首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A novel series of thiazole-naphthalene derivatives as tubulin polymerisation inhibitors were designed, synthesised, and evaluated for the anti-proliferative activities. The majority of the tested compounds exhibited moderate to potent antiproliferative activity on the MCF-7 and A549 cancer cell lines. Among them, compound 5b was found to be the most active compound with IC50 values of 0.48 ± 0.03 and 0.97 ± 0.13 μM. Moreover, mechanistic studies revealed that 5b significantly inhibited tubulin polymerisation with an IC50 value of 3.3 µM, as compared to the standard drug colchicine (IC50 = 9.1 μM). Further cellular mechanism studies elucidated that 5b arrested the cell cycle at G2/M phase and induced apoptosis in MCF-7 cancer cells. Molecular modelling study indicated that 5b binds well to the colchicine binding site of tubulin. In summary, these results suggest that 5b represents a promising tubulin polymerisation inhibitor worthy of further investigation as potential anticancer agents.  相似文献   

2.
The screened compound DYT-1 from our in-house library was taken as a lead (inhibiting tubulin polymerisation: IC50=25.6 µM, anti-angiogenesis in Zebrafish: IC50=38.4 µM, anti-proliferation against K562 and Jurkat: IC50=6.2 and 7.9 µM, respectively). Further investigation of medicinal chemistry conditions yielded compound 29e (inhibiting tubulin polymerisation: IC50=4.8 µM and anti-angiogenesis in Zebrafish: IC50=3.6 µM) based on tubulin and zebrafish assays, which displayed noteworthily nanomolar potency against a variety of leukaemia cell lines (IC50= 0.09–1.22 µM), especially K562 cells where apoptosis was induced. Molecular docking, molecular dynamics (MD) simulation, radioligand binding assay and cellular microtubule networks disruption results showed that 29e stably binds to the tubulin colchicine site. 29e significantly inhibited HUVEC tube formation, migration and invasion in vitro. Anti-angiogenesis in vivo was confirmed by zebrafish xenograft. 29e also prominently blocked K562 cell proliferation and metastasis in blood vessels and surrounding tissues of the zebrafish xenograft model. Together with promising physicochemical property and metabolic stability, 29e could be considered an effective anti-angiogenesis and -leukaemia drug candidate that binds to the tubulin colchicine site.  相似文献   

3.
Discovering of new anticancer agents with potential activity against tubulin polymerisation is still a promising approach. Colchicine binding site inhibitors are the most relevant anti-tubulin polymerisation agents. Thus, new quinoline derivatives have been designed and synthesised to possess the same essential pharmacophoric features of colchicine binding site inhibitors. The synthesised compounds were tested in vitro against a panel of three human cancer cell lines (HepG-2, HCT-116, and MCF-7) using colchicine as a positive control. Comparing to colchicine (IC50 = 7.40, 9.32, and 10.41 µM against HepG-2, HCT-116, and MCF-7, respectively), compounds 20, 21, 22, 23, 24, 25, 26, and 28 exhibited superior cytotoxic activities with IC50 values ranging from 1.78 to 9.19 µM. In order to sightsee the proposed mechanism of anti-proliferative activity, the most active members were further evaluated in vitro for their inhibitory activities against tubulin polymerisation. Compounds 21 and 32 exhibited the highest tubulin polymerisation inhibitory effect with IC50 values of 9.11 and 10.5 nM, respectively. Such members showed activities higher than that of colchicine (IC50 = 10.6 nM) and CA-4 (IC50 = 13.2 nM). The impact of the most promising compound 25 on cell cycle distribution was assessed. The results revealed that compound 25 can arrest the cell cycle at G2/M phase. Annexin V and PI double staining assay was carried out to explore the apoptotic effect of the synthesised compounds. Compound 25 induced apoptotic effect on HepG-2 thirteen times more than the control cells. To examine the binding pattern of the target compounds against the tubulin heterodimers active site, molecular docking studies were carried out.  相似文献   

4.
Curcumin has been widely investigated for its myriad cellular effects resulting in reduced proliferation of various eukaryotic cells including cancer cells and the human malaria parasite Plasmodium falciparum. Studies with human cancer cell lines HT-29, Caco-2, and MCF-7 suggest that curcumin can bind to tubulin and induce alterations in microtubule structure. Based on this finding, we investigated whether curcumin has any effect on P. falciparum microtubules, considering that mammalian and parasite tubulin are 83% identical. IC50 of curcumin was found to be 5 µM as compared to 20 µM reported before. Immunofluorescence images of parasites treated with 5 or 20 µM curcumin showed a concentration-dependent effect on parasite microtubules resulting in diffuse staining contrasting with the discrete hemispindles and subpellicular microtubules observed in untreated parasites. The effect on P. falciparum microtubules was evident only in the second cycle for both concentrations tested. This diffuse pattern of tubulin fluorescence in curcumin treated parasites was similar to the effect of a microtubule destabilizing drug vinblastine on P. falciparum. Molecular docking predicted the binding site of curcumin at the interface of alpha and beta tubulin, similar to another destabilizing drug colchicine. Data from predicted drug binding is supported by results from drug combination assays showing antagonistic interactions between curcumin and colchicine, sharing a similar binding site, and additive/synergistic interactions of curcumin with paclitaxel and vinblastine, having different binding sites. This evidence suggests that cellular effects of curcumin are at least, in part, due to its perturbing effect on P. falciparum microtubules. The action of curcumin, both direct and indirect, on P. falciparum microtubules is discussed.  相似文献   

5.
Systematic screening based on structural similarity of drugs such as colchicine and podophyllotoxin led to identification of noscapine, a microtubule-targeted agent that attenuates the dynamic instability of microtubules without affecting the total polymer mass of microtubules. We report a new generation of noscapine derivatives as potential tubulin binding anti-cancer agents. Molecular modeling experiments of these derivatives 5a, 6a-j yielded better docking score (-7.252 to -5.402 kCal/mol) than the parent compound, noscapine (-5.505 kCal/mol) and its existing derivatives (-5.563 to -6.412 kCal/mol). Free energy (ΔG bind) calculations based on the linear interaction energy (LIE) empirical equation utilizing Surface Generalized Born (SGB) continuum solvent model predicted the tubulin-binding affinities for the derivatives 5a, 6a-j (ranging from -4.923 to -6.189 kCal/mol). Compound 6f showed highest binding affinity to tubulin (-6.189 kCal/mol). The experimental evaluation of these compounds corroborated with theoretical studies. N-(3-brormobenzyl) noscapine (6f) binds tubulin with highest binding affinity (KD, 38 ± 4.0 µM), which is ~ 4.0 times higher than that of the parent compound, noscapine (KD, 144 ± 1.0 µM) and is also more potent than that of the first generation clinical candidate EM011, 9-bromonoscapine (KD, 54 ± 9.1 µM). All these compounds exhibited substantial cytotoxicity toward cancer cells, with IC50 values ranging from 6.7 µM to 72.9 µM; compound 6f showed prominent anti-cancer efficacy with IC50 values ranging from 6.7 µM to 26.9 µM in cancer cells of different tissues of origin. These compounds perturbed DNA synthesis, delayed the cell cycle progression at G2/M phase, and induced apoptotic cell death in cancer cells. Collectively, the study reported here identified potent, third generation noscapinoids as new anti-cancer agents.  相似文献   

6.
Cryptophycin-52 (Cp-52) is potentially the most potent anticancer drug known, with IC50 values in the low picomolar range, but its binding site on tubulin and mechanism of action are unknown. Here, we have determined the binding site of Cp-52, and its parent compound, cryptophycin-1, on HeLa tubulin, to a resolution of 3.3 Å and 3.4 Å, respectively, by cryo-EM and characterized this binding further by molecular dynamics simulations. The binding site was determined to be located at the tubulin interdimer interface and partially overlap that of maytansine, another cytotoxic tubulin inhibitor. Binding induces curvature both within and between tubulin dimers that is incompatible with the microtubule lattice. Conformational changes occur in both α-tubulin and β-tubulin, particularly in helices H8 and H10, with distinct differences between α and β monomers and between Cp-52-bound and cryptophycin-1-bound tubulin. From these results, we have determined: (i) the mechanism of action of inhibition of both microtubule polymerization and depolymerization, (ii) how the affinity of Cp-52 for tubulin may be enhanced, and (iii) where linkers for targeted delivery can be optimally attached to this molecule.  相似文献   

7.
The thermal depolymerization procedure of Stephens (1970. J. Mol. Biol. 47:353) has been employed for solubilization of Strongylocentrotus purpuratus sperm tail outer doublet microtubules with the use of a buffer during solubilization which is of optimal pH and ionic strength for the preservation of colchicine binding activity of chick embryo brain tubulin. Colchicine binding values were corrected for first-order decay during heat solubilization at 50°C (t½ = 5.4 min) and incubation with colchicine at 37°C in the presence of vinblastine sulfate (t½ = 485 min). The colchicine binding properties of heat-solubilized outer doublet tubulin were qualitatively identical with those of other soluble forms of tubulin. The solubilized tubulin (mol wt, 115,000) bound 0.9 ± 0.2 mol of colchicine per mol of tubulin, with a binding constant of 6.3 x 105 liters/mol at 37°C. The colchicine binding reaction was both time and temperature dependent, and the binding of colchicine was prevented in a competitive manner by podophyllotoxin (Ki = 1.3 x 10-6 M). The first-order decay of colchicine binding activity was substantially decreased by the addition of the vinca alkaloids, vinblastine sulfate or vincristine sulfate, thus demonstrating the presence of a vinca alkaloid binding site(s) on the outer doublet tubulin. Tubulin contained within the assembled microtubules did not decay. Intact outer doublet microtubules bound less than 0.001 mol of colchicine per mol of tubulin contained in the microtubules, under conditions where soluble tubulin would have bound 1 mol of colchicine per mol of tubulin (saturating concentration of colchicine, no decay of colchicine binding activity). The presence of colchicine had no effect on the rate of solubilization of outer doublet microtubules during incubation at 37°C. Therefore, the colchicine binding site on tubulin is blocked (not available to bind colchicine) when the tubulin is in the assembled outer doublet microtubules.  相似文献   

8.
α-Fluorinated chalcones were prepared and evaluated for their cell growth inhibitory properties against six human cancer cell lines. The most potent chalcone 4c demonstrated excellent selective toxicity against cancer cells versus normal human cells, with IC50 values at nanomolar concentration ranges against 5 cancer cell lines. A further study revealed that 4c could bind to the colchicine site of tubulin, disrupt the cell microtubule networks, and effectively inhibit tubulin polymerisation. Cellular-based mechanism studies elucidated that 4c arrested MGC-803 cell cycle at G2/M phase. In addition, 4c dose-dependently caused Caspase-induced apoptosis of MGC-803 cells through mitochondrial dysfunction. Notably, compound 4c was found to inhibit the HUVECs tube formation, migration, and invasion in vitro. Furthermore, our data suggested that treatment with 4c significantly reduced MGC-803 cells metastasis and proliferation in vitro. Overall, this work showed that chalcone hybrid 4c is a potent inhibitor of tubulin assembly with prominent anti-angiogenesis and anti-cancer properties.  相似文献   

9.
A new series of quinoline derivatives of combretastatin A-4 have been designed, synthesised and demonstrated as tubulin polymerisation inhibitors. These novel compounds showed significant antiproliferative activities, among them, 12c exhibited the most potent inhibitory activity against different cancer cell lines (MCF-7, HL-60, HCT-116 and HeLa) with IC50 ranging from 0.010 to 0.042 µM, and with selectivity profile against MCF-10A non-cancer cells. Further mechanistic studies suggest that 12c can inhibit tubulin polymerisation and cell migration, leading to G2/M phase arrest. Besides, 12c induces apoptosis via a mitochondrial-dependant apoptosis pathway and caused reactive oxygen stress generation in MCF-7 cells. These results provide guidance for further rational development of potent tubulin polymerisation inhibitors for the treatment of cancer.

Highlights

  • A novel series of quinoline derivatives of combretastatin A-4 have been designed and synthesised.
  • Compound 12c showed significant antiproliferative activities against different cancer cell lines.
  • Compound 12c effectively inhibited tubulin polymerisation and competed with [3H] colchicine in binding to tubulin.
  • Compound 12c arrested the cell cycle at G2/M phase, effectively inducing apoptosis and inhibition of cell migration.
  相似文献   

10.
A series of novel 1,2,3-triazole-linked ciprofloxacin-chalcones 4a-j were synthesised as potential anticancer agents. Hybrids 4a-j exhibited remarkable anti-proliferative activity against colon cancer cells. Compounds 4a-j displayed IC50s ranged from 2.53-8.67 µM, 8.67–62.47 µM, and 4.19–24.37 µM for HCT116, HT29, and Caco-2 cells; respectively, whereas the doxorubicin, showed IC50 values of 1.22, 0.88, and 4.15 µM. Compounds 4a, 4b, 4e, 4i, and 4j were the most potent against HCT116 with IC50 values of 3.57, 4.81, 4.32, 4.87, and 2.53 µM, respectively, compared to doxorubicin (IC50 = 1.22 µM). Also, hybrids 4a, 4b, 4e, 4i, and 4j exhibited remarkable inhibitory activities against topoisomerase I, II, and tubulin polymerisation. They increased the protein expression level of γH2AX, indicating DNA damage, and arrested HCT116 in G2/M phase, possibly through the ATR/CHK1/Cdc25C pathway. Thus, the novel ciprofloxacin hybrids could be exploited as potential leads for further investigation as novel anticancer medicines to fight colorectal carcinoma.  相似文献   

11.
Microtubule-targeting agents are widely used for the treatment of cancer and as tool compounds to study the microtubule cytoskeleton. BAL27862 is a novel microtubule-destabilizing drug that is currently undergoing phase I clinical evaluation as the prodrug BAL101553. The drug is a potent inhibitor of tumor cell growth and shows a promising activity profile in a panel of human cancer models resistant to clinically relevant microtubule-targeting agents. Here, we evaluated the molecular mechanism of the tubulin–BAL27862 interaction using a combination of cell biology, biochemistry and structural biology methods. Tubulin-binding assays revealed that BAL27862 potently inhibited tubulin assembly at 37 °C with an IC50 of 1.4 μM and bound to unassembled tubulin with a stoichiometry of 1 mol/mol tubulin and a dissociation constant of 244 ± 30 nM. BAL27862 bound to tubulin independently of vinblastine, without the formation of tubulin oligomers. The kinetics of BAL27862 binding to tubulin were distinct from those of colchicine, with evidence of competition between BAL27862 and colchicine for binding. Determination of the tubulin–BAL27862 structure by X-ray crystallography demonstrated that BAL27862 binds to the same site as colchicine at the intradimer interface. Comparison of crystal structures of tubulin–BAL27862 and tubulin–colchicine complexes shows that the binding mode of BAL27862 to tubulin is similar to that of colchicine. However, comparative analyses of the effects of BAL27862 and colchicine on the microtubule mitotic spindle and in tubulin protease-protection experiments suggest different outcomes of tubulin binding. Taken together, our data define BAL27862 as a potent, colchicine site-binding, microtubule-destabilizing agent with distinct effects on microtubule organization.  相似文献   

12.
Maytansinoid conjugates are currently under different phases of clinical trials and have been showing promising activity for various types of cancers. In this study, we have elucidated the mechanism of action of ansamitocin P3, a structural analogue of maytansine for its anticancer activity. Ansamitocin P3 potently inhibited the proliferation of MCF-7, HeLa, EMT-6/AR1 and MDA-MB-231 cells in culture with a half-maximal inhibitory concentration of 20±3, 50±0.5, 140±17, and 150±1.1 pM, respectively. Ansamitocin P3 strongly depolymerized both interphase and mitotic microtubules and perturbed chromosome segregation at its proliferation inhibitory concentration range. Treatment of ansamitocin P3 activated spindle checkpoint surveillance proteins, Mad2 and BubR1 and blocked the cells in mitotic phase of the cell cycle. Subsequently, cells underwent apoptosis via p53 mediated apoptotic pathway. Further, ansamitocin P3 was found to bind to purified tubulin in vitro with a dissociation constant (Kd) of 1.3±0.7 µM. The binding of ansamitocin P3 induced conformational changes in tubulin. A docking analysis suggested that ansamitocin P3 may bind partially to vinblastine binding site on tubulin in two different positions. The analysis indicated that the binding of ansamitocin P3 to tubulin is stabilized by hydrogen bonds. In addition, weak interactions such as halogen-oxygen interactions may also contribute to the binding of ansamitocin P3 to tubulin. The study provided a significant insight in understanding the antiproliferative mechanism of action of ansamitocin P3.  相似文献   

13.
A new series of biphenyl methylene indolinones has been designed, synthesized and evaluated for their in vitro antiproliferative activity against various cancer cell lines like DU-145 (prostate cancer cell line), 4T1 (mouse breast cancer cell line), MDA-MB-231 (human breast cancer cell line), BT-549 (human breast cancer cell line), T24 (human urinary bladder carcinoma cell line), and HeLa (cervical cancer cell line). Among the series, compound 10e showed potent in vitro cytotoxic activity against HeLa and DU-145 cancer cell lines with IC50 value of 1.74 ± 0.69 µM and 1.68 ± 1.06 µM respectively. To understand the underlying mechanism of most potent cytotoxic compound 10e, various mechanistic studies were carried out on DU-145 cell lines. Cell cycle analysis results revealed that these conjugates affect both G0/G1 and G2/M phase of the cycle, tubulin binding assay resulted that compound 10e interrupting microtubule network formation by inhibiting tubulin polymerization with IC50 value of 4.96 ± 0.05 μM. Moreover, molecular docking of 10e on colchicine binding site of the tubulin explains the interaction of 10e with tubulin. Clonogenic assay indicated inhibition of colony formation by compound 10e in a dose dependent manner. In addition, morphological changes were clearly observed by AO/EB and DAPI staining studies. Moreover, ROS detection using DCFDA, JC-1, and annexin V-FITC assays demonstrated the significant apoptosis induction by 10e.  相似文献   

14.
Twenty-four 1,2-diarylbenzimidazole derivatives were designed, synthesized and biologically evaluated. It turned out that most of them were potential anticancer drugs. Among them, compound c24 showed the highest anti-tumor activity (GI50 = 0.71–2.41 μM against HeLa, HepG2, A549 and MCF-7 cells), and low toxicity to normal cells (CC50 > 100 μM against L02 cells). In the microtubule binding assay, c24 showed the most potent inhibition of microtubule polymerization (IC50 = 8.47 μM). The binding ability of compound c24 to tubulin crystal was verified by molecular docking simulation experiment. Further studies on HepG2 and HeLa cells showed that compound c24 could cause mitotic arrest of tumor cells to G2/M phase then inducing apoptosis. To sum up, compound c24 is a promising microtubule assembly inhibitor.  相似文献   

15.
Allitridi (diallyl trisulfide) is an active compound (volatile oil) from garlic. The previous studies reported that allitridi had anti-arrhythmic effect. The potential ionic mechanisms are, however, not understood. The present study was designed to determine the effects of allitridi on cardiac potassium channels expressed in HEK 293 cells using a whole-cell patch voltage-clamp technique and mutagenesis. It was found that allitridi inhibited hKv4.3 channels (IC50 = 11.4 µM) by binding to the open channel, shifting availability potential to hyperpolarization, and accelerating closed-state inactivation of the channel. The hKv4.3 mutants T366A, T367A, V392A, and I395A showed a reduced response to allitridi with IC50s of 35.5 µM, 44.7 µM, 23.7 µM, and 42.4 µM. In addition, allitridi decreased hKv1.5, hERG, hKCNQ1/hKCNE1 channels stably expressed in HEK 293 cells with IC50s of 40.2 µM, 19.6 µM and 17.7 µM. However, it slightly inhibited hKir2.1 current (100 µM, inhibited by 9.8% at −120 mV). Our results demonstrate for the first time that allitridi preferably blocks hKv4.3 current by binding to the open channel at T366 and T367 of P-loop helix, and at V392 and I395 of S6 domain. It has a weak inhibition of hKv1.5, hERG, and hKCNQ1/hKCNE1 currents. These effects may account for its anti-arrhythmic effect observed in experimental animal models.  相似文献   

16.
A new class of combretastatin linked 1,3,4-oxadiazoles were designed, synthesized and screened for their cytotoxic activity against five human cancer cell lines such as HeLa, DU-145, A549, MDA-MB-231 and B16. These compounds showed significant cytotoxicity with IC50 values in the range 0.118–54.32 μM. Conjugate 5m displayed potent antiproliferative activity against DU-145 cell line. Flow cytometric analysis revealed that these compounds arrested the cell cycle in G2/M phase. Moreover, the tubulin polymerization assay and immunofluorescence analysis indicate that 5m exhibits potent inhibitory effect on the tubulin assembly. Further, DNA fragmentation and Hoecst staining assays confirm that 5m induces apoptosis. Molecular docking studies and competitive binding assay indicated that 5m effectively bind at the colchicine binding site of the tubulin.  相似文献   

17.
Thirty seven N-(5-methoxyphenyl)-4-methoxybenzenesulphonamide with methoxy or/and bromo substitutions (series 1-4) and with different substituents on the sulphonamide nitrogen have been synthesised. 21 showed sub-micromolar cytotoxicity against HeLa and HT-29 human tumour cell lines, and were particularly effective against MCF7. The most potent series has 2,5-dimethoxyanilines, especially the 4-brominated compounds 23–25. The active compounds inhibit microtubular protein polymerisation at micromolar concentrations, thus pointing at tubulin as the target. Co-treatment with the MDR inhibitor verapamil suggests that they are not MDR substrates. Compound 25 showed nanomolar antiproliferative potency. It severely disrupts the microtubule network in cells and arrests cells at the G2/M cell-cycle phase, thus confirming tubulin targeting. 25 triggered apoptotic cell death, and induced autophagy. Docking studies suggest binding in a distinct way to the colchicine site. These compounds are promising new antitumor agents acting on tubulin.  相似文献   

18.
Geldanamycin (GDM) has been modified by different type neutral/acidic/basic substituents (1–7) and by quinuclidine motif (8), transformed into ammonium salts (9–13) at C(17). These compounds have been characterised by spectroscopic and x-ray methods. Derivative 8 shows better potency than GDM in MCF-7, MDA-MB-231, A549 and HeLa (IC50s = 0.09–1.06 µM). Transformation of 8 into salts 9–13 reduces toxicity (by 11-fold) at attractive potency, e.g. MCF-7 cell line (IC50∼2 µM). Our studies show that higher water solubility contributes to lower toxicity of salts than GDM in healthy CCD39Lu and HDF cells. The use of 13 mixtures with potentiators PEI and DOX enhanced anticancer effects from IC50∼2 µM to IC50∼0.5 µM in SKBR-3, SKOV-3, and PC-3 cancer cells, relative to 13. Docking studies showed that complexes between quinuclidine-bearing 8–13 and Hsp90 are stabilised by extra hydrophobic interactions between the C(17)-arms and K58 or Y61 of Hsp90.  相似文献   

19.
Colchicine-tubulin dimer comPlex, a Potent inhibitor of normal microtubule assembly undergoes extensive self-assembly in the Presence of 1 X 10-4 M zinc sulPhate. Polymers assembled from colchicine-tubulin dimer comPlexes are sensitive to cold. Although colchicine can be accomodated within the Polymeric structure, the drug cannot bind to tubulin subunits in the intact Polymers. This is evidenced by the fact that (a) the colchicine binding activity of tubulin is lost when allowed to Polymerize with zinc sulPhate, (b) the loss in colchicine binding could be Prevented by Preincubation of tubulin with 1 X 10-3 M CaCl2 or 1 X 10-5 M vinblastine sulPhate and finally (c) no loss in colchicine binding activity is found when tubulin is kePt at a concentration far below the critical concentration for Polymerization. Unlike colchicine, its B-ring analogues desacetamido colchicine (devoid of the B-ring subtituent) and 2-methoxy-5-(2′, 3′, 4′-trimethoxyPhenyl) troPone (devoid of the B-ring) can bind to tubulin subunits in the intact Polymers. Thus we conclude that the colchicine binding domain on the tubulin molecule is mostly (if not comPletely) exPosed in the Zn(II) -induced Polymers and the B-ring substituent Plays a major role in determining the binding ability of a colchicine analogue to tubulin in the intact Zn(II) -induced sheets.  相似文献   

20.
In this paper, bis (indol-3-yl) methanes (BIMs) were synthesised and evaluated for their inhibitory activity against α-glucosidase and α-amylase. All synthesised compounds showed potential α-glucosidase and α-amylase inhibitory activities. Compounds 5 g (IC50: 7.54 ± 1.10 μM), 5e (IC50: 9.00 ± 0.97 μM), and 5 h (IC50: 9.57 ± 0.62 μM) presented strongest inhibitory activities against α-glucosidase, that were ∼ 30 times stronger than acarbose. Compounds 5 g (IC50: 32.18 ± 1.66 µM), 5 h (IC50: 31.47 ± 1.42 µM), and 5 s (IC50: 30.91 ± 0.86 µM) showed strongest inhibitory activities towards α-amylase, ∼ 2.5 times stronger than acarbose. The mechanisms and docking simulation of the compounds were also studied. Compounds 5 g and 5 h exhibited bifunctional inhibitory activity against these two enzymes. Furthermore, compounds showed no toxicity against 3T3-L1 cells and HepG2 cells.

Highlights

  1. A series of bis (indol-3-yl) methanes (BIMs) were synthesised and evaluated inhibitory activities against α-glucosidase and α-amylase.
  2. Compound 5g exhibited promising activity (IC50 = 7.54 ± 1.10 μM) against α-glucosidase.
  3. Compound 5s exhibited promising activity (IC50 = 30.91 ± 0.86 μM) against α-amylase.
  4. In silico studies were performed to confirm the binding interactions of synthetic compounds with the enzyme active site.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号