首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Herpes Simplex Virus type-1 (HSV-1) and type-2 (HSV-2) establish life-long infections and cause significant orofacial and genital infections in humans. HSV-1 is the leading cause of infectious blindness in the western world. Currently, there are no available vaccines to protect against herpes simplex infections. Recently, we showed that a single intramuscular immunization with an HSV-1(F) mutant virus lacking expression of the viral glycoprotein K (gK), which prevents the virus from entering into distal axons of ganglionic neurons, conferred significant protection against either virulent HSV-1(McKrae) or HSV-2(G) intravaginal challenge in mice. Specifically, 90% of the mice were protected against HSV-1(McKrae) challenge, while 70% of the mice were protected against HSV-2(G) challenge. We constructed the recombinant virus VC2 that contains specific mutations in gK and the membrane protein UL20 preventing virus entry into axonal compartments of neurons, while allowing efficient replication in cell culture, unlike the gK-null virus, which has a major defect in virus replication and spread. Intramuscular injection of mice with 107 VC2 plaque forming units did not cause any significant clinical disease in mice. A single intramuscular immunization with the VC2 virus protected 100% of mice against lethal intravaginal challenge with either HSV-1(McKrae) or HSV-2(G) viruses. Importantly, vaccination with VC2 produced robust cross protective humoral and cellular immunity that fully protected vaccinated mice against lethal disease. Quantitative PCR did not detect any viral DNA in ganglionic tissues of vaccinated mice, while unvaccinated mice contained high levels of viral DNA. The VC2 virus may serve as an efficient vaccine against both HSV-1 and HSV-2 infections, as well as a safe vector for the production of vaccines against other viral and bacterial pathogens.  相似文献   

2.
BackgroundA novel avian H7N9 virus with a high case fatality rate in humans emerged in China in 2013. We evaluated the immunogenicity and protective efficacy of a candidate Vero cell culture-derived whole-virus H7N9 vaccine in small animal models.MethodsAntibody responses induced in immunized DBA/2J mice and guinea pigs were evaluated by hemagglutination inhibition (HI), microneutralization (MN), and neuraminidase inhibition (NAi) assays. T-helper cell responses and IgG subclass responses in mice were analyzed by ELISPOT and ELISA, respectively. Vaccine efficacy against lethal challenge with wild-type H7N9 virus was evaluated in immunized mice. H7N9-specific antibody responses induced in mice and guinea pigs were compared to those induced by a licensed whole-virus pandemic H1N1 (H1N1pdm09) vaccine.ResultsThe whole-virus H7N9 vaccine induced dose-dependent H7N9-specific HI, MN and NAi antibodies in mice and guinea pigs. Evaluation of T-helper cell responses and IgG subclasses indicated the induction of a balanced Th1/Th2 response. Immunized mice were protected against lethal H7N9 challenge in a dose-dependent manner. H7N9 and H1N1pdm09 vaccines were similarly immunogenic.ConclusionsThe induction of H7N9-specific antibody and T cell responses and protection against lethal challenge suggest that the Vero cell culture-derived whole-virus vaccine would provide an effective intervention against the H7N9 virus.  相似文献   

3.
The immunogenicity and durability of genetic vaccines are influenced by the composition of gene inserts and choice of delivery vector. DNA vectors are a promising vaccine approach showing efficacy when combined in prime-boost regimens with recombinant protein or viral vectors, but they have shown limited comparative efficacy as a stand-alone platform in primates, due possibly to suboptimal gene expression or cell targeting. Here, regimens using DNA plasmids modified for optimal antigen expression and recombinant adenovirus (rAd) vectors, all encoding the glycoprotein (GP) gene from Angola Marburg virus (MARV), were compared for their ability to provide immune protection against lethal MARV Angola infection. Heterologous DNA-GP/rAd5-GP prime-boost and single-modality rAd5-GP, as well as the DNA-GP-only vaccine, prevented death in all vaccinated subjects after challenge with a lethal dose of MARV Angola. The DNA/DNA vaccine induced humoral responses comparable to those induced by a single inoculation with rAd5-GP, as well as CD4+ and CD8+ cellular immune responses, with skewing toward CD4+ T-cell activity against MARV GP. Vaccine regimens containing rAd-GP, alone or as a boost, exhibited cellular responses with CD8+ T-cell dominance. Across vaccine groups, CD8+ T-cell subset dominance comprising cells exhibiting a tumor necrosis factor alpha (TNF-α) and gamma interferon (IFN-γ) double-positive functional phenotype was associated with an absence or low frequency of clinical symptoms, suggesting that both the magnitude and functional phenotype of CD8+ T cells may determine vaccine efficacy against infection by MARV Angola.The filoviruses Marburgvirus (MARV) and Ebolavirus (EBOV) are endemic primarily to central Africa and cause a severe form of viral hemorrhagic fever. Of all the filovirus strains or species, the Angola strain of MARV is associated with the highest mortality rate (90%) in humans observed to date (26). An increase in natural filovirus outbreak frequency over the past decade and the potential for use to cause deliberate human mortality have focused attention on the need for therapeutics and vaccines against filoviruses. While regulatory pathways have been proposed to facilitate licensing of a preventive vaccine against potently lethal pathogens such as these, there is as yet no licensed vaccine for use in humans, and efforts remain targeted to the optimization of vaccine performance in nonhuman primates (NHP) since this animal model recapitulates many aspects of disease pathogenesis observed in humans.Genetic vaccines are a promising approach for immunization against pathogens that are rapidly changing due to natural evolution, cross-species transmission, or intentional modification. Gene-based vaccines are produced rapidly and can be delivered by a variety of vectors. DNA vectors are advantageous because they are inherently safe and stable and can be used repeatedly without inducing antivector immune responses. However, while filovirus DNA vaccines have demonstrated efficacy in small animal models, efforts to induce protective immunity by injection of plasmid DNA alone into NHP have yielded less encouraging results. EBOV DNA vectors generate immune protection in mice and guinea pigs, but this has not been demonstrated in NHP unless DNA immunization is boosted with a viral vector vaccine (23). MARV DNA fully protects mice and guinea pigs but provides only partial protection in NHP (17). The discordant results between rodent and primate species may be due to the use of slightly modified infectious challenge viruses in rodent models or may reflect underlying differences in vaccine performance and the mechanisms of immune protection between rodents and NHP.In the current study, we examined whether DNA plasmid-based vaccines could be improved to increase potency in NHP and compared immunogenicity of this vaccine modality with those of viral vector and prime-boost approaches. DNA-vectored vaccines were modified by codon optimizing gene target inserts for enhanced expression in primates. These vectors induced antigen-specific cellular and humoral immune responses similar to immunization using a recombinant adenoviral vector and provided protection after lethal challenge with MARV Angola. However, macaques vaccinated with DNA vectors exhibited clinical symptoms associated with MARV hemorrhagic fever (MHF) that were absent in NHP receiving a single inoculation with recombinant adenovirus (rAd) vectors, suggesting qualitative differences in the immune responses elicited by the different modalities.  相似文献   

4.
The high prevalence of herpes simplex virus 2 (HSV‐2) infections in humans necessitates the development of a safe and effective vaccine that will need to induce vigorous T‐cell responses to control viral infection and transmission. We designed rAd‐gD2, rAd‐gD2ΔUL25, and rAd‐ΔUL25 to investigate whether recombinant replication‐defective adenoviruses vaccine could induce specific T‐cell responses and protect mice against intravaginal HSV‐2 challenge compared with FI‐HSV‐2. In the present study, recombinant adenovirus‐based HSV‐2 showed higher reductions in mortality and stronger antigen‐specific T‐cell responses compared with FI‐HSV‐2 and the severity of genital lesions in mice immunized with rAd‐gD2ΔUL25 was significantly decreased by eliciting IFN‐γ‐secreting T‐cell responses compared with rAd‐gD2 and rAd‐ΔUL25 groups. Our results demonstrated the immunogenicity and protective efficacy of recombinant adenovirus vaccines in acute HSV‐2 infection following intravaginal challenge in mice.  相似文献   

5.
Suman Mahan and co-authors review the strategies applied to develop improved vaccines for Cowdria ruminantium infections (heartwater). Inactivated vaccines using cell-cultured C. ruminantium organisms combined with an adjuvant are capable of protecting goats, sheep and cattle against lethal C. ruminantium challenge. Immune responses induced with this vaccine, or after recovery from infection, target outer membrane proteins of C. ruminantium, in particular the major antigenic protein 1 (MAP-1). Genetic immunizations with the gene encoding MAP-1 induce protective T helper cell type 1 responses against lethal challenge in a mouse model. Similarly, homologues of MAP-1 in other phylogenetically and antigenically related ehrlichial agents such as Anaplasma marginale and Ehrlichia chaffeensis are also targets of protective responses. Given the antigenic similarities between the related ehrlichial agents, common strategies of vaccine development could be applied against these agents that cause infections of importance in animals and humans.  相似文献   

6.
The lack of available vaccines against African swine fever virus (ASFV) means that the evaluation of new immunization strategies is required. Here we show that fusion of the extracellular domain of the ASFV Hemagglutinin (sHA) to p54 and p30, two immunodominant structural viral antigens, exponentially improved both the humoral and the cellular responses induced in pigs after DNA immunization. However, immunization with the resulting plasmid (pCMV-sHAPQ) did not confer protection against lethal challenge with the virulent E75 ASFV-strain. Due to the fact that CD8+ T-cell responses are emerging as key components for ASFV protection, we designed a new plasmid construct, pCMV-UbsHAPQ, encoding the three viral determinants above mentioned (sHA, p54 and p30) fused to ubiquitin, aiming to improve Class I antigen presentation and to enhance the CTL responses induced. As expected, immunization with pCMV-UbsHAPQ induced specific T-cell responses in the absence of antibodies and, more important, protected a proportion of immunized-pigs from lethal challenge with ASFV. In contrast with control pigs, survivor animals showed a peak of CD8+ T-cells at day 3 post-infection, coinciding with the absence of viremia at this time point. Finally, an in silico prediction of CTL peptides has allowed the identification of two SLA I-restricted 9-mer peptides within the hemagglutinin of the virus, capable of in vitro stimulating the specific secretion of IFNγ when using PBMCs from survivor pigs. Our results confirm the relevance of T-cell responses in protection against ASF and open new expectations for the future development of more efficient recombinant vaccines against this disease.  相似文献   

7.

Background

Rift Valley fever virus (RVFV) is a mosquito-borne pathogen causing an important disease in ruminants often transmitted to humans after epizootic outbreaks in African and Arabian countries. To help combat the spread of the disease, prophylactic measures need to be developed and/or improved.

Methodology/Principal Findings

In this work, we evaluated the immunogenicity and protective efficacy of recombinant plasmid DNA and modified vaccinia virus Ankara (rMVA) vectored vaccines against Rift Valley fever in mice. These recombinant vaccines encoded either of two components of the Rift Valley fever virus: the viral glycoproteins (Gn/Gc) or the nucleoprotein (N). Following lethal challenge with live RVFV, mice immunized with a single dose of the rMVA-Gn/Gc vaccine showed no viraemia or clinical manifestation of disease, but mounted RVFV neutralizing antibodies and glycoprotein specific CD8+ T-cell responses. Neither DNA-Gn/Gc alone nor a heterologous prime-boost immunization schedule (DNA-Gn/Gc followed by rMVAGn/Gc) was better than the single rMVA-Gn/Gc immunization schedule with regards to protective efficacy. However, the rMVA-Gn/Gc vaccine failed to protect IFNAR−/− mice upon lethal RVFV challenge suggesting a role for innate responses in protection against RVFV. Despite induction of high titer antibodies against the RVFV nucleoprotein, the rMVA-N vaccine, whether in homologous or heterologous prime-boost schedules with the corresponding recombinant DNA vaccine, only conferred partial protection to RVFV challenge.

Conclusions/Significance

Given the excellent safety profile of rMVA based vaccines in humans and animals, our data supports further development of rMVA-Gn/Gc as a vaccine strategy that can be used for the prevention of Rift Valley fever in both humans and livestock.  相似文献   

8.
Dendritic cells (DC) represent the most potent antigen presenting cells and induce efficient cytotoxic T lymphocyte (CTL) responses against viral infections. Targeting antigens (Ag) to receptors on DCs is a promising strategy to enhance antitumor and antiviral immune responses induced by DCs. Here, we investigated the potential of CD11c-specific single-chain fragments (scFv) fused to an immunodominant peptide of Friend retrovirus for induction of virus-specific T cell responses by DCs. In vitro CD11c-specific scFv selectively targeted viral antigens to DCs and thereby significantly improved the activation of virus-specific T cells. In vaccination experiments DCs loaded with viral Ag targeted to CD11c provided improved rejection of FV-derived tumors and efficiently primed virus-specific CTL responses after virus challenge. Since the induction of strong virus-specific T cell responses is critical in viral infections, CD11c targeted protein vaccines might provide means to enhance the cellular immune response to prophylactic or therapeutic levels.  相似文献   

9.
Arenaviruses are the causative pathogens of severe hemorrhagic fever and aseptic meningitis in humans, for which no licensed vaccines are currently available. Pathogen heterogeneity within the Arenaviridae family poses a significant challenge for vaccine development. The main hypothesis we tested in the present study was whether it is possible to design a universal vaccine strategy capable of inducing simultaneous HLA-restricted CD8+ T cell responses against 7 pathogenic arenaviruses (including the lymphocytic choriomeningitis, Lassa, Guanarito, Junin, Machupo, Sabia, and Whitewater Arroyo viruses), either through the identification of widely conserved epitopes, or by the identification of a collection of epitopes derived from multiple arenavirus species. By inoculating HLA transgenic mice with a panel of recombinant vaccinia viruses (rVACVs) expressing the different arenavirus proteins, we identified 10 HLA-A02 and 10 HLA-A03-restricted epitopes that are naturally processed in human antigen-presenting cells. For some of these epitopes we were able to demonstrate cross-reactive CD8+ T cell responses, further increasing the coverage afforded by the epitope set against each different arenavirus species. Importantly, we showed that immunization of HLA transgenic mice with an epitope cocktail generated simultaneous CD8+ T cell responses against all 7 arenaviruses, and protected mice against challenge with rVACVs expressing either Old or New World arenavirus glycoproteins. In conclusion, the set of identified epitopes allows broad, non-ethnically biased coverage of all 7 viral species targeted by our studies.  相似文献   

10.
Replication-defective adenovirus (ADV) and poxvirus vectors have shown potential as vaccines for pathogens such as Ebola or human immunodeficiency virus in nonhuman primates, but prior immunity to the viral vector in humans may limit their clinical efficacy. To overcome this limitation, the effect of prior viral exposure on immune responses to Ebola virus glycoprotein (GP), shown previously to protect against lethal hemorrhagic fever in animals, was studied. Prior exposure to ADV substantially reduced the cellular and humoral immune responses to GP expressed by ADV, while exposure to vaccinia inhibited vaccine-induced cellular but not humoral responses to GP expressed by vaccinia. This inhibition was largely overcome by priming with a DNA expression vector before boosting with the viral vector. Though heterologous viral vectors for priming and boosting can also overcome this effect, the paucity of such clinical viral vectors may limit their use. In summary, it is possible to counteract prior viral immunity by priming with a nonviral, DNA vaccine.  相似文献   

11.
An integrase-defective SIV (idSIV) vaccine delivered by a DNA prime and viral particle boost approach can suppress viral loads (VLs) during the acute infection stage after intravenous SIVmac239 challenge. This study investigated how idSIV DNA and viral particle immunization alone contributed to the suppression of VLs in Chinese rhesus macaques after SIV challenge. Two macaques were immunized with idSIV DNA five times and two macaques were immunized with idSIV viral particles three times. Cellular and humoral immune responses were measured in the vaccinated macaques after immunization. The VLs and CD4+ T cell counts were monitored for 28 weeks after the intravenous SIVmac239 challenge. The SIV-specific T cell responses were only detected in the DNA-vaccinated macaques. However, binding and neutralizing antibodies against autologous and heterologous viruses were moderately better in macaques immunized with viral particles than in macaques immunized with DNA. After the challenge, the mean peak viremia in the DNA group was 2.3 logs lower than that in the control group, while they were similar between the viral particle immunization and control groups. Similar CD4+ T cell counts were observed among all groups. These results suggest that idSIV DNA immunization alone reduces VLs during acute infection after SIV challenge in macaques and may serve as a key component in combination with other immunogens as prophylactic vaccines.  相似文献   

12.
Of the 80-plus known infectious agents pathogenic for humans, there are now more than 30 vaccines against 26 mainly viral and bacterial infections and these greatly minimize subsequent disease and prevent death after exposure to those agents. This article describes the nature of the vaccines, from live attenuated agents to subunits, their efficacy and safety, and the kind of the immune responses generated by those vaccines, which are so effective. To date, all licensed vaccines generate especially specific antibodies, which attach to the infectious agent and therefore can very largely prevent infection. These vaccines have been so effective in developed countries in preventing mortality after a subsequent infection that attempts are being made to develop vaccines against many of the remaining infectious agents. Many of the latter are difficult to manipulate; they can cause persisting infections or show great antigenic variation. A range of new approaches to improve selected immune responses, such as immunization with DNA or chimeric live vectors, viral or bacterial, are under intense scrutiny, as well as genomic analysis of the agent.  相似文献   

13.
Effective vaccines against infectious diseases and biological warfare agents remain an urgent public health priority. Studies have characterized the differentiation of effector and memory T cells and identified a subset of T cells capable of conferring enhanced protective immunity against pathogen challenge. We hypothesized that the kinetics of T cell differentiation influences the immunogenicity and protective efficacy of plasmid DNA vaccines, and tested this hypothesis in the Plasmodium yoelii murine model of malaria. We found that increasing the interval between immunizations significantly enhanced the frequency and magnitude of CD8+ and CD4+ T cell responses as well as protective immunity against sporozoite challenge. Moreover, the interval between immunizations was more important than the total number of immunizations. Immunization interval had a significantly greater impact on T cell responses and protective immunity than on antibody responses. With prolonged immunization intervals, T cell responses induced by homologous DNA only regimens achieved levels similar to those induced by heterologous DNA prime/ virus boost immunization at standard intervals. Our studies establish that the dosing interval significantly impacts the immunogenicity and protective efficacy of plasmid DNA vaccines.  相似文献   

14.
Viral peptides are presented by HLA class I on infected cells to activate CD8(+) T cells. Several immunogenic peptides have been identified indirectly by epitope prediction and screening of T cell responses to poxviral vectors, including modified vaccinia virus Ankara (MVA) currently being tested as recombinant or smallpox vaccines. However, for the development of optimal vaccination and immunomonitoring strategies, it is essential to characterize the actual viral HLA ligand repertoire of infected cells. We used an innovative approach to identify naturally processed MVA HLA ligands by differential HPLC-coupled mass spectrometry. We describe 12 viral peptides presented by HLA-A*0201 and 3 by HLA-B*0702. All HLA-A*0201 ligands participated in the memory response of MVA-immune donors, and several were immunogenic in Dryvax vaccinees. Eight epitopes were novel. Viral HLA ligand presentation and viral protein abundance did not correlate. All ligands were expressed early during the viral life cycle, and a pool of three of these mediated stronger protection against a lethal challenge in mice as compared with late epitopes. This highlights the reliability of the comparative mass spectrometry-based technique to identify relevant viral CD8(+) T cell epitopes for optimizing the monitoring of protective immune responses and the development of effective peptide-based vaccines.  相似文献   

15.
The aim of our investigation was to improve the effectiveness of DNA vaccines against herpes simplex virus (HSV) infection. We chose coimmunization with DNA encoding cytokines known to emphasize components of immune defense that best correlate with immune protection. These include interferon-producing T and NK cells and the IgG2a isotype immunoglobulin. Our results show that the coadministration of plasmid DNA encoding IL-12 or IL-18 along with glycoprotein B (gB) DNA improves immune induction. Recipients of the coimmunization procedure had elevated humoral as well as IFN-gamma-producing T cell responses and showed greater resistance to vaginal challenge with a lethal dose of HSV-1. The adjuvant effects were observed when the vaccines were administered either systemically or mucosally. By most assays, the adjuvant effect of IL-18 was superior to IL-12, although gB DNA plus IL-18 failed to induce levels of immunity achieved by UV-inactivated HSV immunization. Mucosal immunization proved as an effective means of inducing systemic immunity, but was less effective than the systemic route for inducing protection from vaginal challenge. Our results also demonstrated that protection from such challenges was mainly a property of IFN-gamma. Thus, immunized IFN-gamma-/- mice remained susceptible to challenges even while generating readily measurable immune responses. The approach of using DNA vaccines combined with DNA encoding cytokines holds promise and represents a potentially useful approach for vaccines.  相似文献   

16.
Immunological memory is a required component of protective antimalarial responses raised by T cell-inducing vaccines. The magnitude of ex vivo IFN-gamma T cell responses is widely used to identify immunogenic vaccines although this response usually wanes and may disappear within weeks. However, protection in the field is likely to depend on durable central memory T cells that are not detected by this assay. To identify longer-lived memory T cells, PBMC from malaria-naive vaccinated volunteers who had received prime boost vaccinations with a combination of DNA and/or viral vectors encoding the multiepitope string-thrombospondin-related adhesion protein Ag were cultured in vitro with Ag for 10 days before the ELISPOT assay. Ex vivo T cell responses peaked at 7 days after the final immunization and declined substantially over 6 mo, but responses identified after T cell culture increased over the 6-mo period after the final immunization. Moreover, individual cultured ELISPOT responses at the day of challenge time point correlated significantly with degree of protection against malaria sporozoite challenge, whereas ex vivo responses did not, despite a correlation between the peak ex vivo response and magnitude of memory responses 6 mo later. This cultured assay identifies long-lasting protective T cell responses and therefore offers an attractive option for assessments of vaccine immunogenicity.  相似文献   

17.
DNA vaccines     
Within the last decade bacterial plasmids encoding foreign antigens have revolutionized vaccine design. Although no DNA vaccine has yet been approved for routine human or veterinary use, the potential of this vaccine modality has been demonstrated in experimental animal models. Plasmid DNA vaccination has shown efficacy against viral, bacterial and parasitic infections, modulated the effects of autoimmune and allergic diseases and induced control over cancer progression. With a better understanding of the basic immune mechanisms that govern induction of protective or curative immune responses, plasmid DNA vaccines and their mode of delivery are continuously being optimized. Because of the simplicity and versatility of these vaccines, various routes and modes of delivery are possible to engage the desired immune responses. These may be T or B effector cell responses able to eliminate infectious agents or transformed cells. DNA vaccines may also induce an immunoregulatory/modulatory or immunosuppressive (tolerizing) response that interferes with the differentiation, expansion or effector functions of B and T cells. In this sense a DNA vaccine may be thought of as a 'negative' vaccine. Pre-clinical and initial small-scale clinical trials have shown DNA vaccines in either of these modes to be safe and well tolerated. Although DNA vaccines induce significant immune responses in small animal trials their efficacy in humans has so far been less promising thus necessitating additional optimizations of this novel vaccine approach.  相似文献   

18.
BACKGROUND: Vaccines capable of inducing CD8 T cell responses to antigens expressed by tumor cells are considered as attractive choices for the treatment and prevention of malignant diseases. Our group has previously reported that immunization with synthetic peptide corresponding to a CD8 T cell epitope derived from the rat neu (rNEU) oncogene administered together with a Toll-like receptor agonist as adjuvant, induced immune responses that translated into prophylactic and therapeutic benefit against autochthonous tumors in an animal model of breast cancer (BALB-neuT mice). DNA-based vaccines offer some advantages over peptide vaccines, such as the possibility of including multiple CD8 T cell epitopes in a single construct. MATERIALS AND METHODS: Plasmids encoding a fragment of rNEU were designed to elicit CD8 T cell responses but no antibody responses. We evaluated the use of the modified plasmids as DNA vaccines for their ability to generate effective CD8 T cell responses against breast tumors expressing rNEU. RESULTS: DNA-based vaccines using modified plasmids were very effective in specifically stimulating tumor-reactive CD8 T cell responses. Moreover, vaccination with the modified DNA plasmids resulted in significant anti-tumor effects that were mediated by CD8 T cells without the requirement of generating antibodies to the product of rNEU. CONCLUSIONS: DNA vaccination is a viable alternative to peptide vaccination to induce potent anti-tumor CD8 T cell responses that provide effective therapeutic benefit. These results bear importance for the design of DNA vaccines for the treatment and prevention of cancer.  相似文献   

19.
Chagas’ disease is a major public health problem affecting nearly 10 million in Latin America. Despite several experimental vaccines have shown to be immunogenic and protective in mouse models, there is not a current vaccine being licensed for humans or in clinical trial against T. cruzi infection. Towards this goal, we used the backbone of Yellow Fever (YF) 17D virus, one of the most effective and well-established human vaccines, to express an immunogenic fragment derived from T. cruzi Amastigote Surface Protein 2 (ASP-2). The cDNA sequence of an ASP-2 fragment was inserted between E and NS1 genes of YF 17D virus through the construction of a recombinant heterologous cassette. The replication ability and genetic stability of recombinant YF virus (YF17D/ENS1/Tc) was confirmed for at least six passages in Vero cells. Immunogenicity studies showed that YF17D/ENS1/Tc virus elicited neutralizing antibodies and gamma interferon (IFN-γ) producing-cells against the YF virus. Also, it was able to prime a CD8+ T cell directed against the transgenic T. cruzi epitope (TEWETGQI) which expanded significantly as measured by T cell-specific production of IFN-γ before and after T. cruzi challenge. However, most important for the purposes of vaccine development was the fact that a more efficient protective response could be seen in mice challenged after vaccination with the YF viral formulation consisting of YF17D/ENS1/Tc and a YF17D recombinant virus expressing the TEWETGQI epitope at the NS2B-3 junction. The superior protective immunity observed might be due to an earlier priming of epitope-specific IFN-γ-producing T CD8+ cells induced by vaccination with this viral formulation. Our results suggest that the use of viral formulations consisting of a mixture of recombinant YF 17D viruses may be a promising strategy to elicit protective immune responses against pathogens, in general.  相似文献   

20.
The long-term control of tuberculosis (TB) will require the development of more effective anti-TB vaccines, as the only licensed vaccine, Mycobacterium bovis bacille Calmette-Guérin (BCG), has limited protective efficacy against infectious pulmonary TB. Subunit vaccines have an improved safety profile over live, attenuated vaccines, such as BCG, and may be used in immuno-compromised individuals. MPT83 (Rv2873) is a secreted mycobacterial lipoprotein expressed on the surface of Mycobacterium tuberculosis. In this study, we examined whether recombinant MPT83 is recognized during human and murine M. tuberculosis infection. We assessed the immunogenicity and protective efficacy of MPT83 as a protein vaccine, with monophosphyl lipid A (MPLA) in dimethyl-dioctadecyl ammonium bromide (DDA) as adjuvant, or as a DNA vaccine in C57BL/6 mice and mapped the T cell epitopes with peptide scanning. We demonstrated that rMPT83 was recognised by strong proliferative and Interferon (IFN)-γ-secreting T cell responses in peripheral blood mononuclear cells (PBMC) from patients with active TB, but not from healthy, tuberculin skin test-negative control subjects. MPT83 also stimulated strong IFN-γ T cell responses during experimental murine M. tuberculosis infection. Immunization with either rMPT83 in MPLA/DDA or DNA-MPT83 stimulated antigen-specific T cell responses, and we identified MPT83(127-135) (PTNAAFDKL) as the dominant H-2(b)-restricted CD8(+) T cell epitope within MPT83. Further, immunization of C57BL/6 mice with rMPT83/MPLA/DDA or DNA-MPT83 stimulated significant levels of protection in the lungs and spleens against aerosol challenge with M. tuberculosis. Interestingly, immunization with rMPT83 in MPLA/DDA primed for stronger IFN-γ T cell responses to the whole protein following challenge, while DNA-MPT83 primed for stronger CD8(+) T cell responses to MPT83(127-135). Therefore MPT83 is a protective T cell antigen commonly recognized during human M. tuberculosis infection and should be considered for inclusion in future TB subunit vaccines.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号