共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
4.
Challagundla KB Sun XX Zhang X DeVine T Zhang Q Sears RC Dai MS 《Molecular and cellular biology》2011,31(19):4007-4021
c-Myc promotes cell growth by enhancing ribosomal biogenesis and translation. Deregulated expression of c-Myc and aberrant ribosomal biogenesis and translation contribute to tumorigenesis. Thus, a fine coordination between c-Myc and ribosomal biogenesis is vital for normal cell homeostasis. Here, we show that ribosomal protein L11 regulates c-myc mRNA turnover. L11 binds to c-myc mRNA at its 3' untranslated region (3'-UTR), the core component of microRNA-induced silencing complex (miRISC) argonaute 2 (Ago2), as well as miR-24, leading to c-myc mRNA reduction. Knockdown of L11 drastically increases the levels and stability of c-myc mRNA. Ablation of Ago2 abrogated the L11-mediated reduction of c-myc mRNA, whereas knockdown of L11 rescued miR-24-mediated c-myc mRNA decay. Interestingly, treatment of cells with the ribosomal stress-inducing agent actinomycin D or 5-fluorouracil significantly decreased the c-myc mRNA levels in an L11- and Ago2-dependent manner. Both treatments enhanced the association of L11 with Ago2, miR-24, and c-myc mRNA. We further show that ribosome-free L11 binds to c-myc mRNA in the cytoplasm and that this binding is enhanced by actinomycin D treatment. Together, our results identify a novel regulatory paradigm wherein L11 plays a critical role in controlling c-myc mRNA turnover via recruiting miRISC in response to ribosomal stress. 相似文献
5.
The discovery of microRNAs (miRNAs), almost 10 years ago, changed dramatically our perspective on eukaryotic gene expression regulation. However, the broad and important functions of these regulators are only now becoming apparent. The expansion of our catalogue of miRNA genes and the identification of the genes they regulate owe much to the development of sophisticated computational tools that have helped either to focus or interpret experimental assays. In this article, we review the methods for miRNA gene finding and target identification that have been proposed in the last few years. We identify some problems that current approaches have not yet been able to overcome and we offer some perspectives on the next generation of computational methods. 相似文献
6.
Atsuko Minowa‐Nozawa Takashi Nozawa Keiko Okamoto‐Furuta Haruyasu Kohda Ichiro Nakagawa 《The EMBO journal》2017,36(18):2790-2807
Autophagy targets intracellular molecules, damaged organelles, and invading pathogens for degradation in lysosomes. Recent studies have identified autophagy receptors that facilitate this process by binding to ubiquitinated targets, including NDP52. Here, we demonstrate that the small guanosine triphosphatase Rab35 directs NDP52 to the corresponding targets of multiple forms of autophagy. The active GTP‐bound form of Rab35 accumulates on bacteria‐containing endosomes, and Rab35 directly binds and recruits NDP52 to internalized bacteria. Additionally, Rab35 promotes interaction of NDP52 with ubiquitin. This process is inhibited by TBC1D10A, a GAP that inactivates Rab35, but stimulated by autophagic activation via TBK1 kinase, which associates with NDP52. Rab35, TBC1D10A, and TBK1 regulate NDP52 recruitment to damaged mitochondria and to autophagosomes to promote mitophagy and maturation of autophagosomes, respectively. We propose that Rab35‐GTP is a critical regulator of autophagy through recruiting autophagy receptor NDP52. 相似文献
7.
8.
Yamochi T Ohnuma K Hosono O Tanaka H Kanai Y Morimoto C 《Biochemical and biophysical research communications》2008,370(1):195-199
We identified human decapping enzyme 2 (hDCP2) as a binding protein with Ro52, being colocalized in processing bodies (p-bodies). We also showed that the N-terminus and C-terminus of Ro52 bound to hDCP2. Moreover, Ro52 enhanced decapping activity of hDCP2 in a dose-dependent manner. Our data support the novel notion of the association between Ro52 with hDCP2 protein in cytoplasmic p-bodies, playing a role in mRNA metabolism in response to cellular stimulation. 相似文献
9.
10.
11.
Endoplasmic reticulum (ER)-associated protein degradation (ERAD) is a quality control system that removes misfolded proteins from the ER. ERAD substrates are channelled from the ER via a proteinacious pore to the cytosolic ubiquitin-proteasome system - a process involving dedicated ubiquitin ligases and the chaperone-like AAA ATPase Cdc48 (also known as p97). How the activities of these proteins are coupled remains unclear. Here we show that the UBX domain protein Ubx2 is an integral ER membrane protein that recruits Cdc48 to the ER. Moreover, Ubx2 mediates binding of Cdc48 to the ubiquitin ligases Hrd1 and Doa10, and to ERAD substrates. In addition, Ubx2 and Cdc48 interact with Der1 and Dfm1, yeast homologues of the putative dislocation pore protein Derlin-1 (refs 11-13). Lack of Ubx2 causes defects in ERAD that are exacerbated under stress conditions. These findings are consistent with a model in which Ubx2 coordinates the assembly of a highly efficient ERAD machinery at the ER membrane. 相似文献
12.
与转基因方法相比,基因瞬时表达系统在基因表达研究上具有快速便捷的特点。为检验水稻mi RNA与靶标基因之间的调控关系,将MIRNA基因与GFP/靶标序列融合基因(或GFP/靶标突变序列融合基因)构建在同一瞬时表达载体上,并转化水稻原生质体,通过观察含有GFP/靶标序列融合基因和GFP/靶标突变序列融合基因的载体之间的荧光强度差异,以及通过q RT-PCR方法检测靶标和非靶标m RNA水平差异来验证mi RNA对靶标基因的调控。用osa MIR156和osa MIR397及其靶标序列对实验设计方法进行验证,荧光显微观察和q RT-PCR检测证明,osami R156和osami R397能降低相应靶标序列GFP融合基因的转录物水平和GFP荧光水平。此种水稻原生质体瞬时表达方法用于在体内进行大规模mi RNA靶标基因检测。由于其他近缘单子叶植物很可能与水稻有近似的小RNA加工系统,因此对于其他单子叶植物mi RNA功能研究也将有很好的应用前景。 相似文献
13.
Single‐cell mRNA profiling reveals the hierarchical response of miRNA targets to miRNA induction 下载免费PDF全文
Andrzej J Rzepiela Souvik Ghosh Jeremie Breda Arnau Vina‐Vilaseca Afzal P Syed Andreas J Gruber Katja Eschbach Christian Beisel Erik van Nimwegen Mihaela Zavolan 《Molecular systems biology》2018,14(8)
14.
15.
de Witte L Abt M Schneider-Schaulies S van Kooyk Y Geijtenbeek TB 《Journal of virology》2006,80(7):3477-3486
Dendritic cells (DCs) are involved in the pathogenesis of measles virus (MV) infection by inducing immune suppression and possibly spreading the virus from the respiratory tract to lymphatic tissues. It is becoming evident that DC function can be modulated by the involvement of different receptors in pathogen interaction. Therefore, we have investigated the relative contributions of different MV-specific receptors on DCs to MV uptake into and infection of these cells. DCs express the MV receptors CD46 and CD150, and we demonstrate that the C-type lectin DC-specific intercellular adhesion molecule 3-grabbing nonintegrin (DC-SIGN) is a novel receptor for laboratory-adapted and wild-type MV strains. The ligands for DC-SIGN are both MV glycoproteins F and H. In contrast to CD46 and CD150, DC-SIGN does not support MV entry, since DC-SIGN does not confer susceptibility when stably expressed in CHO cells. However, DC-SIGN is important for the infection of immature DCs with MV, since both attachment and infection of immature DCs with MV are blocked in the presence of DC-SIGN inhibitors. Our data demonstrate that DC-SIGN is crucial as an attachment receptor to enhance CD46/CD150-mediated infection of DCs in cis. Moreover, MV might not only target DC-SIGN to infect DCs but may also use DC-SIGN for viral transmission and immune suppression. 相似文献
16.
CXCR7/CXCR4 heterodimer constitutively recruits beta-arrestin to enhance cell migration 总被引:1,自引:0,他引:1
Décaillot FM Kazmi MA Lin Y Ray-Saha S Sakmar TP Sachdev P 《The Journal of biological chemistry》2011,286(37):32188-32197
G protein-coupled receptor hetero-oligomerization is emerging as an important regulator of ligand-dependent transmembrane signaling, but precisely how receptor heteromers affect receptor pharmacology remains largely unknown. In this study, we have attempted to identify the functional significance of the heteromeric complex between CXCR4 and CXCR7 chemokine receptors. We demonstrate that co-expression of CXCR7 with CXCR4 results in constitutive recruitment of β-arrestin to the CXCR4·CXCR7 complex and simultaneous impairment of G(i)-mediated signaling. CXCR7/CXCR4 co-expression also results in potentiation of CXCL12 (SDF-1)-mediated downstream β-arrestin-dependent cell signaling pathways, including ERK1/2, p38 MAPK, and SAPK as judged from the results of experiments using siRNA knockdown to deplete β-arrestin. Interestingly, CXCR7/CXCR4 co-expression enhances cell migration in response to CXCL12 stimulation. Again, inhibition of β-arrestin using either siRNA knockdown or a dominant negative mutant abrogates the enhanced CXCL12-dependent migration of CXCR4/CXCR7-expressing cells. These results show how CXCR7, which cannot signal directly through G protein-linked pathways, can nevertheless affect cellular signaling networks by forming a heteromeric complex with CXCR4. The CXCR4·CXCR7 heterodimer complex recruits β-arrestin, resulting in preferential activation of β-arrestin-linked signaling pathways over canonical G protein pathways. CXCL12-dependent signaling of CXCR4 and its role in cellular physiology, including cancer metastasis, should be evaluated in the context of potential functional hetero-oligomerization with CXCR7. 相似文献
17.
18.
19.
Processing of pre-miRNAs by Dicer is regulated by its dsRNA-binding protein partner, and leads to the generation of alternative miRNA forms with distinct target sets. 相似文献
20.
Nightingale KP Baumann M Eberharter A Mamais A Becker PB Boyes J 《Nucleic acids research》2007,35(18):6311-6321
Targeted chromatin remodelling is essential for many nuclear processes, including the regulation of V(D)J recombination. ATP-dependent nucleosome remodelling complexes are important players in this process whose activity must be tightly regulated. We show here that histone acetylation regulates nucleosome remodelling complex activity to boost RAG cutting during the initiation of V(D)J recombination. RAG cutting requires nucleosome mobilization from recombination signal sequences. Histone acetylation does not stimulate nucleosome mobilization per se by CHRAC, ACF or their catalytic subunit, ISWI. Instead, we find the more open structure of acetylated chromatin regulates the ability of nucleosome remodelling complexes to access their nucleosome templates. We also find that bromodomain/acetylated histone tail interactions can contribute to this targeting at limited concentrations of remodelling complex. We therefore propose that the changes in higher order chromatin structure associated with histone acetylation contribute to the correct targeting of nucleosome remodelling complexes and this is a novel way in which histone acetylation can modulate remodelling complex activity. 相似文献