首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The aim of the present study was to investigate the effects of selenium (Se) deficiency on the expressions of heat shock proteins (Hsp90, 70, 60, 40, and 27) and nitric oxide (NO) levels in neutrophils of broilers. One hundred eighty 1-day-old broilers were randomly assigned into two groups and were fed on a low-Se diet (0.008 mg/kg Se) or a control diet (0.2 mg/kg Se), respectively. Then, the messenger RNA (mRNA) levels of Hsp90, 70, 60, 40, and 27, induced nitric oxide synthase (iNOS), and NO levels were examined. The results showed that Se deficiency increased the mRNA levels of Hsps and iNOS and induced higher level of NO in chicken neutrophils (P?iNOS had the biggest correlation with Hsp60, which indicated that Hsp60 might play an important function in inhibiting the production of NO, and the correlation coefficient between Hsp60 and Hsp70 was over 0.9, which indicated that they might have a synergistic effect. These results suggested that the level of NO and Hsp expression levels in neutrophils can be influenced by Se deficiency. And Hsp40 might play the crucial protective role in neutrophils induced by Se deficiency.  相似文献   

2.
Induction of Nitric Oxide Synthase in Glial Cells   总被引:28,自引:0,他引:28  
Primary astrocyte cultures, C6 glioma cells, and N18 neuroblastoma cells were assayed for nitric oxide synthase (NOS) activity with a bioassay of cyclic GMP production in RFL-6 fibroblasts. Treatment of astrocyte cultures for 16-18 h with lipopolysaccharide (LPS) induced NOS-like activity that was L-arginine and NADPH dependent, Ca2+ independent, and potentiated by superoxide dismutase. Induction was evident after 4 h, was dependent on the dose of LPS, and required protein synthesis. Treatment of astrocyte cultures with leucine methyl ester reduced microglial cell contamination from 7 to 1%, with a loss of 44% of NOS-like activity. C6 cells treated with LPS also showed Ca(2+)-independent and L-arginine-dependent NOS-like activity. N18 cells demonstrated constitutive Ca(2+)-dependent NOS-like activity that was not enhanced by LPS induction. These data indicate that NOS-like activity can be induced in microglia, astrocytes, and a related glioma cell line as it can in numerous other cell types, but not in neuron-like N18 cells.  相似文献   

3.
Abstract: Activation of monocyte-derived macrophages with cytokines leads to the induction of nitric oxide synthase. Much less is known about the effects of cytokines on microglia, resident brain macrophages, or on astrocytes. In this study, we compared the induction by lipopolysaccharide, interferon-γ, and tumor necrosis factor-α of nitric oxide production and synthesis of tetrahydrobiopterin, the required cofactor for nitric oxide synthase, in microglia and peritoneal macrophages. Activation of microglia induced parallel increases in nitric oxide and intracellular tetrahydrobiopterin levels, although induction of the latter appears to be somewhat more sensitive to diverse stimulators. As with macrophages, inducible nitric oxide production in microglia was blocked by inhibitors of tetrahydrobiopterin biosynthesis. Interleukin-2, an important component of the neuroimmunomodulatory system, was only a weak activator of microglia by itself but potently synergized with interferon-γ to stimulate production of both nitric oxide and tetrahydrobiopterin. Astrocytes were also activated by lipopolysaccharide and combinations of cytokines but showed a somewhat different pattern of responses than microglia. Biopterin synthesis was increased to higher levels in astrocytes than in microglia, but maximal induction of nitric oxide production required higher concentrations of cytokines than microglia and the response was much lower. These results suggest that tetrahydrobiopterin synthesis in glial cells is a potential target for therapeutic intervention in acute CNS infections whose pathology may be mediated by overproduction of nitric oxide.  相似文献   

4.
The present study was undertaken to observe in vivo changes of expression and phosphorylation of ERK1/2 proteins during brain ischemic preconditioning and effects of inhibiting generation of nitric oxide (NO) on the changes to determine the role of ERKs in the involvement of NO participating in the acquired tolerance. Fifty-five Wistar rats were used. Brain ischemic preconditioning was performed with four-vessel occlusion for 3 min. Total ERK1/2 proteins and phospho-ERK1/2 in the CA1 hippocampus were assayed with Western immunoblot. Total ERK1/2 proteins did not change in period from 5 min to 5 days of reperfusion after preconditioning stimulus. While the level of phospho-ERK1/2 increased obviously to 223, 237, 300, 385 and 254% of sham level at times of 5 min, 2 h, 1, 3 and 5 days after preconditioning stimulus, respectively (P < 0.01). Administration of L-NAME, an inhibitor of NO synthase, 30 min prior to preconditioning stimulus failed to induce change in total ERK1/2 proteins (P > 0.05). However, phospho-ERK1/2 increased only to 138 and 176% of sham level at 2 h and 3 days after preconditioning stimulus, respectively, when animals were pretreated with L-NAME. The magnitudes of the increase were obviously low compared with those (237 and 385%) in animals untreated with L-NAME at corresponding time points (P < 0.01), which indicated that phosphorylation of ERK1/2 normally induced by preconditioning stimulus was blocked apparently by administration of L-NAME. The results suggested that phosphorylation of ERK1/2, rather than synthesis of ERK1/2 proteins, was promoted in brain ischemic preconditioning, and that the promotion was partly mediated by NO signal pathway.  相似文献   

5.
Selenium (Se) deficiency induces pancreatic atrophy in chickens, but the molecular mechanism remains unclear. In this study, we investigated the effect of dietary Se deficiency on the expressions of 25 selenoproteins and the content of nitric oxide (NO) and examined the relationship between selenoproteins and NO. Chickens (180; 1 day old) were randomly divided into two groups, low (L) group (fed with Se deficient (Se 0.033 mg/kg) diet) and control (C) group (fed with normal (Se 0.2 mg/kg) diet). Then, pancreas was collected at 15, 25, 35, 45, and 55 days, and the content of NO, the activity of inducible NO synthase (iNOS), and the messenger RNA (mRNA) levels of 25 selenoproteins and iNOS were measured. The results showed that 25 selenoproteins were decreased (P?P?Thioredoxin reductase 2 (TXNRD2), glutathione peroxidase 1 (GPX1), glutathione peroxidase 3 (GPX3), selenoprotein I (SELI), iodothyronine deiodinase 1 (DIO1), selenoprotein P1 (SEPP1), selenoprotein W1 (SEPW1), selenoprotein O (SELO), selenoprotein T (SELT), selenoprotein M (SELM), selenoprotein X1 (SEPX1), and SPS2 were excessively decreased (P?iNOS activity, and mRNA level were increased strikingly compared with C group (P?相似文献   

6.
7.
8.
Neuronal survival is intricately linked to the maintenance of intact DNA. In contrast, neuronal degeneration following nitric oxide (NO) exposure is dependent, in part, on the degradation of DNA through programmed cell death (PCD). We therefore investigated in primary rat hippocampal neurons the role of endogenous deoxyribonucleases, enzymes responsible for metabolically derived DNA cleavage, during NO-induced neurodegeneration. Twenty-four hours following exposure to the NO generators sodium nitroprusside (300 μM) and SIN-1 (300 μM), neuronal survival was reduced from approximately 88 to 23%. Treatment with aurintricarboxylic acid (1–100 μM), an endonuclease inhibitor, during NO exposure increased neuronal survival from 23 to 80% and decreased DNA fragmentation from 70 to 30% over a 24-h period. Enhancement of endonuclease activity alone with zinc chelation actively decreased neuronal survival from approximately 80% to approximately 34%. DNA digestion assays identified not only two constitutively active endonucleases, an acidic endonuclease (pH 4.0–7.0) and a calcium/magnesium-dependent endonuclease (pH 7.2–8.0), but also a NO-inducible magnesium-dependent endonuclease (pH 8.0). In the absence of endonuclease activity, DNA degradation did not occur during NO application, suggesting that endonuclease activity was a requisite pathway for NO-induced PCD. In addition, NO independently altered intracellular pH in ranges that were physiologically relevant for the activity of the endonucleases responsible for DNA degradation. Our identification and characterization of specific neuronal endonucleases suggest that the constitutive endonucleases may play a role in the initial stages of NO-induced PCD, but the subsequent “downstream” degradation of DNA may ultimately be dependent upon the NO-inducible endonuclease.  相似文献   

9.
Induction of Nitric Oxide Synthase in Rat C6 Glioma Cells   总被引:9,自引:1,他引:8  
Abstract: We have examined the induction of nitric oxide syhthase (NOS) activity in the rat astrocyte-derived C6 glioma cell line. In contrast to the previous results with primary astrocyte cultures, incubation of C6 cells with bacterial endotoxin lipopolysaccharide (LPS; 1 μg/ml for 24 h) did not stimulate NO2 production. However, addition of either tumor necrosis factor-a (TNF-α) or interferon-γ (IFN-γ), cytokines that by themselves had no effect on NOS activity, imparted LPS responsiveness onto these cells in a dose-dependent manner (EC50 values of 39 ng/ml of TNF-α and 9.4 U/ml of IFN-γ), and the effect of TNF-α could be further potentiated (twofold) by the presence of interleukin-1β. The simultaneous presence of TNF-α and IFN-γ yielded a greater response than either cytokine alone; however, the respective EC50 values were not affected. A cytoplasmic extract from induced C6 cells catalyzed the Ca2+-independent conversion of l -arginine to l - citrulline, with an apparent K m of 51.2 n M , and this activity could be blocked by l -arginine analogues in the potency order amino > methyl > nitroarginine. Immunoblot analysis revealed an apparent molecular mass of 125 kDa for the NOS protein induced in C6 cells. These results indicate that the combination of LPS plus cytokines can induce NOS activity in C6 glioma cells with properties similar to those of the enzyme expressed in primary astrocyte cultures.  相似文献   

10.
Nitric oxide (NO) is an unconventional membrane-permeable messenger molecule that has been shown to play various roles in the nervous system. How NO modulates ion channels to affect neuronal functions is not well understood. In gastropods, NO has been implicated in regulating the feeding motor program. The buccal motoneuron, B19, of the freshwater pond snail Helisoma trivolvis is active during the hyper-retraction phase of the feeding motor program and is located in the vicinity of NO-producing neurons in the buccal ganglion. Here, we asked whether B19 neurons might serve as direct targets of NO signaling. Previous work established NO as a key regulator of growth cone motility and neuronal excitability in another buccal neuron involved in feeding, the B5 neuron. This raised the question whether NO might modulate the electrical activity and neuronal excitability of B19 neurons as well, and if so whether NO acted on the same or a different set of ion channels in both neurons. To study specific responses of NO on B19 neurons and to eliminate indirect effects contributed by other cells, the majority of experiments were performed on single cultured B19 neurons. Addition of NO donors caused a prolonged depolarization of the membrane potential and an increase in neuronal excitability. The effects of NO could mainly be attributed to the inhibition of two types of calcium-activated potassium channels, apamin-sensitive and iberiotoxin-sensitive potassium channels. NO was found to also cause a depolarization in B19 neurons in situ, but only after NO synthase activity in buccal ganglia had been blocked. The results suggest that NO acts as a critical modulator of neuronal excitability in B19 neurons, and that calcium-activated potassium channels may serve as a common target of NO in neurons.  相似文献   

11.
Shortage of endothelial nitric oxide (NO) manifested as decreased daily urinary excretion of nitrate and nitrite as well as attenuated endothelium-dependent relaxation of conduit and resistance vessels progresses with age-related increase of blood pressure (BP) in stroke-prone spontaneously hypertensive rats (SHRSP). Simultaneous NO-dependent suppression of vascular contractions is, apparently, due to the inducible NO synthase activity in vascular smooth muscle specific for spontaneously hypertensive rat. The adaptation of rats to hypobaric hypoxia initiated at early hypertensive stage (at the age of 5–6 weeks) decelerates hypertension progress. The antihypertensive effect of the adaptation was accompanied by stimulation of endothelial NO synthesis and prevention of impaired NO-dependent response in isolated blood vessels. Nitric oxide stores were formed in the vascular wall of SHRSP and WKY rats at the same time. The obtained data indicate that the correction of endothelial NO deficiency plays a significant role in the antihypertensive effect of adaptation to hypoxia.  相似文献   

12.
13.
Previously we reported modulation of endothelial prostacyclin and interleukin-8 production, cyclooxygenase-2 expression and vasorelaxation by oleoyl- lysophosphatidylcholine (LPC 18:1). In the present study, we examined the impact of this LPC on nitric oxide (NO) bioavailability in vascular endothelial EA.hy926 cells. Basal NO formation in these cells was decreased by LPC 18:1. This was accompanied with a partial disruption of the active endothelial nitric oxide synthase (eNOS)- dimer, leading to eNOS uncoupling and increased formation of reactive oxygen species (ROS). The LPC 18:1-induced ROS formation was attenuated by the superoxide scavenger Tiron, as well as by the pharmacological inhibitors of eNOS, NADPH oxidases, flavin-containing enzymes and superoxide dismutase (SOD). Intracellular ROS-formation was most prominent in mitochondria, less pronounced in cytosol and undetectable in endoplasmic reticulum. Importantly, Tiron completely prevented the LPC 18:1-induced decrease in NO bioavailability in EA.hy926 cells. The importance of the discovered findings for more in vivo like situations was analyzed by organ bath experiments in mouse aortic rings. LPC 18:1 attenuated the acetylcholine-induced, endothelium dependent vasorelaxation and massively decreased NO bioavailability. We conclude that LPC 18:1 induces eNOS uncoupling and unspecific superoxide production. This results in NO scavenging by ROS, a limited endothelial NO bioavailability and impaired vascular function.  相似文献   

14.
Abstract : The induction of inducible nitric oxide synthase (iNOS) by proinflammatory cytokines was studied in an oligodendrocyte progenitor cell line in relation to mitogen-activated protein kinase (MAPK) activation and cytokine-mediated cytotoxicity. When introduced individually to cultures of CG4 cells, the cytokines, i.e., tumor necrosis factor-α (TNFα), interleukin-1 (IL-1), and interferon-γ (IFNγ), had either minimal (TNFα) or no (IL-1 and IFNγ) detectable stimulatory effect on the production of nitric oxide. However, combinations of these factors, in particular, TNFα plus IFNγ, elicited a strong enhancement of nitric oxide synthesis and, as revealed by western blot and RT-PCR analysis, the expression of iNOS. TNFα and IL-1 were able to activate p38 MAPK in a time- and dose-dependent manner and together showed a combinatorial effect. In contrast, IFNγ neither activated on its own nor enhanced the activation of p38 MAPK in response to TNFα and IL-1. However, a specific inhibitor of p38 MAPK, i.e., SB203580, inhibited the induction of iNOS in cytokine combination-treated cells in a dose-dependent manner, thereby suggesting a role for the MAPK cascade in regulating the induction of iNOS gene expression in cytokine-treated cells. Blocking of nitric oxide production by an inhibitor of iNOS, i.e., nitro-L-arginine methyl ester, had a minimal protective effect against cytokine-mediated cytotoxicity that occurred before the elevation of nitric oxide levels, thereby indicating temporal and functional dissociation of nitric oxide production from cell killing.  相似文献   

15.

Heat-killed lactic acid bacteria perform immunomodulatory functions and are advantageous as probiotics, considering their long product shelf-life, easy storage, and convenient transportation. In this study, we aimed to develop appropriate heat treatments for industrial preparation of probiotics with antioxidant activity. Among 75 heat-killed strains, Lactococcus lactis MG5125 revealed the highest nitric oxide inhibition (86.2%), followed by Lactobacillus acidophilus MG4559 (86.0%), Lactobacillus plantarum MG5270 (85.7%), Lactobacillus fermentum MG4510 (85.3%), L. plantarum MG5239 (83.9%), L. plantarum MG5289 (83.2%), and L. plantarum MG5203 (81.8%). Moreover, the heat-killed selected strains markedly inhibited lipopolysaccharide-induced nitric oxide synthase and cyclooxygenase-2 expression. The use of heat-killed bacteria with intact bio-functionality can elongate the shelf-life and simplify the food processing steps of probiotic foods, given their high stability. The antioxidant and immune-modulatory activities of the heat-killed strains selected in this study indicate a strong potential for their utilization probiotic products manufacturing.

  相似文献   

16.
17.
1. Previous results suggest that glutamine synthesis in brain could be modulated by nitrix oxide. The aim of this work was to assess this possibility.2. As glutamine synthetase in brain is located mainly in astrocytes, we used primary cultures of astrocytes to assess the effects of increasing or decreasing nitrix oxide levels on glutamine synthesis in intact astrocytes.3. Nitric oxide levels were decreased by adding nitroarginine, an inhibitor of nitric oxide synthase. To increase nitric oxide we used S-nitroso-N-acetylpenicillamine, a nitric oxide generating agent.4. It is shown that S-nitroso-N-acetylpenicillamine decreases glutamine synthesis in intact astrocytes by 40–50%. Nitroarginine increases glutamine synthesis slightly in intact astrocytes.5. These results indicate that brain glutamine synthesis may be modulated in vivo by nitric oxide.  相似文献   

18.
19.
Abstract: Nitric oxide (?NO) synthase (NOS) was induced in cultured rat astrocytes by incubation with lipopolysaccharide (LPS) for 18 h and gap junction permeability was assessed by the scrape-loading/Lucifer yellow transfer technique. Induction of NOS was confirmed by determining either the NG-methyl-l -arginine (NMMA)-inhibitable production of nitrites and nitrates or the conversion of l -[3H]arginine to l -[3H]citrulline. Incubation with LPS dose-dependently inhibited gap junction permeability to 63.3% at 0.05 µg/ml LPS and no further inhibition was observed on increasing the LPS concentration up to 0.5 µg/ml. LPS-mediated gap junction inhibition was irreversible but was prevented by incubation with the NOS inhibitor NMMA and with the superoxide anion (O2??) scavenger superoxide dismutase. Incubation of the cells with both the ?NO donor S-nitroso-N-acetylpenicillamine and the O2??-generating system xanthine/xanthine oxidase inhibited gap junction permeability. These results suggest that the in situ reaction between ?NO and O2??, to form the peroxynitrite anion (ONOO?), may be responsible for the inhibition of gap junction permeability. Scavenging the ONOO? derivative hydroxyl radical (?OH) with either dimethyl sulfoxide or mannitol prevented the LPS-mediated inhibition of gap junction permeability. Finally, exposure of astrocytes to authentic ONOO? caused a dose-dependent inhibition of gap junction permeability (65.7% of inhibition at 0.5 mM ONOO?). The pathophysiological relevance of ONOO?-mediated inhibition of gap junctional communication in astrocytes after NOS induction by LPS is discussed, stressing the possible role played by this mechanism in some neurodegenerative diseases.  相似文献   

20.
Prior treatment of Escherichia coli with nalidixic acid in nutritionally complete medium altered the subsequent pattern of deoxyribonucleic acid (DNA) synthesis normally observed in nutritionally deficient medium. Transfer of E. coli 15 TAU to an amino acid- and pyrimidine-deficient medium usually resulted in a 40 to 50% increase in DNA content. Previous treatment with nalidixic acid caused a 200 to 300% increase in DNA content under these conditions. The extent of this DNA synthesis depended on the duration of prior exposure to nalidixic acid. The maximal rate of synthesis was obtained after a 40- to 60-min exposure to nalidixic acid and was two to three times that of the control. The induction of this excessive DNA synthesis was prevented by chloramphenicol or phenethyl alcohol, but the synthesis of this DNA was only partially sensitive to these agents. With E. coli TAU-bar, the rate of DNA synthesis, after removal of nalidixic acid, was similar to that of E. coli 15 TAU, but the maximal amount of DNA synthesized was 180 to 185% of that initially present. Cesium chloride density gradient analysis demonstrated that DNA synthesis after removal of nalidixic acid occurs by a semiconservative mode of replication. The density distribution of this DNA was similar to that obtained after thymine starvation. These results suggest that nalidixic acid treatment may induce additional sites for DNA synthesis in E.coli.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号