial H+ pump activity in the wild type, while no change was observed in D178N, D303A, and D400A mutants where the H+ pumping efficiency had already been significantly decreased. The electron transfer activities were basically unaffected by EIPA in both control and mutants. Taken together, our data strongly indicate that the NuoL subunit is involved in the indirect coupling mechanism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号